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A general method is presented for obtaining an accurate intermediate-coupling theory from
weak- and strong-coupling perturbation theory. The method uses two-point Pads approximants
to extrapolate (low-order) expansions about the weak- and the strong-coupling limits into the
intermediate-coupling regime. The method is used to evaluate the ground-state energy and
effective mass of the polaron with gratifying success. In addition, the weak-coupling pertur-
bation theory of the polaron dispersion relation, ground-state energy, and effective mass are
extended to fourth, sixth, and fourth order, respectively. A scheme based on two-point
Pads approximants is used to obtain an optimal polaron dispersion relation.

I. INTRODUCTION

A typical problem of theoretical physics is the
accurate evaluation of perturbation expansions in
the intermediate-coupling regime; that is, for
strengths of the perturbation which are not small
enough to guarantee either convergence of the
series or an accurate asymptotic approximation
to it. In some cases it is possible to obtain per-
turbation expansions about the weak- and strong-
coupling limits, but there is no simple scheme for
obtaining accurate perturbation expansions for in-
termediate values of the coupling constant. In this
paper we present a systematic procedure for ob-
taining intermediate-coupling expansions, and we
use this procedure to obtain adequate expressions
for the ground-state energy and the effective mass
of a polaron —an electron interacting with the
longitudinal-optical-phonon mode of a polar in-
sulator. ' '

The procedure for evaluating intermediate-cou-
pling perturbations consists of obtaining a two-
point Pade approximant to both the weak-cou-
pling (+=0) and the strong-coupling (n= ~) ex-
pansions. This procedure is complementary to
existing variational theories of intermediate cou-
pling "in that it provides a simple (albeit un-
physical) method for deducing intermediate-cou-
pling results from a knowledge of the weak- and
strong-coupling expansions. In principle the two-

point Pade method, carried to sufficiently high or-
der, should be capable of attaining the intermediate-
coupling results to any degree of accuracy. While
the variational methods require physical insight
in the choice of trial functions, the Pads method
only requires labor in evaluating the power series
about n= 0 and n= ~. Although the variational
method can, for example, guarantee that a calcu-
lated energy is an upper bound of the true energy;
the Pade method makes no such claims, "but should
be able to locate singularities in the perturbation
expansion as a function of coupling constant. In
addition, the Pade method is even capable of sug-
gesting the nature of the singularities (i.e. , poles,
cuts, etc. ).

The two-point Pade method is, of course, an
extension of the one-point Pade approximant meth-
od which has found considerable success in various
branches of physics. " Such Pade approximants
have been used in the study of interacting hard-
core bosons, ' in investigations of Regge-pole
trajectories, "in phase-transition theories (to pre-
dict critical behaviors), ' and in theories of the an-
harmonic oscillator, van der Waals interactions
in helium, ' oscillator strengths, '3 and exciton
migration. In all of these theories the essential
role of the Pads' approximant is to provide a meth-
od for analytically continuing power series; in all
cases the Pade approximant seems to provide an
almost unbelievably good representation of the
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analytic continuation —even when the perturbation
series itself diverges or when there are singular-
ities in the function being continued i

In Sec. II of this paper we discuss one- and two-
point Pade approximants as a forrnal device for
estimating the analytic continuations of power
series. Section III is devoted to an application of
two-point Pade approximants to calculate the
ground-state energy and effective mass of the
polaron. Section IV contains an attempt to obtain
the polaron-dispersion relation using Pads rneth-
ods, and Sec. V summarizes our results.

II. PADE APPROXIMANTS

A. One-Point Fade Approximants

The one-point [M, N] Pads approximant
Pi ([M, N]; Z} to the power series

f(Z) =fp+fi Z+fpZ + ~ ~ ~ (2. 1)

=fp+fi Z+ +fn.» Z"'"+0(Z"'") .
(2. 2)

Here O(Z ) means terms of order Z or higher.
The coefficients a„and b are uniquely determined
by the specification of the A's, and the Padh ap-
proximant can be written in terms of the coefficients
f, (i = 0, 1, 2, . . . , N+M) as a ratio of determinants~

fn-e+f ~ . fs. i

is the ratio of polynomials of orders N and M which
exactly reproduces the first M+N+1 terms of the
series"

cp+Qy Z+QpZ + +QN Z2 N

Pi(M, N;Z =

a simple prescription for analytic continuation of
the power series (2. 1) into regions outside its
circle of convergence; (iii) the Pads approxi-
mant can simulate the behavior of f(Z) near its
singularities with one or more poles; for example,
a function with a branch line could be adequately
represented by a Pade approximant with several
poles on the cut. In fact, by examining the [N, N)
Pade approxirnant to a function for increasing N,
one can often guess many facts about the positions
and the natures of the singularities of the function.

For example, the seriesg(Z)=1+Z+Z + ~ ~ ~

diverges for I Z I
& 1. The [1, 1] Pade approximant

to g(Z) is

P,([1,1];Z) =1/(1-Z) (2.4)

P~([1,1];Z ) = Z(15 —Z )/(15 -6Z ) (2. 6)

which has poles at +1.581, less than 1% different
from the exact values ~ &m t This very simple ap-
proximation represents tanZ amazingly well for

I Zl &0. Sw (see Fig. 1). To improve on this, we
construct the [2, 2] Pads approximant to tanZ,

and provides the exact analytic continuation of
g(Z) throughout all space, even where the series is
divergent.

As another example, consider h(Z) = tanZ, which
is an analytic function of Z except at Z = s 2(2n —1)v
(n = 1, 2, . . . ), where tanZ has poles. The power-
series expansion of tanZ is

Z 2 5 17 7 62
tanZ Z+

3 +15Z +315 Z+2835Z+
(2. 5)

and converges for IZj & &w. Factoring out one
power of Z, we form the [1,1] Pads approximant
to tanZ in terms of Z:

([, ]; (2. 7)

fN+ N

P,([M,N];Z) =

fN-8+1

Zi Qf Zi

fN+1

(2. 2)

~ ~ ~ 1

where fz=-0 if j&0.
The primary advantages of a Pads approximant

over a power-series representation of a function
are (i) the domain of convergence of the Pads
approximant is not necessarily a circle and gen-
erally is much larger than the circle of convergence
of the series; (ii) the Padd approximant affords

which has poles at Z=+1.569 and +5.05 (compared
with the poles of tanZ at a 2w =+1.5708 and + —,'g =

+4.7124). Again the Pads approximant reproduces
the function tanZ, including its singularities, with
amazing faithfulness, far beyond the circle of con-
vergence of the trouser series (see Fig. 1) even
though all the information used in determining
P,~([2, 2];Z ) comes from near Z=O.

