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The statistical mechanics of a general spin-S magnetic system, which is described by a
Heisenberg-Dirac isotropic exchange Hamiltonian with single-ion anisotropy ir=cluded, has been
studied with the aid of the Green-function technique. This problem has been set up in a new
formalism in which it is not necessary to decouple the anisotropy Green functions. A scheme
has been found for decoupling each of the exchange Green functions. For zero anisotropy, our
results reduce to the usual random-phase approximation. For finite values of the anisotropy
parameter D the ensemble averages ( (S~)"), for n integer, show a greater dependence on D
than they do in the molecular-field-theory (MFT) calculation. Unlike the results of some of the
previous decoupling schemes used on this problem, our prediction for the transition tempera-
ture T, (D), as a function of D, remains finite as the anisotropy becomes infinite. The asymp-
totic value of T~ (D) as D- ~ for our Green-function calculation is the same as the asymptotic
value of the MFT prediction, T~~ (D- ~). We present here the appropriate formalism for
antiferromagnetic as well as for ferromagnetic systems.

I. INTRODUCTION

Starting from the Hamiltonian

Q,Q~ J,~ S, ~
5~ -Q, D(Sf)

this paper will discuss in a quantitative way the ef-
fects of the crystal-field anisotropy D on the statis-
tical mechanical quantities associated with a gen-
eral-spin-S magnetic system. The first term in
the Hamiltonian is the usual Heisenberg-Dirac ex-
change Hamiltonian which accounts for the isotropic
coupling between the highly localized electrons in
an insulating magnetic salt. The sums over i and

j represent sums over all the lattice points which
have a spin operator S associated with them. The
second term represents the splitting of the spin
states owing to the presence of a crystalline elec-
tric field.

The particular statistical mechanical quantities
we shall be interested in here are the 2S moments
of the operator S', , ((S;)"), where n = l, 2, . . . , 2S,
and also the transition temperature T,. The angu-
lar brackets denote the canonical ensemble aver-
age: ((S';)")=Tr[(S;)"e " ]/Tr(e "'"

), where z
is the Boltzmann constant. The temperature range
to be considered is 0 ~ T ~ T,.

The molecular-field-theory (MFT) approximation
is presented in Sec. II. The moments are calcu-
lated for this theory and it is pointed out that these
quantities change very little even with large
changes in D. This indicates that the MFT under-
estimates the effect of the crystal-field anisotropy
since we know that these moments should change
considerably over the range 0 ~ D ~ ~.

Section III presents the rudiments of the Green-
function formalism and also the earlier decoupling

schemes of Narath, ' Anderson and Callen, and
Lines. 3 Defects in each of these schemes are
pointed out, the most serious being the prediction
of T,-~ as D-~. These defects each arise through
attempts to perform a random-phase approximation
(RPA) on the anisotropy Green function itself.

The particular formalism of this paper is intro-
duced in Sec. IV. We first point out that the prob-
lem can easily be set up so that none of the anisot-
ropy Green functions need to be decoupled. Second,
we then decouple the exchange-term Green functions
in a manner which is consistent with the usual RPA.
We show that it is possible to obtain 2$ independent
equations in the 2S unknown moments, thereby de-
termining all the necessary statistical information.
The solution of the problem for an antiferromag-
netic lattice is then covered in Sec. V. The method
for obtaining expressions for T, is presented in
Sec. VI.

Numerical solutions of the equations have been
obtained for the spin S=1 ferromagnet, the spin
S = 1 antiferromagnet, and the spin S = ~ ferromag-
net, and these are presented in Sec. VII. Graphs
have been plotted for the more important results.
All of the results show a stronger dependence on
D than the equivalent results obtained from the
MFT.

Murao and Matsubara have attempted a decou-
pling of the exchange terms such as ours for the
spin S= 1 ferromagnet. Their final results,
though, differ considerably from ours because of
their particular choice for the spin operators in-
side the Green function. A discussion of their er-
rors and also a comment on Green-function de-
coupling procedures in general are included in the
Appendix.
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II. MFT

The MFT is, by far, the simplest of all the ap-
proximations to apply. Consider the Hamiltonian
for the ith spin:

Xt = —2Z/Zt/St ~ S, —D (S;) (2. 1}

The molecular-field approximation assumes the
form of replacing S& by its ensemble average
(S;). Then the molecular-field Hamiltonian for
a single spin becomes

3CMFT 2+ g (S g) S g D (S g)2

and for the total Hamiltonian we then have

(2. 2}

E; (m} = —2'(0)m —Dm (2. 4)

where m is the azimuthal quantum number which
ranges in integral steps from —S to +S. By the
definition of the ensemble average we have for the
moments

m-$ m=$

((S g)n) Q ~n e[2S1(0) +D m1/gmT Q e [2SZ (0)+Dm 3/KZ
fI

m=- $ m=- $

(2. 5)

