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New measurements of the linear thermal-expansion coefficients cv(( and && in the c and a
crystallographic axis directions of ZnO are reported between 90 and 260 K. Gruneisen param-
eters p„and pj, defined for strain coordinates parallel and perpendicular to the c axis, re-
spectively, have been calculated from the present thermal-expansion coefficients and related
data. Similar calculations have been performed for ZnS, with modifications appropriate to
cubic symmetry, using earlier experimental results for specific heat, thermal expansion, and
elastic constants. The Gruneisen parameters fall from positive values at room temperature
to negative values at low temperatures, and in the case of zinc oxide, interpolation has been
employed to obtain the mean low-temperature limiting value of &0 calculated from the pres-
sure dependence of the elastic constants. A quasiharmonic approximation has been applied to
calculate the characteristic temperatures e(n) corresponding to the maximum frequencies
v~(n) of the Debye distributions having the same nth moments (co") as the specimens for —3
«n ~6. In the case of zinc oxide, the similarity of the dimensional dependences of the mo-
ments, defined by 'Y(n) =g'Yg~y"//rug corresponding to Y„(s) and "Y~(n), indicates a low degree
of crystal anisotropy, while their variations with n suggest that transverse modes of vibration
predominate among the low-frequency modes, and longitudinal modes predominate among the
high-frequency modes. The account concludes with calculations of the rms displacements of
the atoms in both compounds considered as functions of temperature between 0 and 300'K.

I. INTRODUCTION

The II-VI compounds have aroused a good deal
of interest over the past few years for a variety of
reasons, a measure of which has been provided by
summaries of the volume of work performed. '3
In order to analyze the vibrations in these com-
pounds and to analyze properties of the vibrational
frequency spectra, knowledge of the specific heat,
thermal expansion, and elastic constants are re-
quired, ideally over a wide range of low tempera-
tures. An examination of the available thermo-
dynamic data for the oxides, sulfides, selenides,
and tellurides of zinc, cadmium, and mercury re-
vealed the existence of a large number of gaps.
Indeed, it was only for zinc oxide and zinc sulfide
that sufficiently complete sets of data existed to
justify thermodynamic analysis, and even in these
cases the analyses could only be embarked upon
with reservations. These two solids are particu-
larly interesting from an analytical point of view,
since zinc oxide possesses hexagonal symmetry,
whereas the symmetry of sphalerite zinc sulfide is
cubic.

Comprehensive reviews of the extensive investi-
gations of the optical properties of II-VI compounds
have been given, 3 and manifestations of piezoelec-
tric and pyroelectric effects in zinc oxide, which

are also displayed by other compounds having the
wurtzite structure, have been studied. Meanwhile
Damen et al. ' have determined the frequency and
symmetry character of the fundamental Raman-
active modes from a polarization study of the 90
scattering. Earlier, samples of zinc oxide had been
discovered' which possessed abnormally high elec-
trical conductivities and abnormally high- and posi-
tive-temperature coefficients of electrical conduc-
tivity. Correlation between the incidence of these
anomalies and exposure to damp conditions was ob-
served, and it was possible to associate the changes
in electrical properties and changes in axial ratio
with lattice distortions which, it was considered,
might be associated with contamination of this type.
Apart from interest in the thermal and elastic prop-
erties of zinc oxide, which will be summarized
later, mention may be made at this point of the work
of Chung and Buessem, ' who showed that the Voigt-
Reuss-Hill approximation, from which the polycrys-
talline elastic constants might be calculated in
terms of the anisotropic single-crystal elastic con-
stants, was accurately applicable to zinc oxide.