The formal properties of Pade approximants and
their regions of convergence are only poorly under-
stood. There are some theorems which apply to
Stieltjes series, as well as a general conjecture
that the [N, N) Pads approximant converges to the
function (as N approaches infinity) almost every-
where except around poles, cuts, and essential
singularities of the function. This latter conjecture
has been verified for many examples, and it prob-
ably is true for most, if not all, functions of phys-
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FIG. 1. Pads approximants to tanz as
a function of z. Solid line: tanz; line
with circles: two-point t'z =0 and z = 2~)
[4, 5] Pads approximant; triangles: one-
point (z = 0) [1, 1) Pads approximant in

z; squares: one-point (z =0) [2, 2] Pads3' —Z approximant in z2.

—3$

ical relevance, although no proof of the conjecture
exists.

The two-point Pade approximant uses the same
amount of information with more than half coming
from near Z =0 and the rest coming from near
Z —27'

tanz = z+ —.'z'+ 125 z'+ o(z'), (2. 9a)

tanZ= (Z -2v) +-', (Z —2v)'+O((Z —2v)') . (2. 9b)

The two-point Pade approximant represents tanZ
amazingly well for 0 & Z & 2v [even though both
series (2. Qa) and (2. 9b) diverge for —,v & Z & —2w] and

B. Two-Point Pade Approximants

The one-point Pade approximant to a function is
defined as the ratio of polynomials which repro-
duces the first several terms of the Taylor expan-
sion of the function about Z =0. Similarly a two-
point Pade approximant may be defined as a ratio
of polynomials whose coefficients are fixed so that
the approximant reproduces the first several terms
in expansions about both Z = 0 and some other point
Z = Zo (where Z~ may be infinity). The advantages
of the two-point approximants over the one-point
variety are illustrated for the function tanZ in Fig.
1. The one-point approximant (squares in Fig. 1)
to tanz Pt ([2, 2];Z ), provides an adequate rep-
resentation of the function for IZ I & g using the
facts that

Z 2 ~ 17 7 62tanz = z+—+ —z'+ z'+ z'+ o(z") .3 15 315 2835

(2. S)

is even adequate over the entire range ——,'m & Z & 3m t

The example of tanZ illustrates how the Pade
approximants provide a simple but accurate way of
interpolating a function over a broad range of
values, given only the value of the function and its
first few derivatives at two points. Although a
special version of two-point Pade approximants has
been studied previously, ' the advantages of the two-
point Pade method of analytic continuation do not
seem to be widely recognized. Indeed n-point Pade
approximants (with n & 2) can provide simple in-
terpolation schemes based on the values of the
derivatives of a function as well as the function,
and may find extensive application in numerical
analysis, ~ ~ phase-transition theory, ' and en-
ergy-band theory. ~

The two-point Pade approximants most useful in
physics generally involve expansions about Z = 0
and Z = ~, where Z is some coupling constant or
expansion parameter. For example, the graund-
state energy of a polaron, Eo(a), can be evaluated
by perturbation theory for small values of the elec-
tron-phonon coupling constant n and by variational
methods for the strong-coupling limit a- ~; it is
possible to estimate the value of E,(o.) for inter-
mediate values of u (i.e., n & 1) by fitting the ex-
pansions of Eo(n) about n = 0 and n = ~ to a two-
point Pade approximant. Therefore, a knowledge
of weak- and strong-coupling expansions leads, via
the two-point Pads method, to a knowledge of in-
termediate-coupling theory.

The general mathematical problem is as follows:
Given a function f(Z), find Q([M, M+n];Z, Z '), the
ratio of polynomials of order M+n and M, respec-
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lively, such that

lim
I Q(z}-f(z)I =O(Z"),

z~p

hm
I q(Z) -f(z)

I
=O(Z-"') .

Let Q(z) be given by

2 kf+ fi

Z Z1) ao+ay Z+a2Z + ' ' a~ ZQ(tMM+n]' 2 y

(2. 11)

and suppose that f (Z) has the expansions about
Z=O and Z= ~, respectively,

f(Z) =f0+fg Z+faz + ~ ~ ~ +f, Z' + ~ O(Z' )

(2. 12a)

f(z)=y„z"~y„,z '+ +y „z '+o(z ') .
(2. 12b)

Note that we have 2M+n=l+A. +1, and that n may
be any integer. Equations (2. 10)-(2. 12) lead to the
following equations:

be solved by standard methods for the coefficients
of the Pade approximant.

III. POLARON GROUND-STATE ENERGY AND
EFFECTIVE MASS: QUALITATIVE ASPECTS

A polaron is a conduction electron interacting
with the electric field of longitudinal-optical pho-
nons in a polar crystal. ' ' Such an interaction is
the dominant electron-phonon interaction in polar
crystals, and the Hamiltonian for the system of
extra conduction electron plus longitudinal optical
phonons plus electron-phonon interaction is de-
scribed (in a dielectric continuum approximation)
by the Frohlich Hamiltonian

H=Z ~ cf~cg+kQZ (a;a~+ n)+Hq . (3.1)
apl

Here the interaction Hamiltonian H& is

1/4

H&=iSO = a~-a & p &,

(3 2)

where 0 is the optical-phonon frequency, p~
=gf cf ~cg is the second-quantized electron density
operator, and

ap+ a, Z+ ~ ~ ~ +a„,„z"'"

=(1+biZ+ ~ ~ +biz )

x (f, +ft Z+ ~ +f, Z' ) + O(Z" ), (2. 13a)

gpZ +ggZ +' ' ' +g~4tt

= (1+bg Z+ ~ +biz")

x (y„Z "+y,Z "-'+ ~ ~ ~ y „Z " ')

+O(Z-"- "') . (2. 13b)

Equating coefficients of equal powers of Z in Eqs.
(2. 13a) and (2. 13b), we obtain a set of linear equa-
tions tor the un'knowns a, and b& (i = 0, 1, 2, . ~ ~, M+n;
j= 1, . .. , M) as functions of the known coefficients
fn and y~ (k = 0, 1, . . . , f; p = n, n —1, . . . , —X),

a„= Z f,b„, for v = 0, 1,~, l (2.14a)

Non u + bill n ynv+n-
v=p

for v = 0, 1, .. . , A . (2. 14b)

Here we take bp=1 and a&=0 for i &M+n or i &0 and
b&=0 for j &M orj &0.

The set of linear equations (2. 14a) and (2. 14b) can

is the dimensionless polaron coupling constant.
Here e is the charge of the electron, m is the con-
duction-band mass, Ep and E„are the static and
optical dielectric constants of the solid, and
a~(as) is an operator which destroys (creates) a
longitudinal-optical phonon of wave vector q.