In order to obtain expressions for 7', we let S-0.
Using n = 1 in (2. 5) one obtains in this limit

.m=$ m=$

/tz ~(0} Q ~2 Dm /nrg Q eDm /nrg (2. 6)
m —$

or, equivalently,

.V, = u(0}&(S;))i,m, ,

m=- $

(2. 7)

Two special cases of this are as follows:

X" = —2Z(tg/&t/&S;& S*; DQ (t-St) 2. (2. 3)

Since (S;) is independent of the lattice-site index i,
we may define S =(S t&. We shall also define Z(0)
=g/J;/. Then the eigenvalues of 3C";TT are

where the double angular brackets denote the

Green function, and the square brackets denote

the commutator. By Fourier transforming with

respect to the variable t —t one may obtain a
Green function ((A; B»s which satisfies the equa-

tion of motion

E ((A; B))2 = (I/2 tt) ( [A, B)) + (& [A, 3C]; B))tt,
(3. 2}

where E is now the dependent variable. The Green
function ((A; B» scan be related back to the time-
dependent correlation function &B(t }A(t})via the

spectral theorem

(B(f'}A(f))
- «A; B)&..„.-(&A; B»..;.im

6-0 e
m 00

X e '"" "d(D (3 3)

If ((A;B))2 has only simple poles, (3.3) can be
simplified greatly in the following way: Suppose
((A; B))s has the form

«A; B)&.= —, X;
~ f-1

(3.4}

where the E; are the location of the n simple poles,
and the A, are their residues. Then using (3. 3)
yields

n

(B)ftA( )f& Q i -IE'lt t ) (3.5)

This relationship will be useful later in this paper.
The usual procedure for magnetic problems is to

choose the operator A to be S~ and the operator I3 to
be some function of the spin operators associated
with lattice site h. We denote this second operator
as B„for the time being. By considering the equa-
tion of motion of the Green function ((Sg; B„))as
generated by the Hamiltonian .'n (1.1) one has

/tT, =-', S(s+1}J(0) for D =0, (2. Sa} E ((S;;B„))= (I!2t/) 5, „([S;,B,] )

KT, =2S J(0} for D=~. (2. Sb}

III. GREEN-FUNCTION TECHNIQUE AND
PREVIOUS DECOUPLING SCHEMES

We shall use Zubarev's' definition of the double-
time temperature-dependent Green function:

«A(f};B(f'}» = —I ft(f —f')&[A(f},B(f')]&, (3 1)

Figures 3 and 4 of Sec. VII contain, respectively,
plots of S and ((S'} ) as functions of temperature
for a spin S = 1 simple cubic ferromagnet. These
MFT curves do not change shape noticeably over
the whole range of possible anisotropies. Clearly,
then, the MFT grossly underestimates the effect of
anisotropy on magnetic systems.

+ 2Q, z„« (s,'s; —s,'s;); B„))

+D (( (S ' S '+ S ' S '); B„)), (3.5)

where 5 „ is the Kronecker 5 function. (Note that
the subscript E has now been dropped from each of
the Green functions, since all further Green func-
tions that we will be using are of this transformed
variety. ) Clearly, one cannot solve this equation
for the Green function ((S '; B„)& without first de-
termining the exchange function « (S 'Sz —S 'S &};B„))
and the anisotropy function (((S;S,'+S'S;);B„))
Decoupling procedures are generally employed at
this point to reduce these higher-order functions
to the original Green function. The exchange func-
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(((s;s;+s;s;);B„)) r, ((s;;B„)).
The three choices made for I; have been

Narath:

r, =2(s;),
Anderson and Callen:

(3.6)

(3.9)

=[2- (1/2S )(S'S'+S'S,')](S'), (3. 10)

Lines:

I; =(3($,')3 —$($+1))/(S;) for B„=S„, (3. 11a}

( 2(S ~) + 3($,') —(2S + 2S —1) (S~} —$($ + 1)S,')
&(s;}'+(s,')'- s(s+ 1)s,'&

for B„=Sf S„. (3.11b)

Each of these approximations produces a number
of invalid results. The first two approximations
predict that at T= „T&( S))= &S(s+1) for all val-
ues of the parameter D. But only for an isotropic
system can & (S,'}~& =-', S($+1). For all finite values
of D one must have ((S') ) larger than —,'S(S+1).
All three approximations predict T,(D) -~ as D -~.
This is an unphysical result for the following rea-
son: As D-~ the effective spin state at each site
becomes just I S) and l

—S). Even in this case the
spin system must still possess a finite transition
temperature T,. This particular T, is, of course,
somewhat larger than if D =0, but it is still finite.

These three decoupling approximations are at
best valid only for D very small.