Turning to zinc sulfide, the dispersion relations,
frequency-distribution function, and specific heat
have been calculated on the basis of a model con-
taining short-range and long-range Coulombic in-
teractions. Czyzak et al. made etch-pit and x-
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ray studies of zinc sulfide, from which they con-
firmed that stacking disorders commonly accom-
panied both the zinc blende (sphalerite) and wurtzite
modifications of this compound, and Majumdar and
Roy' drew attention to the occurrence of polymor-
phism in zinc sulfide during the course of their in-
vestigation of the p-T dependence of the sphalerite-
wurtzite transition. In fact many structures are
possible between the cubic and hexagonal close-
packed limiting cases. Keyes" reduced the elastic
moduli and characteristic lattice vibrational fre-
quencies of semiconductors having the diamond,
zinc-blende, and wurtzite structures to dimension-
less parameters, using reststrahl frequencies. He
found that a classification of these quantities into
divisions defined by compounds formed between
particular groups produced rationalizations charac-
terized by relatively small percentage variations
with the classes. More recently, the Debye-Wailer
factors of a number of II-VI compounds have been
calculated'~ as functions of temperature, with the
aid of breathing shell models. In agreement with
an earlier conclusion of Blackman, ' it has been
concluded that the mean square vibrational ampli-
tudes of the two atoms in each of the substances
were approximately equal, a result which will prove
to be useful when calculating these quantities from
the result of an application of the quasiharmonic ap-
proximation to experimental thermodynamic results
for these solids.

The extent of the existence of calorimetric, ther-
mal-expansion, and elastic-constant data for zinc
oxide and zinc blende will be summarized under
accounts of the individual compounds. Meanwhile,
it will suffice to note that the absence of precise
values for the linear coefficients of thermal expan-
sion of zinc oxide below room temperature led the
authors to undertake measurements of this quantity,
in order to augment existing experimental data and
to facilitate the analyses.

spacing, which result from instabilities inherent
in this type of system, ' recourse was made to hol-
low cylindrical specimens whenever possible in the
work of Bailey and Yates and that mentioned ear-
lier. This was not possible in this instance because
of a lack of crystal availability. Friction between
the optical flats and the specimens, which together
made up the interferometer, was very low and no
problems were encountered with mechanical insta-
bilities. The specimens were kindly supplied by
the Aerospace Research Laboratories, Wright-
Patterson Air Force Base, Ohio. The impurity
level in the crystals was believed to be at the level
of a few parts per million.

The present measurements displayed an average
scatter of a little under 3% over the entire tempera-
ture range, and they are believed to be accurate
in an absolute sense to within 3/0 at 200'K, dimin-
ishing to 6% at 110'K. After the initiation of this
investigation the results of Ibach' appeared, which
covered the temperature range 9-800 'K. From
Figs. 1 and 2 it will be seen that the maximum dis-
agreement between the two sets of results amounts
to approximately 10% at 270 'K in the case of mea-
surements in the a crystallographic-axis direction.
At 200'K and below, agreement between the two
sets of results in this direction is excellent, and the
same may be said of the agreement between results
measured in the c crystallographic-axis direction
over the whole temperature range of the present
investigation, i. e. , 80-270'K. Because of this
agreement the cost of extending the present mea-
surements to lower temperature did not seem to be
justified and these were therefore terminated at
80 K. Agreement with the results of calculations

II. EXPERIMENTAL DETAILS AND RESULTS

The single-crystal specimens of zinc oxide used
in the experimental investigation were available in
the form of small rectangular blocks. These were
fashioned to the form of small pyramids, each
standing on three feet, and were aligned to within
half a degree by taking back-reflection Laue photo-
graphs. The same set of three specimens was used
for measurements parallel to the a and c crystal-
lographic axes. The linear coefficients of thermal
expansion of these specimens were measured using
interferometric apparatus' which has since been
modified to give greater sensitivity by the incor-
poration of a laser in place of the conventional
source of illumination and by improved temperature
control. ' Because of problems encountered with
rotations of fringes and changes in average fringe
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FIG. 1. Linear thermal-expansion coefficient n& of
zinc oxide, measured in the "a-a" crystallographic plane,
as a function of temperature: 0, present results; ~,
Ibach (Ref. 18); Q, Reeber (Ref. 21); &, Khan (Ref. 1S);
+, Sirdeshmukh and Deshpande (Ref. 20).
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FIG. 2. Linear thermal-expansion coefficient &„ of
zinc oxide, measured in the c crystallographic-axis direc-
tion, as a function of temperature: O, present results;
~, Ibach (Ref. 18);~, Reeber (Ref. 21); &, Khan (Ref.
19);A, Sirdeshmukh and Deshpande (Ref. 20).