There are two limits in which an approximate
solution of the Schrodinger equation for the Hamil-
tontan (3. 1)can be obtained: the weak-coupling limit
(a «1) ' and the strong-coupling extreme (n» 1). ~

Physically a weak-coupling polaron is an electron
moving through the crystal while carrying approx-
imately 2& virtual phonons with it. The weak-cou-
pling polaron moves coherently through the crystal,
although its effective mass is somewhat greater than
the electron's band mass on account of the lattice
polarization it drags along with it. In contrast, the
strong-coupling polaron hops incoherently from lat-
tice site to lattice site with the electron's phase
completely destroyed by many collisions with pho-
nons. In moving, the strong-coupling polaron must
carry the complete lattice distortion with it; there-
fore its effective mass is very large (typically
equal to an ionic mass).

The ground-state energy Ep and effective mass
mn of the polaron have been evaluated' ' (a) by a
weak-coupling (a «1) perturbation expansion~' ";
(b) by the weak-coupling Tamm-Dancoff and im-
proved Tamm-Dancoff approximations; (c) by
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strong-coupling (o» I) variational calculations~ "33;
(d) by variational intermediate-coupling theories" '0;

and (e) by Feynman's variational-path integral
method (for all o.).'4

The perturbation results, of course, are only
valid for small-coupling constants and for energies
well below the one-phonon threshold. The Tamm-
Dancoff approximation is a variational calculation
using a trial wave function which contains only
zero- and one-phonon states:

4j =(Qjcf +Z vg (cj g Ql
~
0)

e
(3.3)

The variational parameters ug and vg ~ are de-
termined by minimizing the energy. Even though
the Tamm-Dancoff approximation is a weak-cou-
pling one-phonon approximation, it should be es-
pecially good in the vicinity of the phonon-emis-
sion threshold: It treats the strong mixing between
the zero- and one-phonon states exactly as is
equivalent to diagonalizing the polaron Hamiltonian
in the subspace of Hilbert space spanned by the
zero- and one-phonon states. [In terms of dia-
grams, ' the self-energy (defined by the integral
equation of Fig. 2) is given in the Tamm-Dancoff
approximation by Fig. 3. ] However, the Tamm-
Dancoff approximation does not include the mixing
of many-phonon states, and therefore should not
be appreciably better than second-order perturba-
tion theory in predicting the polaron energy and
mass near k =0. '~" The improved Tamm-Dancoff
approximation is equivalent to including all the
nested-diagram (Fig. 4) many-phonon states in
the evaluation of the electron's self-energy. How-
ever, the nested diagrams are not the most im-
portant ones, and become relatively less important
than the omitted crossing diagrams in higher or-
ders. For example, even in fourth order the nested
diagram [Fig. 5(a)] is only slightly larger in mag-
nitude than the crossing diagram [Fig. 5(b)] which
has the same (negative) sign; but the sum of the
nested and the crossing diagram more than cancels
the positive contribution of the reducible diagram
[Fig. 5(c)] resulting in a negative fourth-order en-

+)i+I

FIG. 3. Tamm-Dancoff
approximation to the polaron
self-energy. A wiggly line
is a free-phonon propagator.

ergy. The various strong-coupling results are
based on variational methods using trial wave
functions of a localized nature, and therefore are
not capable of describing the weak- and the inter-
mediate-coupling regimes. The intermediate-cou-
pling theory is based on a canonical transforma-
tion & and a variational determination of the
polaron wave function and energy; still, the in-
termediate -coupling trial wave function implicitly
contains the physical assumption of reasonably
weak coupling and a delocalized large polaron.
Only the Feynman theory hopes to describe weak-,
intermediate -, and strong-coupling polarons. '
But it is based on a path-integral formulation which
requires the numerical evaluation of a two-param-
eter expression for the ground-state energy and the
effective mass.

The two-point Pade approximant scheme should
provide an easy method for incorporating all the
good features of the various approximation schemes
into simple expressions for Eo and m*. In the re-
maining parts of this section, we shall first test
the two-point Pade approximant method by de-
termining how well the Pade approximant method
(fitted to the Feynman expressions for Eo and m")
describes the Feynman results. By this procedure
we shall demonstrate that the two-point Pade meth-
od provides a very accurate representation of the
Feynman calculation. Therefore the Pade method,
when applied to the perturbation results, can be
expected to provide an equally good representation
of the actual polaron energy and mass —especially
for very weak and very strong coupling where the
Feynman formulas are known to disagree with
fourth- and higher -order perturbation theory.
Second, we shall extend the weak-coupling pertur-
bation theory to sixth order for Eo and fourth order
for (m/m*); and finally we shall obtain a two-point
Pade approximant to these higher-order perturba-
tion expansions and to the strong-coupling expan-
sions.

In obtaining a Pade approximant to Feynman's
expressions' for Eo and m*, we first expand those

G G + GXG + + +

FIG. 2. Integral equation for the polaron Green's
function G in terms of the free-electron Green's function
Go and the polaron self-energy Z.

FIG. 4. Whitfield-Puff approximation to the polaron
self-energy.
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expressions in the weak- and strong-coupling
limits:

& —n —(0.98x10 ) a

m+1
I 1+gn+ ~n'+O(a')

m )0.02a' —1.01n +O(a) . (3.5)

= ~ —(0.6x10 ') n'+O(n')
hQ

Fwn 0. 106a —2. 83+ O(n ), (s.4)
With this information we can fit Feynman's Eo with
a [2, 4] Pads approximant:

E()
hQ

F eon

—n —0. 139653+2 —0.013764@3—0.001260m 4

1 + 0. 129853m + 0.011891m2 (3.6)

To fit m*/m, we factor out the behavior at infinity and then fit a [2, 2] Pade approximant to the series
1+ +6@+1.035o. —0. 02m . The result is

4 2 1.128863m + 0. 175204n+ 1.071225
0.020?a —0.003333m + 1.071225

(3.7)

The results of the Feynman calculation and the
Pade approximant to it are displayed in Figs. 6 and
?. Note that the differences between the exact
Feynman expressions and the approximants to them
differ at most by 6-7/& and 21% for Eo and lnm*,
respectively. In general, the Pade approximants
provide a very good description of the ground-state
energy and mass of the Feynman polaron. There-
fore we feel justified in attempting to obtain an im-
proved systematic weak- and intermediate-coupling
theory of polarons using the two-point Pade approx-
imant method. We emphasize that the advantage
of such a Pade approximant scheme is that it can
give an intermediate-coupling theory which, in
principle, is exact; that is, as the order of the
approximant is increased, the approximants con-
verge to the exact results. Therefore, an ar-
bitrarily accurate intermediate -coupling theory can
be achieved by simply evaluating the weak- and
strong-coupling expansions to sufficiently high or-
der.