IV. GENERAL SPIN4' SOLUTION

The problem of decoupling the anisotropy func-
tion can be avoided by writing the equation of mo-
tion of the anisotropy function. This procedure
will generate a new anisotropy function. By con-
tinuing this process of writing the equation of mo-
tion of each anisotropy function generated, one will
see that, after 2$ such equations, no new linearly

tion can be decoupled by the RPA':

«$&$;;B„»=-&Sz&&($ ~B„&& for f+ g . (3.7)

This approximation, or factorization, says, in ef-
fect, that the transverse motion of the spin at site
g is completely uncorrelated &ith the longitudinal
motion of the spin at site f. This is certainly a
reasonable approximation as long as fWg. For
the special case f =g, such an approximation is
less valid since we can no longer separate the
longitudinal and transverse motions from each
other. In fact such motions must be intimately
correlated when they refer to the same lattice
site. Nevertheless there have been three distinct
attempts to decouple the anisotropy function. They
are each of the form

A,' = —[A~ ', (S ~} ] for 2$ ~ i ~ 2 . (4. lb)

Second, we shall define additional sets of operators
(Bg and {C,') as fouows:

B,'=-[A,', S;] for each i,
C,'-=[A,', S,] for each i .

Note that the A~ each satisfy

[A,', S;]= -A,' for each i .

(4. 2a)

(4. 2b)

(4. 3)

The particular commutation relationship that closes
the set of anisotropy operators is

2S-1
[A2s ($ a)2]

j=i
(4.4)

where the particular values for the c numbers a&

depend on the size of the spin of the system.
The equations of motion for these anisotropy

functions then assume the form

B«A '; S „»= (1/2v} 5, „(C,') +D ((A '"; S„))

+Q, z„« (2A,'s; —B,'s, c,'s;};s „)—)

for i c 2$ —1, (4. 5a}

2S-1
E«A,";s„))=—5, „(c", ) -Dg a, «A,';s-„»

~ Q J~g &((2Ag S~ —B~ S~ —C~ Sg); S g&& ~

(4. 5b)

The decoupling of the exchange terms that we have
chosen is as follows:

&(A,'s;;s„))=-(s,'&((A,';s„)),

«B,'$„$.» =- 0,

(&c,'s;;s„» = (c,')((s;;s„)& .

(4. ea)

(4. eb)

(4.ec}

The operators C,' are linear combinations of the
powers of the operator S' and hence correspond
to longitudinal motions of the spins. The operators
A~ and I3,' are of the form of raising and lowering
operators and therefore represent the transverse

independent anisotropy functions will be generated.
Hence this set of 2S equations will be closed in the

anisotropy functions. Therefore we will not need
to decouple any of them. The problem then re-
duces to finding a decoupling appropriate for the
exchange functions generated.

To keep track of all the spin operators necessary
for this problem we make the following definitions
for the operators used inside of the anisotropy
functions:

(4. la)
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motions of the spins. Since it is only the operators
C,' which have finite ensemble averages, the de-
couplings in (4. 6) represent the same type of
factorizations as in (3.V).

Assuming translational invariance, we may
define (4. 13b)

analytically.
For the special case D =0 the poles and their

residues simplify as

E, (k) = 2S [J(0)—J(k)] for each i, (4. 13a)

R)(k) =Z; 5, ) .

G'(k, E)= P ((A';S„))e' '

K~-5)

g(k} g g -if (Rg Rg)

Rg-Rg

(4. Va)

(4. vb)

Therefore the equations in (4. 12) reduce to

(S A') =Z, 4&=([Ag, Sg]& 4',
where

(4. 14)

z, =(c,') .
Then (4. 5} can be written more concisely as

[E —28J(0)] G'(k, E) +Z, J(k) G (k, E)

(4. Vc)

—DG"(k, E)=Z;/2v for ic 2$ —1, (4 8)

[E —2'(0}]G (k, E) + Zqq J(k)G (k, E)

2$-1
+ Q Da&G~(k, E) =Z /2v . (4. 0)

R,'(k)
G'(k, E)=-

2m )gE —E) k
(4. 10)

where the E, (k) are the 2S possible poles of the
Green functions, and R,'(k) is the residue of the
jth pole for the ith Green function. By Fourier-
transforming back into the spatial variable and
using the relationship in (3.5), the equal-time cor-
relation function can be written as

2s Rf k e-IE ' (Rg ftl)-
(s„A,'& = —5 E ' . , (4. 11)

~g(E) /sr

where we have assumed that there are N points in
the lattice and where the sum over k is performed
over all points in the first Brillouin zone of the
lattice. For g =h this becomes

2$
(S-A&& g g R&(k)/( s&&furr 1)

k f=1

for i= 1, 2, .. . , 2S . (4. 12)

The operators S~A,' can be expressed directly as
linear combinations of the powers of S,', and there-
fore the left-hand side of (4. 12} can be written as
a linear combination of the moments. Hence the
2$ equations of (4. 12} completely determine the
2$ moments for all temperatures. Numerical
methods must be used in obtaining solutions of the
equations in (4. 12) since they cannot be solved

This set of 2$ linear equations can easily be solved.
The solution for each Green function can be written
in the form

(1/~g (eE(k)lxr 1)-1

E(k) = 2$[Z(0) —J(k}] .