The volume dependences of the frequencies of
lattice vibrations are frequently described in terms
of the Griineisen parameter. The appropriate form
of this parameter associated with the ith mode of
the lattice vibrations may be expressed as

based upon x-ray measurements ' over common
ranges of low temperature is not very good in the
case of measurements made in the a-axis direction,
and in the c direction it is particularly bad. At the
higher temperatures a smooth join up with results
available from other sources is not observed, and
no explanation of these serious discontinuities can
be given. The results of the present investigation
are summarized in Table I.

III. DISCUSSION

A. Gruneisen Parameter

solids, but in the case of anisotropic solids Barron
and Munn have shown that more meaning may be
derived from the more general equations

~ QgC p, )t = ~ ~ &g&g
n v=1 ~t

in which C, and C„are the heat capacities of volume
V at constant stress and constant strain, respec-
tively; e„are the coefficients of thermal expansion
corresponding to the strain coordinates g„; c» and

c„„are the isothermal and adiabatic elastic con-
stants. In this notation the expression for y„re-
duces to

s s
T3 =

~ (2C13 J + C33 II)
t

and

s s s
Hell + c12)+J. + c13+ 1 (2

t

in the case of hexagonal crystals, in which the c,~

are adiabatic elastic constants and the symbols II

and ~ denote directions parallel and perpendicular
to the c crystallographic axis, respectively.

1. Zinc Oxide

Commonly known as zincite, the structure of zinc
oxide resembles that of wurtzite. The zinc atoms
are nearly in the position of hexagonal close pack-
ing. Every oxygen atom lies within a tetrahedral
group of four zinc atoms, and these tetrahedra all
point in the same direction along the hexagonal axis,
giving the crystal its polar symmetry.

In the analysis which follows, a room-tempera-
ture density of 5.606 g cm 3 was assumed, lead-
ing to V30o = 14 5g + 0 1y cm mole '. For the spe-

TABLE I. Linear coefficients of thermal expansion of
zinc oxide: &(, parallel to the c axis, G& perpendicular to
the c axis. The & values are given in units of 10 6 'K

T('K) Present data Ibach's data ~ Present data Ibach's data ~

+ II Gg Qg

in which v, is the frequency of the ith normal mode
and V is the volume of the crystal. It is necessary
to sum these values of y& over the whole spectrum,
and this is done by taking the weight of each normal
mode as its contribution to C„. Thus, in general,
we may write

and the relationship to physically measurably quan-
tities y= PV/(C3 y,) is well known, in which P is the
volume coefficient of thermal expansion, C~ is the
heat capacity of volume V of the solid at constant
pressure, and y, is the adiabatic compressibility.
This is perfectly adequate when dealing with cubic

90
100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260

—0.7p
—0.5g

0 ~ 3z
—0.16

0.0,
0. 2g

0.5)
0.74
0.9g
1.15
1 ~ 34
1.5,
1 ~ 7p
1.Sg

2.06
2 ~ 24

2.4p
2. 56

~Reference 18.

—0.62

—0.16

0.50

l. 51

2. 25

—0. 2p

0.Op

+0. 2z

0.5g

0.92
1.24

l. 56
l. Sg

2 2f
2. 5g

2. S6
3. lg
3.46
3' 78
4. Og

4. 2g
4.4
4. 5p

0.04

0.64

1.69

2. 88

3.90
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cific heat, the available results in the temperature
range required consist of those of Maier et al.
between 88 and 295 K, and those of Clusius and
Harteck ' between 30 and 200 K. A compromise
was adopted in drawing a smooth curve between
these two sets of results, which differed by amounts
up to 10% in the regions of overlap. No specific-
heat results were available at temperatures below
30 'K. The thermal-expansion data available for
zinc oxide have already been summarized. With
the exception of the results of some measurements '
of the fractional variation of c33 in the temperature
range 25-100 'K, the only elastic-constant data cur-
rently available for zinc oxide appear to be those
of Bateman, who operated at frequencies between
60 and 500 Mc/sec on two single crystals of high-
purity zinc oxide at room temperature. Because
of the conjecture which would have been involved
in utilizing Tarnow's data, it was decided to take no
account of any temperature variation of the elastic
constants below room temperature at this stage.