In order to compare the two-point Pade method
based on perturbation theory with the Feynman re-
sult, we first evaluate the weak-coupling perturba-
tion expansions to sixth and fourth orders for Eo
and m~, respectively. In fourth order, there are

m
= 1 —

6 n+ 0. 02263m + ~ ~ ~
2

m pert
(3.9)

Two-point Pade approximants can be constructed
to fit these results [Egs. (3.8) and (3.9)], All-
cock's strong-coupling values of Eo (calculated
using the theory of Bogoliubov and Tyablikov )

= -0.1088@2—2. 83,
pert

(s. 10)

and Feynman's strong-coupling expansion [Eg.
(3. 5)] for m". The results are displayed in Figs.
6 and 7,

three contributions to the polaron energy, indicated
in standard diagram notation in Fig. (5). The con-
tributions of the diagrams are given in Table E.

The details of the fourth-order calculation are given
in Appendix B; a similar sixth-order calculation is
also presented in Appendix B. The resulting weak-
coupling expansions of the ground-state energy and
effective mass of the polaron are'

Eo 2 3

@Q,
= —a —0.01592m —0. 008765@ + ~ ~ ~

'pert (3.8)

and

pert

—a —0. 103529' —0.00928?u + 0. 000093@'
1+0.087609' —0.000873@

(3.11)

and

pert

1.065653a. + 0.168395++1.030367
0. 020301~2-0.003333~+1.030367 ' (s. 12)

The [2, 4) approximant (3.11) to the ground-state
energy has a pole near +=400 which is due to the
'arge coefficient of the u term in perturbation

I

theory. While it is possible that this pole is sig-
naling a singularity in E,(a), the perturbation cal-
culation would have to be carried to higher order
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(c)
FIG. 5. Diagrams contributing to the polaron energy

in fourth-order perturbation theory: (a) nested diagram;
(b) crossing diagram; (c) reducible diagram.

and a [3, 3] approximant determined before one
could have any confidence in predicting such a
singularity. Furthermore, strong-coupling theory
is generally valid for a & 20, so that if Eo(o.) has a
singularity it should occur for n less than 20;
therefore it is most likely that the pole is simply
a result of terminating the perturbation expansion
after terms of a . In order to improve the Pade
estimate of Eo(o) for o less than 20, we have
evaluated the ([1,3];o, o —20) Pade approximant

to E (o) [Fig. 8(b)] by expanding the strong-cou-
pling theory about a= 20. These results are also
displayed in Figs. 6 and 7 and are presented in
tabular form in Tables II and III. The difference
between the approximants to the Feynman curves
(line of &&) and the Feynman curves (dotted lines
with F) is a measure of the error in the Pade ap-
proximants to the perturbation series.

Looking at Figs. 6 and 7 we conclude that the
two-point Pade approximant method provides an
astonishingly accurate scheme for determining the
intermediate-coupling energy and mass of the
polaron. From Fig. 6, we deduce that the two-
point Pade method describes the ground-state en-
ergy to within a few percent and that it is far su-
perior to pe rturbation theory, Tamm-Dancof f
theory, and the intermediate-coupling theory of
Lee and Pines. Only the Feynman theory seems
to describe the intermediate-coupling regime well,
and it fails to obtain a sufficiently low ground-state
energy at weak coupling (Fig. 8) and at strong cou-
pling [compare Eq. (3.4) and Eq. (3. 10)]. For the
effective mass, only the Feynman calculation gives
reasonable answers in both the weak- and strong-

-IO -IO

-20

-30

I I I i I I I I

0 I 2 3 4 5 6 7 8 9 IO II l2 l3 l4 I5
a

I

0 I 2 3 4 5 6 7 8 9 IO II 12 I3 I4 l5
a

FIG. 6. (a) Ground-state energy of the polaron, Eo (in units of optical-phonon energy BQ), as a function of polaron
«upling const»«. Second-, fourth-, and sixth-order perturbation theory are denoted by the lines labeled 2, 4, and 6,
respectively. The dotted line with F represents Feynman's variational calculation (Ref. 3); the x represents the two-
point (o. —0 and 0, =~) Pads' approximant to Feynman's calculation. The two-point Pads approximant to sixth-order weak-
coupling perturbation theory and strong-coupling variational theory is denoted by a solid line with circled P. Allcock's
strong-coupling variational result is denoted by a solid line with A. The Tamm-Dancoff approximation is denoted by T
(Ref. 1); and the intermediate-coupling results for Lee and Pines (Ref. 10) is denoted by triangles. Note that (i) the
Pads approximant (x) to Feynman theory fits that theory (F) quite well; (ii) the Pads approximant to perturbation theory
(P) is in good agreement with Feynman's theory; and (iii) the Pads approximants seem to give more plausible values of
Eo than the intermediate-coupling theory of Lee and Pines. (b) Ground-state energy of the polaron Eo as a function of
coupling constant a. The notation here is the same as in (a). The two-point Pads approximants in this figure are fitted
to weak- and strong-coupling expansions around a =0 and G. =20, respectively.
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IO
3

— ~o Two-point (perturbation)
—" "F-""Feynrnan

X X X Two-point(peynman)
—-2—2- Second order

-4—4- Fourth order
-D—D- Lee, Low, Pines
—T—T—Tamm- Qancoff
-A—D- Lee 8 Pines

IO
2

X
F

X

IO

X.'
F

as the coupling strength is increased; not dis-
continuously and abruptly (for o = 6}, as suggested
recently. "' Therefore electron self-trapping via

interaction with the longitudinal-optical phonons

should not occur.
The astounding conclusion of these calculations

is that a very accurate intermediate-coupling theory
can be obtained simply by first evaluating the first
few terms in the weak- and the strong-coupling
theories and then joining the two limits using two-

point Pade approximants. The success of the

method for intermediate-coupling polaron theory is
remarkable. The method accurately describes the

polaron ground-state energy Eo and effective mass
me in the (approximate) Feynman theory, and

seems to predict m~ and Eo with comparable ac-
curacy without having to resort to either displaced
oscillator transformations or path integrals.

IV. POLARON DISPERSION RELATION E(k)

)IL T- T T 4 T- — T T
I r I I I t I I I I I 1

2 3 4 5 6 7 8 9 IO I I I P I&0
FIG. 7. Polaron effective mass as a function of coup-

ling constant 0. . Second- and fourth-order perturbation
calculation are denoted by solid lines labeled 2 and 4,
respectively. The dotted line with F represents Feyn-
man's variational calculation; the x represent the two-
point Pads approximant to Feynman's weak- and strong-
coupling expansions. The two-point Pads approximant
to fourth-order perturbation theory and strong-coupling
variational theory is denoted by a solid line with circled
P. (Note that it nearly coincides with the Pads approxi-
mant to Feynman theory. ) The triangles and the squares
denote the intermediate-coupling results of Lee and Pines
and of Lee, Low, and Pines, respectively. The solid
line with T represents the Tamm-Dancoff approxima-
tion.