(4. 15a)

(4. 15b}

Equations (4. 14) and (4. 15) are the same relations
Tahir-Kheli and ter Haar~ obtained for their solu-
tion of the general spin S isotropic ferromagnet.
Hence our decoupling procedure (4. 6) is completely
equivalent to the usual RPA when D =0.

Finally, we note that setting J(k) equal to zero
in (4. 12) will reproduce the results of the MFT.
This can easily be seen by noting that we would
have gotten Eqs. (4. 12) with the J(k) terms set
equal to zero if we had started out by using the
MFT Hamiltonian of (2. 3), rather than the Hamil-
tonian of (1.1}.

x(((2A,'.s,' -a,' s, -c,'„s; };s;,)&

+D((A,"„';S„,» for p, =1, 2, (5. la)

2

V&1 fy

)((((2A2s S+ @2s S- C2s st ).S- »

2 $-1
—D Q a~((A~;S„,&& for p, =1, 2. (5. 1b)

j=1

V. ANTIFERROMAGNETIC SOLUTION

The solution for an antiferromagnetic lattice
can be carried out along the lines set out by Ander-
son and Callen~ and Lines. 7 %e shall assume that
the lattice can be divided up into two sublattices,
the first of which contains the "up" spins and the
second of which contains the "down" spins. The
extension to cases where there are more than two
sublattices can be deduced from this case rather
easily.

The points on the first sublattice will be denoted
by indices of the form g„and those on the second
sublattice by g2 indices. The equations in (4. 5)
then become

2

E ((A,'„;$.,» = —,„5,„.,(c,'&+ Z Z ~«.
v=1
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We shall decouple the Green functions in (5. 1)
using the same scheme as in (4. 6}. Using the
translational invariance of each sublattice we may
define

G' (k E) = Z ((W' S )) e"'a.. ~i' (5 2a.}
%g

are the residues of the positive poles, and the
T'(k) are the residues of the negative poles. Re-
lating this Green function back to the correlation
function yields

2S

(S g )= —g g [R'(k) (e@m~f'~"r 1) ~N-
(k) Q g e-ik (ag -Rg

f„
(5. 2b)

+ 7 f (k)(e E~ (f')l»T 1)-1] (5 7)

where p. and v assume the values 1 and 2. For an
antiferromagnet the quantities (C,') are no longer
independent of the lattice site index. The ensemble
averages of the odd powers of S~ now have different
signs on each of the sublattices. It can be shown
that C~ is a linear combination of the odd powers
of S~ for i odd, and a linear combination of the
even powers of S~ for i even. Therefore (C,')
changes sign from one sublattice to the next only
when i is odd. Hence we may define for each i

(C,' )=Z, for p. =1, (5. Sa)

(C~ ) =(-1)'Z; for p =2 .
This can be written more succinctly as

( C~ )= [5, , + 5„2(-1)']Z; for each i .

(5. sb)

(5. 4)

After decoupling and Fourier transforming, (5.1)
becomes

EG„'(k, E) =Z( 5» g/2w+2SQ„J, , „(0)(-1)"' G„' (k, E)

-Zg D j~(k)G„'(k, E) [ 5»+ .5,( 1)']

—D G"'(k, E}

for p, , v = 1, 2 and i & 2S —1, (5. 5a)

EG„(k,E) = Zaq 5» t /2 v+ 2'„J„»(0)

&& (-1)"'G"(k E)

—Z2g Q J'„» (k) G„' (k, E) [5», + 5» 2(- 1) ]

—Dg&a&G»~ (k, E) for p, p=l, 2 . (5. 5b)

1 Rm(k) Tm(k}2v, E —E (k) E+E (k)

where the E (k) are the positive poles, the R'(k)

This set of 4S linear equations can easily be solved
for each of the Green functions. The functions of
the form G,'(k, E) can be related back to the correla-
tion function (S,,A,' ) with the aid of the spectral

Eg

theorem. Since the poles of the Green function
come in positive and negative pairs for an antifer-
romagnet, G,'(k, E) has the form

where we have assumed that there are N points in
the full lattice. The sum over k is over all points
in the first Brillouin zone of the sublattice. This
set of 2S equations completely determines the 2S
moments for all temperatures.