Subject to the limitations imposed by the avail-
ability and uncertainty of experimental data, as out-
lined above, the Griineisen parameters y„and y,
were calculated as functions of temperature, pro-
ducing the results displayed graphically in Fig. 3.
Excluding any influence from the temperature varia-
tion of the elastic constants, the absolute uncer-
tainties in these values amounts to approximately
20% in the cases of both y„and y, at room tempera-
ture. Because of the probable uncertainty in the
heat-capacity data at the lowest temperatures,
values of y based upon these have not been plotted
below approximately 50 'K. Two points are worthy
of note at this juncture: (i} yg and y, are very simi-
lar, implying that the anisotropy of the crystal must
be comparatively small, and (ii} y„and y, both be-

come negative at low temperatures, suggesting the
predominance of transverse modes of vibration at
low temperatures. Soga and Anderson ' have mea-
sured the elastic constants of polycrystalline zinc
oxide and their dependence upon temperature and

pressure, using ultrasonic methods. They found
that the pressure dependence of the shear velocity
was negative, and on the basis of a method outlined
earlier, ' 9 they calculated the Gruneisen param-
eter at very high and very low temperatures. Good
agreement between the very low-temperature value
so calculated and that which would be given by ex-
perimental specific-heat, thermal-expansion, and
elastic-constant data is to be expected, for the
acoustic modes of vibration would be expected to
predominate at very low temperatures, and signif-
icant variations with temperature of the pressure
dependences of the elastic constants are not ex-
pected. Their "isotropic" value of yo= —1.132 led
them to expect negative expansion in zinc oxide at
low temperatures, a result which the later experi-
ments of Ibach' and the present work have con-
firmed. This value of yo is important in the pres-
ent context in that it permits a crude interpolation
to complete the temperature dependence of y at the
lowest temperatures. Apart from the fact that y is
negative over a substantial range of temperature,
the over-all shape of the curve is similar to that
observed earlier in, e.g. , alkali halides with the
rocksalt structure, and it is tempting to associate
the shapes of the y„vs T and y, vs T curves, as
well as their similarity, with the low degrees of
structure anisotropy.

2. Zinc Sulfide

Zinc sulfide may commonly exist in two forms,
one of which is basically cubic in form, known

05—
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FIG. 3. Griineisen parameters of zinc
oxide and zinc sulfide as functions of
temperature. Dashed line: p& corre-
sponding to the a-a crystallographic-
plane direction of zinc oxide; closed cir-
cle-dash-closed circle: pi, corresponding
to the c crystallographic-axis direction
of zinc oxide; open square: calculated
from the pressure dependence of the
elastic constants of zinc oxide (~f. 27);
closed circles: isotropic values of p for
zinc oxide, interpolated; solid line:
for zinc sulfide.
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~Z~ QS
F&G. 4. Sphalerite structure of zinc sulfide.

at room temperature. " The difference between
the extreme values amounts to approximately 7%

in c» and approximately 17% in c,~. The only re-
sults below room temperature are those of Zarem-
bovitch, which extend down to 93'K, and those
of Berlincourt et al. , who gave isolated values of

cgg and c,~ at 77 'K, which lie above the extrapolated
results of Zarembovitch by approximately 1.5 and

2%, respectively. The results of Zarembovitch
were extrapolated to T = 0 and adopted in the cal-
culations for this material. The Gruneisen param-
eter was calculated in the usual way, producing
the results displayed in Fig. 3. Because of the
restricted temperature range over which it was pos-
sible to calculate y, it is difficult to offer many
comments on this graph, except to say that it re-
sembles the corresponding curves for zinc oxide
both in shape and in the fact that it seems likely to
assume negative values at low temperatures.

alternatively as sphalerite, zinc blende, or P zinc
sulfide, and the other of which has basically hex-
agonal symmetry, being commonly known as the
wurtzite modification. The subject of the present
analysis is the first of these two forms of the solid,
which is depicted in Fig. 4. The gram-molecular
volume was taken as (23.80+ 0. 05) cm mole ' at
room temperature.