In theories of the transport and the optical prop-
erties of polarons, it is necessary to know the
complete dispersion relation F(k) as well as the
ground-state energy and effective mass. In this
section, we review some existing theories of the
polaron dispersion relation and use Pade approxi-
mants to obtain a "best" dispersion relation using
the best parts of the various theories. Qur re-
sults should be particularly useful for weak to in-
termediate coupling.

Due to the strong mixing of one-electron zero-
phonon states with one-electron one-phonon states
near k = (2m Q/I)'~e, second-order perturbation
theory attempts to simulate a phonon-emission
threshold there, but fails by obtaining a cusped
shape (see Fig. 10) rather than the expected thresh-
old behavior: The second-order energy is

coupling limits, and the Pads approximant to Feyn-
man theory (which differs only slightly for o»
from the Pade approximant to perturbation theory)
fits it quite mell. Again, in the weak-coupling
regime, the Pade approximant which reproduces
perturbation theory is superior to Feynman's cal-
culation (Fig. 9).

In view of the remarkable similarity between the
Pade approximants to Eo and m~ and the Feynman
results, we believe that E~ and ~ are continuous
functions of the coupling strength n. Had there
been a discontinuity in either Eo or m, the Pade
approximant would have tried to simulate the singu-
larity, and there is no evidence of such a singu-
larity in Figs. 6 and V. Therefore, we believe that
the Pade approximants indicate that the polaron
wave function changes continuously and smoothly

k(a'/2m)' "
(hA —Rk /2m) r

TABLE I. Contributions of the various terms of
fourth-order perturbation theory to Eo and m/m*.

Fig. 5(a)
Fig. 5(b)
Fig. 5(c)
Total.

Contribution
to Eo/a

—0.327692(y
—0.1882280.

1 2

+ 0.015920.2

Contribution
to m/m*

—0.19284'
—0.11785'

3e2
0.02263~

In an attempt to improve on some of the short-
comings of second-order perturbation theory, we
have evaluated the fourth-order energy using Hay-
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TABLE II. Polaron ground-state energy Ep/KQ (in units of optical-phonon energies) as a function of coupling
constant 0 .

Ep/hQ

Lee and Pines~
Feynman and Schultz
(ZD/ KD) p,~
(E0/K Q)~t

—1.00
—1.01
—1.01
—1.02

—3.10
30 13

—3.16
3 ~ 33

—5.30
—5.44
—5.65
—6.14

—7.58
—8. 11
—8.67
—9.59

9.95
—11.49

12 ~ 33
—13.74

—12.41
—15.71
—16.72
—18.65

13

—20. 60
—21.89
—24. 33

'T. D. Schultz, Phys. Rev. 116, 526 (1959). 'Value calculated by author.

leigh-Schrodinger perturbation theory: The result,
which is proportional to a, is displayed in Fig.
10 for u = 1, and diverges as (ko -k )

'~' as k ap-
proaches k, = (2mO/h)'~2. This divergence is, once
more, perturbation theory's way of telling us that
it is unable to describe the region near the phonon-
emission threshold.

An approximation which should yield the correct
threshold behavior is the Tamm-Dancoff method-
a variational determination of the ground-state
energy (for given momentum), using a trial wave
function which includes only the zero- and one-
phonon states of the lattice field. '3 The Tamm-
Dancoff dispersion formula is

h k~ uhD
2m k(h/2m &)' ~

k(ff/2m(i)~~2

[h& E( k) ]'~-
Since the Tamm-Dancoff approximation solves the
zero- and one-phonon problem exactly, it should
provide the proper description of the dispersion
curve near threshold, even for intermediate and
large values of u. Note that the cusp and divergence
of second- and fourth-order perturbation theory
are replaced by a more plausible threshold be-
havior (dE/dk-0) with this approximation. How-
ever, the Tamrn-Dancoff result has two major
drawbacks: (i) It fails to shift the one-phonon

emission energy down to SO above the ground state
[i.e. , the threshold energy is E(u, 0) = —IE(u, 0) I;
thus the energy required to emit one phonon is
hQ+ IE(u, 0) I and not h&]. (ii) It predicts weak-
coupling ground-state energies and effective mass-
es which are correct only in lowest order (u); the
a~ corrections to the energy and the effective mass
have the wrong sign. '

The reason for the failure of Tamm-Dancoff
theory is its omission of many-phonon states.
This may be seen by the following qualitative ar-
guments. First consider a static electron inter-
acting with the optical phonons of an insulating
solid. Each ion will feel an extra force due to
the extra, charge and will therefore have an equi-
librium position displaced somewhat from its lat-
tice site (its equilibrium position in the absence of
the extra electron). The effect of this displace-
ment will be to lower the ground-state energy of
the lattice vibrations and to shift their equilibrium
positions. Such a shift of ionic equilibrium posi-
tions necessarily involves an infinite number of
perfect-lattice phonons since the shifted state is
qualitatively different from the unperturbed state.
These 1eas are demonstrated qualitatively by con-
sidering a single charged oscillator of mass M and
frequency 0, subjected to an interaction with the
conduction-band electron:

0= P /2M + i' 0 X + UC+ u .

m+/m 1 3 7 9

Lee and Pines~
Feynman and

Schultz~
(m*/m),
(m*/m) ~t
Pekar,
Bugoliubov,
and Tyablikov

1.19 1.61 2. 15 2.82 3.58 4.4

1.89 3.89 14.4 62. 5 185

1.19 1.95 6.44 26.47 84. 03 210.05
1.17 1.78 5.99 25.72 83.01 208. 82

14 55.7 152 340

T. D. Schultz, Phys. Rev. 116, 526 (1959).

TABLE III. Polaron effective mass m*/m (in units of
the electron band mass) as a function of coupling constant
6 ~

The electron-oscillator interaction is taken to be
linear in the displacement of the oscillator; the
electrostatic interaction energy of the electron and
the equilibrium oscillator is represented by o,
and the energy due to displacement in the presence
of the electron is AX. The "electric field" A, plays
a role similar to a'~~ in the polaron Hamiltonian.
The oscillator Hamiltonian (4. 3a) is easily rewrit-
ten as

(4. 3b)

Note that the energy eigenstates are still separated
by SO, but all of the states are shifted to lower en-
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e
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(a)
placement of the equilibrium positions for the ions
in the crystal. Now consider a slowly moving
electron. It will also cause the ions to vibrate
about displaced equilibrium sites, with the
amount of displacement somewhat dependent on the
velocity of the electron. It follows that an accurate
treatment of the electron-phonon interaction must
inc lude the (velocity-dependent) displacement of
the ions caused by the electron. Any perturbation
treatment which does not include this physical dis-
placement is doomed to convergence difficulties.
Thus, even the variational (one-phonon) Tamm-
Dancoff method fails to obtain the correct phonon-
excitation energy because it does not account for
the many-phonon continuum shifts associated with
the displaced oscillators.