VI. TRANSITION TEMPERATURE

The transition temperature T, is defined as the
temperature at which S first vanishes as we in-
crease T from absolute zero. We note here also
that when S vanishes, all of the odd moments of
S ~ must vanish too. Since the Z„ for i odd, depend
only on the odd moments of S~, they vanish likewise.
Some care must be taken in trying to obtain a set
of equations which can be solved for T,. By taking
the limit S-0 in either of the 2S ferromagnetic
equations of (4. 12}or the 2S antiferromagnetic
equations of (5. 7}, we will obtain S equations
(S ——,

' equations) in the S unknown (S ——,
' unknown) Z,.

for i even when S is integer (S is half-integer}.
These equations are valid for all T ~ T,. That is,
the limit-taking process yields a set of equations
which are valid over the whole paramagnetic re-
gion, and they in no way determine the value of T,.

The correct procedure for obtaining the value of
T, is as follows: Define

P;=Z, /S for i odd.

(p, = 2 for all spin systems since Z, =2S. ) Then re-
place each Z; for i odd with the quantity P, S in the
2S original equations, i. e. , (4. 12) or (5.7). Now
expand these equations in a power series in S about
the point S = 0. The coefficients of each power of S
must be the same on each side of each equation. A
comparison of the zeroth power of S will yield the
paramagnetic equations referred to in the para-
graph above. The coefficients of the first powers
of S in each equation will yield S additional (S+ —,

additional) equations when S is an integer (S is a
half-integer). Hence we will then have a total of
2S equations. The 2S unknowns are then the Z; for
i even, the P; for i odd (it 1}, and T,. The reason
T, now appears as an unknown is that the compari-
son of the coefficients for the first power of S gives
equations which are not valid for T& T„and hence
they are valid only at the single temperature T„
which is, as yet, undetermined. Numerical solu-
tion of the equations then yields T, and the quanti-
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ties Z; for i even and the P, for i odd which are all
evaluated at T = T,.

By writing out the angular momentum matrices ex-
plicitly one finds that

VII. RESULTS FOR SOME SPECIAL CASES

A. Spin S = I Ferromagnet

For S=1 we need only the operators A,' and A'„
which are S~ and S~S~+S~S~, respectively. Then
the equations of motion of (4. 8) become

z, =6((s')'& -4,
(s s'& = —,' (8 —6s —z,),
(s (s's'+s s')&=s--', z, .

(V. 5a)

(v. 5b)

(7. 5c)

E —2s [z(0) -z(k)]

zp(k) -D

G'(k, E)~

E —2SJ(0) G (k, E)

For any given temperature (7. 3) together with (7. 4)
and (7. 5) determine S and Zo completely in terms
of the exchange integrals J;, and the anisotropy D.
Using the technique outlined in Sec. VI one obtains
the following equations which determine T, and Z&

evaluated at T,:
2S

27r
2

(v. 1) 8 ZR 1 D Eo(k)

Z, N ~ E,(k) 2xT,
(V. 6a)

E,(a) = s[2J(0) —z(k)]

+(D' —Z,DJ(k) + [SI(k}]') "', (7. 2a)

E,(u} =s[u(o}-z(k)]

—(D' —Z,DZ(k) + [SZ(k)] ') '" . (v. 2b}

Equations (4. 11}reduce to the following for this
case:

R'(k) R'(k)
(Sgsg& =—Q && (f&I„T + z ('f&& Tg g ~ y Ã 1 e 3 k lc

&s,(s;s;+s;s,'))

R&(k} Rz(k)
E (f&l~r 1 E (f&&~TN „- ei "—1 e~ "—1

where the residues are

R', (k) = [2SE,(k) —4S J(0) +ZzD] / [E,(k) —Ez(k)]

(V. 4a)

Ro(k) = [2SEo(k) —4S J(0) +ZoD] / [Ez(k) —E,(k)]

(v. 4b)

R,(k) = [ZzE, (k) —2SZQ(0) + 2SD] / [E,(k) —Eo(k)]

(7. 4c)

Ro(k) = [ZoEo(k) —2$zrl(0)+ 2SD] / [Ez(k) —E&(k)]

(v. 4d)

The locations of the poles of the Green functions are
gotten by equating the determinant of the coefficient
matrix in (7. 1) to zero and solving for the roots of
this equation. The results are

4(zo —2) 1 [J(k) —2f(0)] e o

3zo N f Kv (ceo&& &&" rc 1)o
C

1 J (k) Eo(k),b
2 Eo(k) 2t&T,

where

E,(k) = [D' —Z~Z(k)] "'
Figures 1 and 2 contain plots of T, (D)/T, (0) as

a function of the ratio D/J for a simple cubic (sc)
and body centered cubic (bcc) lattice, respectively.
We have assumed here that the exchange J is be-
tween nearest neighbors only, hence the variable
Z(0) =zJ, where z is the number of nearest neigh-
bors. At very low anisotropy our results agree
very closely with those of Lines. This is not too
surprising since his decoupling technique is cer-
tainly the most sophisticated of all the decouplings
applied to the anisotropy Green function, and there-
fore should be reasonably accurate for small val-
ues of D/J. For extremely large anisotropy, one
may expand the functions in (7. 6) to obtain xT,
=28(0) at D/J=~. Hence for large values of the
anisotropy our RPA results approach the results
of the MFT. This is in sharp contrast with the
earlier decoupling schemes of (3. 9), (3. 10), and
(3. 11) which all predict T, -~ as D/J-~.