Low-temperature specific-heat results due to
Martin30 are available between 4 and 19 K, which
join up reasonably smoothly with the results of
Clusius and Harteck, ~4 whose data extend between
18 and 197 'K. Alternative earlier data are avail-
able" in the temperature range 21-59 K, but these
display a rather high degree of scatter and, more-
over, they lie above the results of Clusius and
Harteck by values up to 20%. The data of Clusius
and Harteck were adopted for the present analysis,
and it may be noted that no results were available
above 197 K. The difference between extreme
values for the thermal expansion of zinc sulfide at
room temperature, due to Kopp and Skinner, "
amounts to some 34%. Data extending to lower
temperatures due to Adenstedt' and to Reeber and
McLachlan ~ lie between these extremes, but dis-
agree between themselves by approximately 40% at
150 K. No usable results exist below 50 'K, al-
though the trend indicates a change of sign of the
volume coefficient of thermal expansion occurring
in the vicinity of 55 K. A compromise was made
in adopting low-temperature thermal- expansion
data, preference being given to the results of
Adenstedt, whose results displayed the lesser scat-
ter, and whose results for lithium fluoride were in
good agreement with those of other workers. 6 Ex-
trapolation was employed between 50 and 0 K. The
elastic constants of zinc blende have been measured

B. Moments of Frequency Distributions

Before any thermodynamic analysis may be un-
dertaken, it is necessary to calculate the specific
heat at constant stra. in C„ from the experimental
values which refer to constant stress C,. In the
case of a solid possessing hexagonal symmetry this
may be achieved with the aid of the equation

(3)

In the case of cubic solids +, = a, and y, =y, . C,
and C„are usually expressed as the quantities re-
ferring to constant pressure and volume, respec-
tively, i.e. ,

C~/C„= 1+ 3&yT .
Zinc Oxide

(4)

The difference between C, and C„was calculated
at 300'K from Eq. (3) as (0. 02, +0.01,) caldeg '
mole-'. This represents only approximately 0. 3/o

of the measured heat capacity, which is appreciably
less than the experimental uncertainty of approxi-
mately 4% and which will diminish with reduction of
temperature in a manner which cannot be calculated
in the absence of elastic-constant data below room
temperature. For this reason no correction was
applied for (C, —C„).

As a first step towards calculating the positive
even moments, a graph of [8(T, qr)] was plotted
against T, and the region lying in the approximate
range 6 8 & T & —,

' 8 was extrapolated to T = 0, in
order to gain a first estimate of 8(~, rlo). This was
substituted in the expression for the dimensionless
param"ter t defined in the equation

t=[l+ (T/0. 28'„} ) ',
in which 8' is the high-temperature limiting value
of the Debye characteristic temperature correspond-
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ing to the specific heat. " Values of y, and y„were
then plotted against the values of t so obtained, and
by extrapolating the graphs to t= 0, values of y~
and y„corresponding to T = ~ were obtained. In
terms of the nomenclature introduced earlier, these
two quantities will be referred to as y, (0) and y„(0).
These were applied in place of y, (2) and y„(2) in the
equation

8 (T, nr) ao co

for which an approximate correction of the Debye
temperatures was made to fixed strain correspond-
ing to T=0. In effecting this correction, it had
been implicitly assumed that values of y(0) and y(2)
were very similar. %e have defined

where
1 da

Qg =Qg=
asoo

~c 1 —fr a, dT
co I )oooo ~-.&T '

where
1 dc

Q'~ ——Qji-
C300 d T

In evaluating ar/ao and cr/co, the appropriate length
changes (in the a and c directions) were estimated
at the lowest temperatures, and the calculated cor-
rection at room temperature of 0. 2% justified this
approximation.

A graph of [8'(T, ri o)]o against T ' was then ex-
trapolated to T = 0 from the approximate tempera-

ture region 6 8'„ to —,
' 8'„, and on the assumption that

anharmonic effects had not become unduly serious
at —,'8'„, "harmonic" heat capacities C~ were es-
timated from the extrapolated region. The point of
intersection with the [8'(T, qo)] axis at T = 0
yielded a value of 8' = ('706 + 36) 'K which was used
in calculating (&u ), (w ), and (&uo) using the equa-
tions outlined by Barron et al. The calculations
of the other moments (&o") of the frequency distribu-
tion G(ur) defined by

((d ) = f (d G((d)d(d/ J G((d)d(d

and the corresponding maximum frequencies of the
Debye distributions having the same nih moments
as the actual crystal

(od(n) = [-,' ( n+3)((o")]"" (neo)

were calculated for —3 ~ n ~ 6 using the procedure
mentioned earlier, 2 the particularly relevant equa-
tions which have been summarized by Bailey and
Yates. As explained in these earlier works, the
evaluations were effected at the lowest tempera-
tures at which terms beyond those in T~ were neg-
ligible in comparison with the rest of the summed
quantities.

