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One- and two-phonon Raman-scattering efficiencies are computed for the hcp phase of solid
helium, following a theoretical model used previously for neon and argon. Attention is given

to the dependence of the efficiencies on photon polarizations, photon energy loss, and crystal
density. Two-phonon efficiencies are also computed for the bcc phase, and critical points
are identified.

In a recent publication, the first in this series,
we presented computational results for two-phonon
Raman scattering from solid fcc neon and argon,
based on a model of the solid as composed of neu-
tral but dipole-polarizable point masses. As a
continuation of this work, we present here Raman-
scattering computations for helium in both the hcp
and the bcc phase. In the hcp phase, where the
structure has two atoms per unit cell, one-phonon
scattering from the Raman-active transverse-
optical branches is expected in addition to two-pho-
non scattering.

Just as in Ref. 1, we begin by adopting formula
(31) of Ref. 2 for the two-phonon scattering effi-
ciency at zero temperature. We also use formula
(29) of Ref. 2 for the one-phonon efficiency. The
phonon frequencies substituted into these formulas
are those previously computed for the hcp phase by
Gillis et al. , and for the bcc phase by Koehler, '
using the first-order self -consistent phonon
scheme.

hcp LATTICE

If we write the two-phonon scattering efficiency

Ss(~) —= Epe J .'S(&d): @pe;,

where t «, &
are the (final, incident) photon polar-

ization unit vectors and co isthe loss of angular fre-
quency to the crystal, then the fourth-rank tensor
S(&d) has the same symmetry properties as the elas-
tic constant tensor. For the hcp lattice this implies
that S(u&) has no more than five independent ele-
ments, and we take these to be S«, S&3 S33 S44,
and SM in the usual Voight notation. Then Ss(&u) can

be written as

Ss(Jd)= SJ((u)( ef J f JJ) +2SJs(ur)(ep J'EJJ)(&f2 E(ll)

+ Sss(Jd)( & p2
' «2) + S~4(~) I

& p J x ~

+ Sea(Jd) ( &p +&p —&p2+ &pJ~ (2)

where (J., ll) here denote (perpendicular, parallel)
to the hexagonal c axis. However, as pointed out
in Ref. 1, the assumption that electronic excitation
is transferred between atoms only via dipole forces
has the consequence that S(u) further obeys

1:S(Jd)=0 . (3)

Equation (3) leads in the case of the hcp lattice to
the two further independent linear relations between
the elements of S(Jd),

2SJs((d) + Sss((d) = 0 (4a)

2S„((u)+SJs((0) 2$44((d) 0 . (4b)

Ss((d) Sss((d)( /f2 'E $ ~ 2 ~f J egJ) + Sss((d}ff J 'E (J

Equation (5) appears to depend in a complicated
way on the photon polarization vectors relative to
the hexagonal axis, which might not seem easy to
determine. However, the one-phonon scattering
efficiency varies with photon polarizations as

The number of independent elements is thus reduced
to three, and we choose these to be S33, S44, and

Sss. Then Ss(u) can be further simplified to
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31(&d ) ~ f-f & 4 4 & (6)
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FIG. l. Upper plot: Tensor components of two-phonon
scattering efficiency, as a function of energy loss, for
hcp He4 at a molar volume of 20 cm3. Horizontal arrow
marks intensity level of 10 /cm cm sr. Vertical
arrow marks position of one-phonon scattering peak.
Lower plot: One-phonon density of states, scaled by fac-
tor of 2 on the abscissa, to indicate identity of critical
points in the two-phonon scattering.

This implies that a determination of the one-phonon
scattering intensity as a function of polarization

suffices to fix uniquely the c axis relative to the
scattering axes, which in turn allows an unambig-
uous computation of the three scalar combinations

appea. ring in Eq. (5) once ez and e, are given. Thus

the one-phonon scattering is itself sufficient in de-
termining the crystal orientation to obtain all tensor
components of the two-phonon scattering.

The two-phonon efficiency in a polycrystalline
sample is easily obtained by averaging Eq. (5) over
all crystal orientations:

3&(~)
I so&r

Again, as in the cubic case, ' the dependence on

photon polarizations factors out from the lattice
structure and dynamics. This property is actually
a general one for any crystal structure, being a
consequence merely of the dipole-transfer as-
sumption [Eq. (3)].