Figure 3 contains plots of the sublattice mag-
netization S for a sc lattice as a function of T/T,
for three different values of D/J. Note that the
larger D/J becomes the "squarer" the curve be-
comes. This is to be expected, since the larger
D/J becomes the higher one must go in tempera-
ture, i.e. , closer to T„before the intermediate
spin states ls —1&, l S —2&, . . . , l

—S+1) become
populated enough to reduce the ensemble average
significantly. Also plotted in Fig. 3 is the MFT
prediction of S vs T/T, . This particular MFT
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FIG. 1. The ratio 2', (D)/T, (0) vs D/J for a sc s '

S= 1 ferroma etS=1 f gn t. (a) Narath's results; (b) Ander
a sc spin

and Callen's results (c) L'
n erson

c ines's results; (d) the r
of this r- ( ) th MFTe T results.

width that we havave chosen for our graph. Hence
the Green-function calcul ta ion predicts greater
changes in S vs T T/T, for different ratios of D/J
than does the MFT.FT. This is consistent with the
fact that the MFT generally underestimates the
effect of the cr sty al-field anisotropy on all of the
statistical mechanical quantities.

p ed the second moment ofIn Fig. 4 we have lotte
S*) vsT TiT, for a sc lattice with D/J =1.0.

For T ( T, the Green-fun- unction curve lies beneath
e MFT curve, but for T ~ T thee reverse is true.

ofD J. T
is par icular behavior is typic 1 f 11

' a or a values

than
The ensemble average ((S')

an the 1sotropic value —', S (S+1 for
is greater

values of I) J.
3 + for all finite

s o . O'. Only for D/J=O will ((S') )
= —,

' S (S + 1).

curve could 'ust asj well represent the values
Dy'J = 1.0, 0. 1, or 0.01, since the MFT does not

istin uish &'
g

' between these values 'th'wi in t e line-

B. Spin S = 1 Antiferromagnet

For a spin S =1 antifer
c

i erromagnet the equations of
5. 5 can be written as

E —2s[j(o) -J„(k))

Z, J„(k) D-
—2SJ12(k)

z, j»(k)

E —2Sj(0}

2SJ21(k)

z, j»(k}

E+ 2s [J(o) —J„(k)]

Z2 J„(k)—D

G', (k, E)

G', (k, E)

G2(k, E)

E + 2S J'(0) G (k, E)

2S

+2

277
0

(7. v)

(v. sa)

where we have used the notation J(0) =J (0'—
). Clearly, there are four I

poles to bee associated with each of th G
our simple

tions but
e reen func-

, but as we noted in Sec. V, the corn
n negative pairs. Assuming J,a(k) =J (k)

the two positive poles are located at

E1(k) {(y1+ /r2+ [4pr (y + ( )2] 1/2) 1/2

E2 (P)/lf T ) -E2(k)/K T
y

& 7 0

S —Z2 2 g R1(k) TP(k)
eEy (k)/fc T

y
-Ey (k)/ff Te

E2 (k)/ 1 i -E2(k)/ T

E,(k) ={a,+oa —[4o o +(n$)']'")'"

where

n1 = D —ZgD J11(k)

(v. 8b)

I.6

+SE[j, (k) —J, (k)] [J„(k)+J,(k)]

(v. 9a}

n, =S'[J, (k)- J, (k) —2J'(0)]

0
I-

O
I-

I.4

l, 2

X [J11(k) +J,2(k) —2 J(0)]

o/3 = J13(k) [ZaD —4S 2 J(0)]

(v. sb)

(7. 9c)

in (7. 5), the equa-

T',(k)
-EZ(|f)/ T

t'
Using the information conta daine
ions of (5. 7) become

5S Z, 2 R'(k)
5 A1 + eE1&f)/sr

I.Q
0 I.Q 2.0 3.0 4.0

D/J

FIG. &. The ratio 1'~ (D)/T~ (0) vs D J f
S=1 f t (e . a Narath's results-/; ) e 0

()
u s; c Lines's results (d

e e MFT results.
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where the residues have the forms {2Eq(k) [Eg(k) —Eo(k}]} . (7. 11b)

R', (k) = [E,(k)B, +E,(k)Bo(k) +E,(k)Bo(k) + B4(k) ] /

(2E, (k) [E,(k) —E,(k)])., (7.11a,)

R,(k) = [E,(k)C'. , +E,(k}Co(k) +E~(k)Co(k) + C4(k) ] /

I

The remaining residues have very similar forms:
Ro(k) is like R,'(k) with E,(k} interchanged with