The calculation of the negative moments calls for
special comment. A value of 8(0, 7)o) was estimated
from the room-temperature elastic constants,
neglecting any variation of these quantities between
300 and O'K. This was used to derive the value
(12.o +1.o) xlo~ calmole 'deg for the leading co-
efficient in the expansion

C„=aT + bT'+ CT7+

from which the very low-temperature heat capacity
was estimated. This low-temperature heat capacity
was applied to the equation

I'(n+ 1)g(n) k 3Ãk T" —1 "-' (2s)! 2s+ n —1 k

to estimate (~ ') and (~~). The characteristic tern-
peratures coresponding to the maximum frequencies
of the Debye distributions having the same nth mo-

TABLE II. Values of e(n) and p(e) for zinc oxide and zinc
blende as a function of order n.

ments as the spectrum in the actual crystal were
then calculated from 8 (n) = ff ~o(n)/k, except for the
following two values of 8(n) which were given
directly as

n &(n)

('K)

—3 416 j21
—2 367 j20
—1 417 j14

0 521 j17
2 706 j36
4 812 j43
6 855 + 41

Zinc oxide
ys(n) Vg(n)

—l. 13
—0.58 j0.04

0.04 + 0.04
0.7 jo.l
1.2+0. 2

1.3 j0.4

—l. 13
—0.47 +0.04

0.13+0.04
0.8 jo.l
1.3 j0.2

l.4+0.4

315j10
305+ 5
336 j5
381j11
460 j14
495 j19
510 j21

0.8 j0.2
1.3 j0, 3
1.3 j0.9

Zinc blende
e{n) &(n)
('K)

and
8(-3)= 8(0, 0) .

The results of these calculations are summarized
in Table II and Fig. 5.

2. Zine Sulfide

Although the difference of the specific heats
(Co —C„) was only 0. 2% at 190 'K in the case of zinc
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FIG. 5. Function 8(n) =S~L)(n)/A for zinc oxide, O, and
zinc sulfide, ~, in which the uncertainties are indicated
by the vertical lines where these exceed the diameters of
the circles.

sulfide, i.e. , smaller than the experimental un-
certainty, it was applied, nevertheless, since suf-
ficient data were available to permit its estimation
over the greater part of the temperature range of
the analysis. The calculation of the even positive
moments followed the procedure described for ZnO,
except that the graph of

(I —[8'(V.)/8'-(V, ))')[8'-(V,)/T)-'

against [8' (V()}/Tj proved to be particularly sensi-
tive to the value taken for 8' (Vo) above T = ', 8'„. -
The curves below this temperature behaved in a
much more consistent fashion, and for this reason
calculations of ~)) (4} and &un(6) were based upon the
approximate temperature range 5 8'-+9e' and a
value of 8' (Vo) = (460+ 14) 'K which was calculated

3NA

y(n}= Z
9~1

3NA
~n

9~1

d Ln(4)n(n) 1 d Ln&(4}"&

d lnV n d lnV

1. Zinc Oxide

Pursuing the consequences of the quasiharmonic
approximation, the volume dependences of the posi-
tive even moments y„(2), y, (2), y„(4), and y, (4)
were determined from the intercept and the first
differential coefficient of the high-temperature ex-
pansion given by Barron et al. ' in the rearranged
form

in the usual way. The &, was calculated in the
manner described earlier, after first calculating
the "harmonic" entropy. The value of 80 was
taken from the low-temperature specific-heat re-
sults, so and the experimental uncertainty was as-
sessed from the author's graph, leading to a value
of 8o = 315+ LO 'K. The &~ ') and &~~& were calculated
in the straightforward way which has also been
described earlier. The absence of any peculiarities
in the values of 8(n) which resulted from these cal-
culations was taken as justification for the deter-
mination of 8(1), required for the later calculation
of the zero-point energy, by interpolation.