Numerical techniques for computing the two-
phonon efficiencies in hcp helium were similar to
those previously employed' for fcc neon and argon.
In the present case, 32 shells of nearest neighbors
(radii up to four nearest-neighbor distances) were
used in the direct lattice sums, while the recipro-
cal-lattice sums were performed over 17921 in-
equivalent points in the irreducible 24 of the first
Brillouin zone. The one-phonon efficiencies were
computed with 225 shells of nearest neighbors
(radii up to eight nearest-neighbor distances), be-
cause of less rapid convergence of the matrix ele-
ments than in the two-phonon case. For assigning
absolute physical units to the efficiencies, we use
the values 0. 2&10 ' cm for the helium atomic
polarizability, & = 10.22 K and o = 2. 556 ~ 10 cm
for the I,ennard-Jones 6-12 potential parameters,
and A= (0. 1816, 0. 2423) for the (He, He ) de Boer
parameter. We assume that the incident light beam
is from the 4880-A mode of the argon-ion laser.

The three efficiency components S,3 S44p and
S«are plotted in Fig. 1 as a function of + for the
molar volume of 20 cm . In contrast to the situa-
tion for the fcc lattice, the three functions have a
great deal of fine structure without much in the way
of dominant characteristic features. For this rea-
son we have not carried through an attempt to iden-
tify critical points in the two-phonon joint density
of states. Furthermore, even just the one-phonon
density of states in the hcp structure has a great
sensitivity in its gross qualitative features to small
changes in the effective force constants and the re-
sulting dispersion curves. This can be seen in the
remarkable differences of the one-phonon density
of states, g(~&a) in Fig. 1, and sequence of the
critical points between the analysis of neutron-
scattering observations by Reese et al. ' on hcp
helium at 16 cm3/mole, the calculations of Morley
and Kliewer at the same density, and our own
computations (plotted in Fig. 1 for 20 cm'/mole),
even though the dispersion curves in all three
instances differ by no more than 30/& at worst. A
similar disparity occurs in comparisons among
three hcp metals analyzed by Raubenheimer and
Gilat, ' and between these metals and hcp helium.
This great sensitivity of the hcp density of states
contrasts with the situation in the fcc structure,
where the argon and neon densities of states' differ
only in minor ways from that of aluminum. Thus
we are not confident that our theoretical techniques
for obtaining the phonon frequencies of hcp helium
are sufficiently accurate as yet to give our results
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for S2 as a function of (d quantitative reliability.
We do, however, have much more confidence in

the total integrated intensities, defined as

I

bcc He

20 cm ~/ mole

I

I
II

Il

&-=f d(u8((u) . (8)

Values for S33, S4~ and S«are tabu lated in Table I
for He at molar volumes of 16, 18, and 20 cm and

for He at 18 cm ~ In addition, the integrated one-
phonon intensity S, is also quoted. The magnitude

of the efficiencies, while extremely small, does
not rule out the possibility of detection by present-
day experimental techniques. The requirement of
averaging the matrix elements over the lattice zero-
point motion reduces them by a factor of roughly 2

in helium, with a consequent reduction in the inten-
sities by a factor of roughly 4. The two -phonon in-
tegrated efficiency is more than an order of magni-
tude larger than the one -phonon integrated efficiency
(despite our earlier estimate that the ratio would

be an order of magnitude smaller due to an addi-
tional small factor of the dimensionless mean-
square phonon amplitude for each phonon emitted)
because the matrix elements for two-phonon emis-
sion are an order of magnitude larger than for one-
phonon emission, which in turn arises from the
much larger number of allowed intermediate states.

The density dependence of the efficiencies is of some
interest, since it contrasts with previous estimates'
for neon and argon. In the present case the two-
phonon efficiencies follow the dependence S& ~ a
These can be understood on the basis of optical and
zone -boundary phonon frequencies varying as a
which is roughly the result of our computations,
at least in the molar volume range above 18 cm3

~

These dependencies differ substantially from the
case of neon and argon, ' primarily because there
the relevant phonon frequencies vary as a '. Our
interpretation is that in neon and argon, where a
cutoff on the short-range repulsive part of the po-
tential is not needed, the short-wavelength phonons

TABLE I ~ Integrated one-phonon efficiencies and two-

phonon efficiency components, in units of cm l sr ', for
He and He3 at various molar volumes.
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FIG. 2. Tensor components of two-phonon scattering
efficiency, and one-phonon density of states suitably
scaled, as a function of energy loss, for bcc He3 at a
molar volume of 18 cm ~ Horizontal arrow marks inten-

sity level of 0.5 x 10' /cm cm sr. Symmetry plane
critical points in the one-phonon density of s tates are
identified.

are determined primarily by the r ' repulsive part
of the Lennard -Jone s potential; whereas in helium,
with much larger amplitude of atomic vibrations,
the phonon frequencies must be calculated including
a Jastrow short-range cutoff function, which softens
the repulsion sufficiently so that the phonons are
determined much more by the r 6 attractive part
of the potential. The difference may also be due
in part to the much larger zero-point motion in
helium than in neon or argon, which in turn expands
the nearest-neighbor distance out well beyond the
minimum point of the Lennard- Jones potential.
Atomic motions centered about such an expanded
spacing sample the attractive part of the potential
in greater proportion to the repulsive part than do
motions centered closer to the potential minimum.
In any event, our analysis indicates that the density
dependence of the scattering efficiencies is sensi-
tive to the individual mode Gruneisen constants.