E,(k), T,'(k) is like R', (k) with E,(k) replaced by
—E,(k), and To(k) is like T', (k) with E,(k) inter-
changed with Eo(k). These statements also hold
true when the superscript is 2 rather than 1. The
coefficients B; and C, have the forms

B,= 2S, Bo(k) = ZoD +4S [J(0) —J„(k)], Bo(k) = 4SZoDj(0) —16S J(0) —2SD,

B4(k) = Z D J,(k) + 4SZpDJ(0) [J(0)—2j,i(k)] —4S J(0)D —ZoD —16S J(0) [J(0)—J„(k)],

C1 ——Zo, Co(k) = 2SD —2S [J(0) —J11(k)],

Co(k) = —ZoD +ZoDJ»(k) —4S (J(0)[j(0)—J»(k)]+ [2J(0) —Jgg(k)] [Zoj(0) —D]),

(7. 12a)

(7. 12b)

C4(k) = —2SZpDJ„(k) —2SD +4SZoD J~~(k) —2SD [J(0}—J,q(k)] [Zoj„(k)]+6S J(0) [J(0)—J„(k)] [Zo J(0) —Dl .

Equations (7. 10}are the equations that determine
S and Z~ for all temperatures as a function of D
and the J;,.

Using the technique outlined in Sec. VI, we can
obtain the following two equations which determine
the Neel temperature T„and Z, evaluated at T = T,:

8 —Z2
6

ZoD Eo(k} ZoD Eoo(k)

2Eo(k} 2KT 2Eoo(k} 2vT,
(7. 13a)

6(Z, —2)
3Z2

2 Eo(k) Eoo(k)F,(k)coth +Fo(k)coth ~(7. 13b)X p 2K T~ 2KTc

where

[2J{0)—J»(k}l [D' —ZoD J„(k)1+ZoD jio(k) [J{0}—J»{k)l
1

ZpD Jio(k)Eo(k)
(7. 14a.)

—[2J(0}—Jgg(k}] [D —ZpD J„(k}]+ ZoD jgo(k) [J(0)—Jg, (k) ]F,(k}=
ZoD jgo(k)Eoo(k)

(7. 14b)

Eo(k) = [D —ZoD (J,~(k) —J,o(k))]

Eoo(k) = [D —Z,D( J»(k) +J,o (k))]

(7. 14c)

(7. 14d)

Numerical solutions have been obtained for
(7. 13) for a sc and bcc lattices, assuming only
nearest-neighbor exchange. The numerical re-
sults obtained for the critical temperature of an
antiferromagnet are equal to the results obtained
for the critical temperature of a ferromagnet un-
der the same conditions. The value of Z~ at T, is
also the same in both cases under the same condi-
tions. Figures 1 and 2 are therefore also appropri-
ate for a spin S=1 antiferromagnet.

Figure 5 shows S vs T/T, for an antiferromagnet
for the same three values of D/J as we used in

Fig. 3. These curves are quite different from the
ones for the ferromagnet, especially at low tem-
peratures. This is because of the well-known
zero-point fluctuations of an antiferromagnet. In
an antiferromagnet the sublattice magnetization S
does not reach its saturation value of unity for any
finite value of D/J, whereas in a. ferromagnet S = 1
at T=0 for all values of D/J. As the ratio of D/J
is increased, the value of S at T =0 will also in-
crease and in the limit D/J =~, S will finally be
completely saturated.

The average ((S') ) is plotted in Fig. 6 as a
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function of T/T, and it possesses similar charac-
teristics to the sublattice magnetization curve.
For T =0 the average ((S') ) does not approach its
ferromagnetic value of unity, but some other value
which is slightly less than unity. The larger D/j'
is, the larger the T =0 value of ((S') ). The re-

suits for T& T, are the same for the average
((S') ) in the antiferromagnetic case as for the
ferromagnetic case which we have plotted in Fig. 4.

C. Spin S =
2 Ferromagnet

For a spin S =-', ferromagnet, Eqs. (4. 8) become

E —2S [j(0) —j(k)]

z, j(k)

z, j(k)

E —2Sj(0}

E —2S j(0) G (k, E) Zs

2S

1G(k E) =— Z, (7. 18)

As before one can solve the secular equation of the
above equation and obtain the three distinct poles
of the Green functions. Then one can proceed to
find the residues of these poles for each of the
Green functions, and thereby obtain the specific
form of Eqs. (4. 11) appropriate for a spin S = —,

ferromagnet. Then considering the limit of T- T„
by the technique described in Sec. VI, one can ob-
tain the following three equations:

+ 2 Z2D j(k) —piD j(k), (7. 17f)

L(k) = 4(8 —P )D /[F(k)E (k)] . (7. 17g)

We have solved the above equations numerically for
a sc lattice. The results are plotted in Fig. 7. As
with the spin S = 1 case, our results closely approxi-