C. Volume Dependence of Moments

The influence of volume upon the characteristic
temperatures corresponding to the entropy, heat
capacity, and Debye-Wailer frequency integral may
all be calculated with the aid of the volume depen-
dence of the moments, 4' conveniently expressed in
terms of the parameter

&(u'& I ' &~'& '
(r- —rlr'= — [r(4) —r(o)]- —,— [r(4}—r(o)] — [r(O) —r(o)]I12 T k 240 12

oo«]r(4)-r(o)I- » „,[r(4)-r(o}] „„-„, [r(4)-r(o)]I-"&~'& &~'&

The experimental uncertainties become prohibitively
large with increasing n. This was the reason for
not carrying the calculations beyond the determina-
tions of y„(4) and y, (4). Values of y„(0) and y, (0)
were given by the values of y„calculated earlier.
In determining y„(- 1) and y, ( —1) from the equation

y(n)= f yC~, T" 'dT/f C„,T" 'dT

(- 3 & n & 0), (6)

the evaluations were performed at a series of finite
temperatures. The resulting approximations to
y, , ( —1) and y, ( —1) were plotted against T ' and ex-

trapolated to T ' = 0 to give the values which were
finally adopted. The results of the calculations are
summarized in Table II and displayed graphically
in Fig. 6, in which y( —3) —=yo was the value cor-
responding to the pressure dependence of the elas-
tic constants mentioned earlier. ~7 Figure 6 shows
the mean values of y„(n) and y, (n), where these
may be compared with the corresponding result
for zinc sulfide.

2. Zinc Sulfide

In attempting to calculate the volume dependences
of the positive even moments, the procedure de-
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}((n)

Leadbetter44 has used the Debye-%aller frequency
integral X(T) discussed earlier4' to derive expres-
sions for the mean square amplitudes of the atoms
and molecules of ice. Adapting these expressions
to the present situation, the mean mass rn and the
mean square amplitude of vibration u of the atoms
in the II-VI compounds are related to X(T) through

m~'=X(T) . (7)

In the low-temperature limit X(T) = —,
' h(~ '), where-

as for T& 8'„/ 2v

I

0

I

0

1X(T)=AT (~-')+—
12 kT

e '
(~') —~ ~ ~ (6)720 kT

FIG. 6. Variation of the volume dependences of the
moments p(n) with n for zinc oxide, 0, and zinc sulfide,
~, in which mean values for the c and a crystallographic-
axis directions have been plotted for zinc oxide, and the
uncertainties are indicated by the vertical lines.

scribed for zinc oxide was again used, except that
attention was concentrated on the approximate tem-
perature region +98' & T & 5 8' instead of the more
usual range +68' & T& 38' for the reason described
earlier. Because of experimental uncertainties at
the higher temperatures, it was not possible to ex-
tend calculations of y(n) beyond n = 4. The y(0) was
given by y as before, and a serious attempt was
made to evaluate y(- 1) using Eq. (6). However,
it turned out that the value of the numerator of the
right-hand side of this expression between T= 0 and
50 K was likely to be anything up to 100% of the
corresponding value of the integral between 50 and
190 'K. Even with good thermal-expansion and
elasticity data below 50 K, the extrapolation of the
ratio used to determine y( —1) from the highest
temperature at which specific-heat results exist
(190 K, up to T= ~) would introduce uncertainties.
Without any thermal-expansion results below 50 K,
estimates would be so crude as to be valueless.
Similar remarks apply to the case of y( —2), except
that here the situation is even more serious. Fi-
nally, it is quite impossible to estimate p( —3) by
extrapolating the y data from T=50 K to T=O, and
unfortunately there are no experimental data con-
cerning the pressure dependences of the elastic con-
stants, from which y( —3) —=y, could be calculated.
The results of the calculations of the moments and
their volume variations are summarized in Table
II and displayed in Figs. 5 and 6.

D. Amplitudes of Vibration

Starting with a result deduced by Blackman' on
the basis of assumed harmonic lattice vibrations,

10
/

/
/

/
/

/
/

/

8K
IJJ

1'

OJ
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1"~

I

100 2Q0
T (.K)

FIG. 7. The rms amplitudes of vibration of the atoms
(gg ) in zinc oxide (solid line) and zinc sulfide (dashed
line) .