This physical situation of continuum shifts and

displaced oscillators is hinted at mathematically
by the behavior of the polaron energy levels in
perturbation theory. Consider a slow electron of
wave vector k interacting with the phonons. By
momentum conservation, it only interacts with N
one-phonon states (fthm is the number of unit cells
in the crystal), namely those with an electron of
wave vector k —q and a phonon of wave vector q
for all N values of q. The effect of this interaction
is to push the one-electron zero-phonon state down
in energy while pushing the one-electron one-pho-
non states up (i.e. , the states repel). There are
N two-phonon states (phonons of wave vectors tl,

-0.05-

-0.06-

0 I 2 3 4 5 6 7
0

FIG. 8. (a) Polaron ground-state energy as a func-
tion of coupling constant 0, plotted on an expanded scale.
The notation here is the same as in Fig. 6. Note that
the [2, 4] Pads approximant about 0 and ~ is better than
Feynman's result at weak coupling. (b) Polaron ground-
state energy as a function of coupling constant plotted on
an expanded scale. The symbols have the same mean-
ings as in Fig. 6. The two-point Pads approximants are
fitted about ~ =0 and ~ = 20. Note that (i) the Pads
approximant to Feynman's calculation is extremely
accurate; and (ii) the Pads approximant to the weak-
coupling perturbation theory and the strong-coupling
variational calculation is better than Feynman's theory
in these regimes.

0.16—

0.14

0.12

0.10

QQ
tria

I

~ I

E)E 0.06

0.0

2

~p Twa-paint (partarbatian)
~ ~ ~ ~ F- ~ ~ Fey nman

x x x Two-point ( Feynmon)
—2—2 Second order perturbation
—4-4- Fourth order perturbation

ergy by the same amount, proportional to A. —
leading us to anticipate that in the polaron problem
the phonon continua will all shift (linearly with a
for small ot) to lower energy. Hence, the presence
of a static electron causes a many-phonon dis-

4
a

I I I

6 8

FIG. 9. Polaron effective mass as a function of coup-
ling constant ~ plotted on an expanded scale. The nota-
tion here is the same as in Fig. 6.
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and q, and an electron of wave vector k —q, —q2)
which also push the zero-phonon state down, and
are pushed up in return. These two-phonon states
also push the one-phonon states down in energy.
In general, for a given polaron wave vector k,
there are N" n-phonon states pushing the lowest
polaron energy down (by an amount proportional
to c."), and also pushing the energies of the n —1,
n —2, ~ . . phonon states to lower energy as well.
Now a calculation of the polaron-dispersion curve
(such as the Tamm-Dancoff calculation) which in-
cludes only one-phonon states should appropriately
depress the energies of the different zero-phonon
unperturbed states, but the threshold for phonon
emission should lie at too high an energy (because
two- and more-phonon states have not been in-
cluded to push the one-phonon states down).

Still, the Tamm-Dancoff approximation does ac-
count for the strong mixing of zero- and one-pho-
non states near the emission threshold, and there-
fore can be expected to give the correct shape of
E(k) near threshold (at least for weak electron-
phonon coupling n and for states whose energies
differ from the threshold energy by much less than
kQ) .

The above discussion suggests that a simple but

FIG. 10. Polaron-dispersion relation plotted as a
function of wave vector for coupling constant g =1. The
solid lines with 2 and 4 denote the second- and fourth-
order perturbation calculations. The heavy solid line
denotes the two-point Pads approximant. The lines with
L and I represent. the Larsen (see Ref. 13) and the im-
proved Tamm-Dancoff (see Ref. 32) calculations, respec-
tively. Note that the Pads approximant curve has the
same general shape as Larsen's curve but gives a lower
energy.

accurate method for obtaining the weak-coupling
polaron-dispersion relation is to first displace the

normal modes of the lattice (using the displaced-
oscillator transformation of Lee, Low, and Pines)
and then to evaluate the ground-state energy using
a variational Tamm-Dancoff -type approximation.
Such a procedure was used by Larsen, and did re-
sult in an improved dispersion relation with a one-
phonon threshold AO above the ground state. " The
Larsen approximation is almost certainly the best
available in the spectral region near threshold. The
main disadvantage of Larsen's method is that it
requires numerical evaluation of the dispersion
curve. Therefore we shall only use the Larsen
method to obtain the value k& of the wave vector
of the phonon-emission threshold; information
about the shape of the dispersion curve near thresh-
old will be gotten from the Tamm-Dancoff approx-
imation itself.

In addition to the Tamm-Oancoff approximation,
there is the Whitfield-Puff improved Tamm-Dancoff
approximation which overcomes the first Tamm-
Dancoff difficulty by summing the nested diagrams
(Fig. 4) in order to get a polaron self-energy with
a phonon-emission threshold exactly AO above the
ground state. ' However, the Whitfield-Puff ap-
proximation fails -to obtain a sufficiently low ground-
state energy (see Fig. 10) or a sufficiently accurate
effective mass, presumably because the crossing
diagrams (Fig. 5) have been omitted. And finally,
evaluation of the Whitfield-Puff dispersion relation
requires the numerical solution of Pines's equa-
tion" (Figs. 2 and 4); in view of the drawbacks of
the Whitfield-Puff solution, we do not use it in
formulating an optimal dispersion relation. The
strong-coupling theories generally have not pro-
duced complete dispersion relations and therefore
provide little useful information about the depen-
dence of the strong-coupling energy on k. It follows
that the "best" dispersion relation which we con-
struct using Pade approximants will be quite ac-
curate if a & 1, but of limited utility for n» 1. The
various approximations to the polaron-dispersion
curve, their ranges of validity, and their good and
bad features are summarized in Table IV.

In order to evaluate a "best" dispersion relation
which incorporates the good features of the various
approximations while discarding the bad features,
we assume the following: (a) Near the phonon-emis-
sion threshold, the shape of the dispersian curve
is given adequately by the Tamm-Dancoff approxi-
mation; (b) near k = 0 perturbation theory is valid
for small u; (c) the energy of the one-phonon emis-
sion threshold must lie exactly hO above the ground
state; and (d) the threshold wave vectoris adequately
given by Larsen's method (Fig. 11). All four of
these assumptions are consistent with the general
results of Cannon: (i) E(n, k) for any fixed value
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TABLE IV. Approximations used for obtaining the {nonparabolic) polaron-dispersion relation E(~,k) together with

their good and bad features.

Approximation

Second-order
perturbation theory

Fourth-order
perturbation theory

Sixth-order
perturbation theory

Tamm- Dancof f

Improved Tamm-
Dancoff

Lars en

Good features

Valid for n «1
and k «(2~Q/I)'I'

Valid for 0| «1
and k «(2mQ/I)'i 2

Vslid for 0. «1
and k «(2mQ/8)

Variational theory, correct
threshold behavior

Self-consistent theory, correct
threshold behavior. Many-phonon
states included. One-phonon
threshold lies KQ above ground
state.