16 crn3
hcp He 4

18 cm3 20 cm3
hcp He a

18 cm3 bcc LATTICE

s~ 4.30x 10 ~2

s33 6.10 x 10
s44 4 ~ 34 x 10-"

3.98 x 10

20 cm3

3.29 x 10
4. 99 x10
3 ~ 53x10
3.27 x10

bcc He

22 cm3

2. 57 x10 '2

4. 26 x 10-~'

3 ~ 00 x10
2 ~ 80 x10

3 ~ 77 x 10-"
5 ~ 82 x10
4 ~ 15 x10
3 ~ 79x 10

24 cm3

Just as in the fcc lattice, ' the tensor S(&u) has
only three independent elements by symmetry, and

only two using the dipole-transfer assumption [Eq.
(3)]. We take these to be S»(&u) and S«(m), so that

s44

1.280 x 10-"
1.119x10

1 ~ 051x 10-«
0.918 x 10"~l

0.878 x 10-"
0.768 x10

S2((d)=S)g((d)(fy't() +S4y((d)[1 —( peel) ]

+ [4S44((o) —3Sgg((u)][ey~ & yy f g„e gy+ f gyes yg& g„& (g
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where x, y, z refer to components along cube axes.
Numerical techniques for computing Su(u&) and

S«(u&) were very similar to those described above
for the hcp lattice.

Results for S&&(sr) and S«(&a) as a function of &u,

together with the one-phonon density of states
g(-,'&u), are plotted in Fig. 2. The bcc lattice struc-
ture is simple enough that there are relatively few
critical points, and these show up quite prominently
in the two-phonon scattering. To identify the criti-

cal points, we have searched, via phonon-frequer. cy
isopleths, the three symmetry planes of the first
Brillouin zone together with the zone face. All
critical points found on these planes are labeled
in Fig. 2, and it can be seen that these include
most of the prominent ones. It also appears that
there are additional critical points in the bcc spec-
trum which do not lie on any bounding plane nf the
irreducible ~8 of the Brillouin zone, and hence are
not required by symmetry. We are not aware of
any study specifying the minimum number, let
alone their location, of critical points in the bcc
structure.
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The Hartree-Fock-Slater (HFS) equations for the two-electron orbitals localized about an
anion vacancy in CaF2, SrF2, and BaF2 have been solved numerically in the point-ion-lattice
potential. It is found that the ground state S(ls, ls) contains bound electronic orbitals which
are spatially compact. The existence of bound excited states for the I center in these crys-
tals has been investigated. However, definitive statements on such excited states are not
available at present.

I. INTRODUCTION

The F center in the alkaline-earth Quorides con-
sists of two electrons, the defect electrons, lo-
calized about a vacant anion site. Conclusive ex-
perimental evidence for the existence of the E
center in CaF» SrF» and BaFz has not been re-
ported in the literature. ~' This center has been
proposed as one of several tentative models which
might explain some of the many bands on the long-
wavelength side of the M band in additively colored
alkaline-earth fluorides. The M center consists
of two E centers bound together at nearest-neighbor
anion sites, and the E center consists of one elec-
tron localized about a vacant anion site. These
give rise to the absorption bands which are formed
during bleaching with E-band light. There are four
bands situated in region from 600 nm (0. 0760 a. u. )
to 725 nm (0. 0629 a. u. ) for calcium fluoride and
from 688 nm (0. 0668 a. u. ) to 805 nm (0. 0566 a,.u. )

for strontium fluoride. 2'4 Only two bands have been
observed on the long-wavelength side of the M band
in barium fluoride. The bands which would cor-
respond to the 805 and 775 nm bands in strontium
fluoride have not been observed in barium fluoride
because their intensities are too small.

E-band bleaching excites optically the E center,
the M center, and other aggregate centers. Im-
purity centers such as rare earths are not consid-
ered in this paper. In the case of the alkali halide
crystals, an excited defect electron of a color cen-
ter may be assisted by thermal. phonons into the
conduction band. Once in the conduction band, it
moves through the crystal until it is trapped again.
The electron traps include ionized E' and M' cen-
ters and other ionized aggregate centers, and also
the neutral E and M centers and other neutral ag-
gregate centers. When an extra electron is trapped
at a neutral center, a new center is formed. These
centers are denoted, for example, by E and M,