~T, = 4 — — I k (7. 18a.)
I.O

6=—r 0 eh ~ T,H(k)], (7 160)
1 2Z2D E()(k)

(k)
8 N KT

Z +(k) )70(k)/krc
2

E2(k) (eEP(k)/ TD 1k)2

where

—[tcTD/Eo(k)] [ZPL(k) —4zq j(0) + P ~D]

~ (40,2(0)' —2 +6(0/)] L/(k) ), (7. 166)

ps
——Zs/S,

E (k) = [4D —Z Dj(k)]'

F(k) = 4(8 —ps)D /( 2 [j(0)—j(k)]EO(k)

(7. 17a}

(7. 17b}

2

—2Z2D j(k) + p+ j(k}) 7 (7. 17c) e2 .4 .6 .8 l. O

H(k) = ZgD j(k)F(k)/Eo(k}, (7. 17d)

M(k) =D [Z2 j(k) —8D] [Z2 j(k) —p psD] / [2E06(k)],

(7. 17e)

N(k) = 18D j(0) —4Z2D j(0)j(k)

FIG. 3. The sublattice magnetization vs T/T, for a
sc spin S=1 ferromagnet. (a) D/J=0. 01 (b) D/J=0. 1.
(c) D/J=1. 0. Curve (d) is the MFT for the same three
values of D/J, but in this case the three lines are in-

distinguishablee.
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the system. In addition, we have shown how the
formalism is appropriate for antiferromagnetic as
well as ferromagnetic systems.

The decoupling scheme we have presented here
does remarkably well in comparison with the earlier
theories on this subject. The transition tempera-
ture T, (D), as a function of the anisotropy param-
eter, is finite for all values of D. Our particular
scheme shows that T, (D) depends more strongly on

D for low anisotropy than it does in the MFT. For
anisotropies of the order of the exchange J or
smaller our results are equivalent to those of
Lines. At the transition temperature the moments
of (S ') as predicted by our RPA calculation and as
predicted by the MFT are the same, though the
respective transition temperatures are quite dif-
ferent. The temperature dependence of the mo-
ments below T, show a greater variation with

changes in D/J than they do in the MFT. For very
large anisotropies our results approach those of
the MFT, and at D/J =~ both theories agree ex-
actly.
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APPENDIX: COMMENTS ON MURAO AND
MATSUBARA'S DECOUPLING APPROXIMATION

Murao and Matsubara attempted to solve the
spin S =1 ferromagnet by a technique similar to
ours. Their results, however, are unsatisfactory
in a number of important respects. First, they
predict a ratio of T, (D)/T, (0) which is smaller
than the MFT prediction for each corresponding
value of D. But, as we have pointed out in an
earlier part of this paper, the MFT underestimates
the effect of the anisotropy, especially when D is
small. Therefore Murao and Matsubara's results
are an even further underestimation. Second,
when D is set equal to zero in their calculation the
result they obtain is not the usual RPA but the MFT.
Both of these defects in their theory resulted from

«AD;C»=&» «D;f:», (Al)

where C is some other operator. The question
now is whether this is automatically a valid thing
to do for all possible choices for the operator C.
The point we wish to make here is that (Al) may
be valid for some choices for C, and quite bad for
some other choices. Since Murao and Matsubara
performed approximations of the form of (Al) for
two different choices for C, i. e. , S „and S „'S„
+S„S„', they had no guarantee that both would be
equally valid approximations. Evidently, their
choices were mutually conflicting since they did
obtain thermodynamic inconsistencies.

The particular decoupling made by Lines, which
is requoted in (3.11), emphasizes the point we are
making here: The decoupling scheme may depend
strongly on the operator in the right-hand side of
the Green function.

the particular Green functions they chose to de-
couple.

For the operators that appear on the left-hand
side of the Green functions, they chose A,' =S, and

A~ =S~S~+S'S~, just as we had. In our problem
we fixed the operator in on the right-hand side of
the Green functions to be S&. Murao and Matsubara
chose to use the adjointsof boththeoperatorsA„'and
A„ i.e. , S„and S„S„'+S'„S„,to be inserted in on

the right-hand side of the Green functions. Hence,
they obtained twice as many equations of motions
as we did because they had not only our set of equa-
tions with S„replaced by S„'S„+S„S„', but also two

of their four equations turned out to be equivalent,
leaving three independent equations to be decoupled.

They therefore overdetermined the problem, since
only two moments were unknown. Their resolu-
tion of the overdeterminancy was to drop the one

equation which they felt, for heuristic reasons,
neglected the more important correlations. The
remaining two equations produced the inadequacies
mentioned above.

This error of Murao and Matsubara points out
an important point about decoupling schemes that
is worth emphasizing. Suppose operators A and B
are relatively uncorrelated, and that only A has a
finite ensemble average. %e might try to decouple
a Green function which contains A and B such that
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