Displaced-oscillator trans forma-
tion plus Tamm-Dancoff variation-
al trial wave function. Correct
threshold behavior. One-phonon
threshold lies KQ above ground
state.

Bad features

Cusp in E(a. , k) at k=(2mQ/I) i',
E(n, k) poorly given for o. &l.
Divergence in E(z, k) at k= {2yygQ/@ i' . @pe+, Ep,
and E(n, k) poorly given for 0. & 1. E{0, k) must
be evaluated numerically.

Only Ep can be easily calculated (numerically) Ep
poorly given for z & 1.

Ep and m* are worse than second-order perturbation
results; one-phonon emission threshold does not lie
KQ above ground state.

m* seems to be poorly given. Ep is not low enough.
Numerical solution of integral equation required.

Numerical integration required. Ep, m* poorly
given for z &1. E(0, , k) good only for 0. ( 3.

of ~ is an analytic function of k for all k such that
E(k) & SQ+E(0); (ii) E(a, k) is analytic in a for
small a; and (iii) E(o., k) merges into the con-
tinuum (it does not just approach the continuum
asymptotically).

%'ith these four assumptions, we shall evaluate
the polaron-dispersion relation using a weak-cou-
pling (u «1) two-point Pads approximant method
which fits the perturbation results (to order k')
near k = 0 and replicates the Tamm-Dancoff be-
havior [to order (k -ki) ] near the threshold wave
vector k&. The requirements which the two-point
Pads approximant (in k) must satisfy are

where c2 and c3 are given in Appendix C. Equa-
tions (4. 4) and (4. 6) determine the [4, 4] two-point
Pads approximant to E(u, k) [See Eq. (Cl)]:

—E-E—Extrapolated—L—L—Lareen

E(o, k)=ED(a)+ — ~, , k + —
)

4 k'+0(k'),

(4. 4)
where Eo(a) and m~(u) are the Pade approximants
(in n) given in Eqs. (3.11) and (3.12), respectively,
and 8 Eisk' is given by second-order perturbation
theory,

1 a'~ S' 3
4t k m 0 160 (4. 5)

I 2

The expansion around k& is given by Tamm-Dancoff
theory,

E(o'. , k) = ilQ+ E(a, 0) +c2(a)
(k -ki

+c3(G), (4.6)
(k —ki)

FIG. 11. Threshold wave vector as a function of
polaron coupling constant ~. The solid line with E
denotes the values of threshold wave vector obtained by
assuming a perfect parabola for the polaron-dispersion
relation. The solid line with I. denotes the values of
threshold wave vector obtained from Larsen's theory
(see Ref. 13).
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0.8—

TWO-POINT PADE ([4,4j; k, k-k, j

—2—SECOND-ORDER (PERTURBAT ION)

methods will work and when they will fail. And

finally, there is very little known about the formal
properties of either one- or two-point Pads approx-
imants; in view of their phenomenal utility, a de-
tailed study of their formal mathematical properties
is definitely called for.
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APPENDIX A: TWO-POINT PADE APPROXIMANT
TO tanZ

In this appendix we fit

FIG. 12. Polaron-dispersion relation for coupling
constant ~ =0.25. The notation is the same as in Fig.
10.

q, „([4,5];Z, Z - 2v)

~a+a1Z+aaz +a1Z +a4Z2 3 4

1+bq Z+b2Z +b3Z +b4Z

Qs(, , ) (]4, 4], k, k -k1),
to tanZ, using the power-series expansions about
Z=O and Z= 2m:

which is plotted in Figs. 10, 12, and 13 for a =1.0,
x=0. 25, and a=4. 0, respectively.

tallZ=Z+3Z + 11 Z +O(Z ) (A2a)

V. SUMMARY tanZ = (Z —2v) + —,'(Z —2v)'+ O((Z - 211)') . (A2b)

The principal conclusion of this work is that
relatively low-order weak- and strong-coupling
expansions can be combined by the two-point Pads'
approximant method, giving a simple and amazing-
ly-accurate intermediate-coupling theory. The two-
point Pade method describes the ground-state energy
and the effective mass of the polaron extremely
well, and the Pade approximant to the polaron mass
indicates that it is a continuous function of the
coupling constant e. Therefore electron self-trap-
ping via the electron-optical-phonon interaction
should not occur.

In addition, the perturbation calculations of the
polaron ground-state energy and effective mass have
been extended to sixth and fourth order in a'
respectively. And finally we have speculated about
the nature of the polaron-dispersion relation
E(u, k) and have presented a simple description of
it (which should be accurate for o & 1) in terms of
two-point Pade approximants.

In closing we would like to suggest lines which
future research on two-point Pade approximants
may fruitfully follow. First, two-point Pade meth-
ods should be applied to more problems in physics,
so that it will be possible to anticipate when the

4

-3.6$

-4.0

-4

-POINT PADE

([4,4];I,k-k, )

—2 —SECOND ORDER

(PERT URBAT ION)

-5.2—
I I

0.4 0.8 I.2 1.6 2.0
k~g2mu'

FIG. 13. Polaron-dispersion relation for coupling
constant g =4. The notation here is the same as in
Fig. 10.
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Expanding Eqs. (A2a) and (A2b) about Z= 0 and

equating coefficients of the first five powers of Z
[in a manner analogous to Eq. (2. 13)], we obtain

ap= 1

a) —bi =0,
1a2-b2= 3,

1
a3 —3b& —b, =0,

1
a4 —.b, —b4=-+s

(Asa)

(Asb)

(A3c)

(A3d)

(A3e)

Similar expansions about Z = 2g generate the re-
maining four equations for the a's and b's by
equating the coefficients of equal powers of (Z —Z0)
up to third order:

2Z pa1+ 3Z0 a2+ 4Zpa3 + 5Zp a42 3 4

Zpbg Zpb2 Z()b3 Zpb4= 0 (A3g)

2ay + 6Zp a2+ 12Zpa3+ 20Zpa 4 2bt

—4Zpb2 —6Zpb3 —8Zpb4= 0,2 3 (A3h)

6a0+ 24Z0a0+60Z0a4 —220b, —2(3+Zo}ba

—2Z0(9+Z0)b0 —2Z0(18+Z0)b4 ——0 . (A3i)

Zpay+Zpa2+Zpa3 +Zpa4 = —1,2 3 4 (A3f)

I

These equations are linear in the a's and b's, and

can be solved giving

1 —0. 3575Z —0.0371Z + 0.0187Z —0.0012Z

1 —0. 3575Z —0. 3704Z + 0. 1378Z —0.0111Z

This result is plotted and compared with the one-point Pade approximant of the same order,
P, ([2, 2]; Z'), in Fig. 1.

(A4)

APPENDIX B: FOURTH- AND SIXTH-ORDER PERTURBATION THEORY

Fourth Order

The fourth-order contribution to the ground-state energy is

E(4) E(2) Q i 1i fit Q Q Q ( 1)ln(E1)kf(E1)nm(+1)m 4

;44 (E4 —E,) ~44 ~44 ~4 (E4 —E;)(E4 —E„)(E4—E„) (al)

Here E,' ' and E, are the second-order and unperturbed energies of the state with wave vector k, respec-
tively. The contributions to E„" ' correspond to the diagrams of Fig. 5. For k=0 these diagrams reduce to

Figure 5(a): —~ a IQ dq I dq, 0 ln» = —0.327692m KQ;1, )" ( ", 1 2+(q+q')'
r qq' 1+q 2+ q —q'

0 0

(asa)

Figure 5(b): —~u@Q dq dq', , ln —,0 = —0. 188228e M;1 1 2+(q+q')0 2

7T qq' 1+q 1+q' 2+ q —q'
0 p

Figure 5(c}:—,'e ilQ .

(asb)

(a2c)

The contributions of these same diagrams to the inverse effective mass is obtained from the coefficient
of the k term of E4 ' for k near zero. The contributions to m/m~ are

Figure 5(a): —,n ii, dqdq'
(
',), , ln

2 (,)z
—

3~ ) q (1 0} (q, q )

0 0 0 0

= —0.19284m, (a3a)

1 8, 1 q 2+q +q' 1
30 q q 2(1+q0} (1+ )0 4(1+q )(1+ '

) (1+ 0}(1+
0

&&ln, 0
—

0 dqdq'
0) d(q, q') = —0. 11785m

2+ (q+q')' 32m'
2+ Q

—g 7T J 1+q
(a3b)
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Figure 5(c}:3a'.
Here we have

(BSc)

(1+q ) [4(l+q +q' )+(q —q' ) ] [4(1+q +q' )+(q —q' ) ] (1+q )
(B4)

Sixth Order

The sixth-order contribution to the ground-state energy is

(, ,
) p IH I;,, g (H )„,(H ),„(H,) (H),, g (H );(H );„(H )„,(H ),

(E.-E,)' ' (E -E )(E, E)'(-E -E.) ', . (E E)(E-. E.)'(-E. -E,)
n&k

(H, )„(Hg),„(H,)„~(H,)„,(H, )r, (Hi),„' '""*"(E -E )(E, -E)(E.-E)(E.-E,)(E, -E,)
'

The last term in the summation can be split into the eight distinctive contributions represented by the dia-
grams of Fig. 14(a)-(h). Each diagram corresponds to a different energy denominator. For example,
for k = 0, Figure 14(c) corresponds to the integral

8ve J J J ' ' ' ' '(1+ ')(1+ ')(1+q, ) [2+(q, + ) ] [2+(q, +q,)')
'

Some (but not all) of these integrals can be simplified. For example, Fig. 14(a) ca~ be simplified to

where

hQtx~ dq
((1 z)s [ q 1,

0

q [(2„1)( (]
n i 8+q (2n+1) )

Fig. 14(b) reduces to
27r

E(q) = (,),q~ SQo. 3 dq
(l, q~)2 E«)

0

2+ x+q
(1+x') xq 2+ (x —q)'

(b) (c)
The contributions of the various diagrams are
listed in Table V.

(e) (f) (g) (h)

APPENDIX C: TWO-POINT PADE APPROXIMANT
TO E(k)

The Pade approximant in this case is obtained
using all the derivatives up to third order of the
Tamm-Dancoff. dispersion relation near the thresh-
old and the perturbation expansion up to k near
k = 0. Let us denote the first, second, and third
derivatives (evaluated at threshold) with respect to
k of the Tamm-Dancoff energy oy c&, cz, and c3,
respectively. The coefficient of k is denoted by
E~ and coefficient of k by E2. Then the [4, 4] Pade
will have the form

(k)

FIG. 14. Diagrams contributing to the polaron energy
in sixth-order perturbation theory. The wiggly line
represents the free-phonon propagator and the straight
line represents the free-electron propagator. n, =E(0), (C2a)

Za, k' Z k, k',
f=o i=o

where all k's are measured in units of (2mQ/k) ~,
and all energies are in units of AQ. Using the
methods of Appendix A, we have



1358 P. SHE NG AND J. D. DO%'

TABLE V. Sixth-order perturbation contribution to
the polaron ground-state energy Eo.

and

a4-—Eq+E(0) b4+Eg bq, (C21)

Fig. 14

(a)

(c)
(d)

(e)
(f)

(g)
(h)

(i)

(j) and (k)

Weight of
contribution

Total

Contribution of
diagram to

Eo/KQ times weight

-0.1733610504(y
—0.17093505450(y
—0.04516594437'
—0.03761305677(y3
—0.03225926949ct
—0.0228823611~
—0.03448518772O
—0.01501993833(y

3 38&
0.8979561338(y

—0.008765(y

where

Ki = (1 + 3k& Ei) + ~ c&k& E&(k& E& —1),
K2= —13k1+ &c~k1E1 y

2 & 4

Kq = ~(1+kg Eg) /k f —$ E2ki~

+ 2c2 [1+ykqEq(1+3E&k&)+E2kl ( 3 2Elkl)]

Mg = (3/kg) (1+ 5k' Eg) + 2cmE& kg (3k' Eg —5)

+ ~c3Egkg (kg Eg —1),
M2= —k~(15+ yc2E&kt+ 2 c3EJ kg)

9 4 1 5

50=1

b4 (+1M3 +3M1) /( 1M2 +2M1) ~

by= (MB -M2b4)/Mg,

bg = 2 [kg Eg —3/k p kg Eg+ k-g b 4

(C 2b)

(C2c)

(C 2d)

1 1 1 2
Ms = 3 ~ —5k1E2 + 3E1

k
—~k1

1 1

+ ~ c2Eg kt(3k' Eg}

+ ~ czEzk, (8 —3k& E&) + & caE& k& (2+k]E&)

+ 2C3Eak~ (2 —kg E~)
-(k,'E, +k, )b, ], (C2 )

b, = [(k,'E, —1)(k, b, + k', b, ) —ki b 4
—1

+k,'(E, + k,'Eg] /k,', (C2f)

c, =o,
c,= —2(-', m+ 2x/a)',

and

cs = (- 12x'/a ) (3x —1) I3+ (-,'~+ 2x/a)']

ag = E(0)bq,

a2 = Eq +E(0) b2,

a, = E(0) b, + E, b, ,

(C2g)

(c2})

(C2i)

—(12/x)(-,', w+ 2x/e)' .

Here x is the real root of the equation x -x —&~m
=0 and k1 is the threshold wave vector.
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