On the basis of Eqs. (7) and (6), the rms amplitudes
of vibration of the atoms (u2)'~2 have been calcu-
lated. These are displayed graphically in Fig. 7.
The results are believed to be correct to within a
few percent, and to agree well with calculations
based upon simple shell models. In particular, in
the case of zinc sulfide the rms amplitude of vibra-
tion based upon the present calculations is lower
than that calculated on the basis of the shell model
of Hewat'~ by only approximately 6% at 0 'K, and
higher by only approximately 2% at 300 K. Similar
figures apply in the case of zinc oxide. '~'~

IV. CONCLUSIONS

Considering the characteristic temperatures cor-
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responding to the cutoff frequencies of the Debye
distributions having the same nth moments as the
frequency spectra in the actual cyrstals, depicted
in Fig. 5, certain observations are possible. The
spread in values of 8 (s) in the range —2 &n &6 is
considerably greater for zinc oxide and zinc sulfide
than is the case with simple ionic solids. '~'

This is particularly so in the case of zinc oxide.
Also the ratio 8(6)/8( —2) is high compared with the
corresponding values for other solids, and again
the difference is particularly marked in the case
of zinc oxide. The approximate value of this ratio
for zinc oxide is 2. 3, and for zinc sulfide 1.V.

Zinc, which also possesses hexagonal symmetry,
has a value of 1.4, the simple ionic solids have
values ranging between 1.4 and 1.2, and the values
for germanium and silicon are found around 1.2 or
1.1. These last named substances, having low
values for the ratio 8(6)/'8 (- 2), all have one factor
in common: They have cubic symmetry. Remarks
simi1ar to those for zinc oxide may also be made
about pyrolytic graphite„' which also has hexagonal
symmetry but which is very anisotroyic. The above
figures suggest that the vibrational spectra in zinc
oxide and sphalerite zinc sulfide are more complex
than in a number of other solids, particularly than
in those other solids having cubic symmetry. This
indicated complexity is not difficult to understand.
Zinc oxide, zinc, and pyrolytic graphite a11. have
hexagonal symmetry, and to this extent thay are
structurally more complex than cubic sol.ids. This
feature alone might be expected to lead to complex
spectra. In the case of zinc, however, the atoms
are all of the same type, which might be expected
to lead to a simpler situation than that in zinc
oxide, in which there are two different atoms.

Turning to the volume dependence of the fre-
quencies, the striking feature of Fig. 3 is the sim-
ilarity of the values of y„and y, for zinc oxide,
which supports the conclusion that the vibrations
parallel, and perpendicular to the c crystallographic
axis in zinc oxide must be basically very similar.
Examinations of the wurzite structure bear out a
similarity of the form and dimensions of the crys-
tal structure in these two mutually perpendicular
directions. The mean values of y(n) for values of
n -4 or higher are dominated by the high-frequency
modes, and the fact that y(n) is positive for positive
n suggests that these modes may be predominantly
longitudinal. It may be inferred that the forces be-
tween the atoms are comparatively strong and that
the complete vibrational frequency spectrum con-
tains a considerable proportion of high-frequency
modes. In the case of zinc oxide, the y„(n) become
quite markedly negative as n becomes increasingly
negative, implying the preponderance of transverse
modes of vibration over the longitudinal contribu-
tion among the low frequencies.

Finally, attempting to get some indication about
the magnitude and nature of anharmonic effects in
these solids, after calculating the zero-point ener gy
E, of the crystals, the ratios of the thermal en-
ergies at T = 3 8' to E, were evaluated. The ratios
turned out to be very similar to the corresponding
figures for simple ionic solids. Looking next at
the ratios of the amplitudes of vibration at 300 K
to the interatomic spacing, we find again that the
figures turn out to be very similar to those for
simple ionic solids. On the other hand, the thermal
expansions are very much smaller indeed than
values for simple ionic solids at the same reduced
temperatures. It is possible that these observations
may add uy to an indication of the existence of an
unusually large constant-volume explicitly tem-
perature-dependent contribution to the anharmonicity
at an unusually low reduced temperature.

In may be shown that the anharmonic contribution
to the heat capacity may be represented by

in which E~ is the thermal energy and the shift in
the normal-mode frequency v& has been written as

6v, /v, = B,(E,+ Er)

and all the values of B~ have been assumed to be
constant for any particular crystal. In this expres-
sion, C&"" is the contribution to the harmonic heat
capacity from the jth normal mode. 8 may be
estimated by a reiterative procedure when precise
experimental data exist. Attempts have been made
to calculate a first approximation to B for zinc
oxide, giving a value which is higher than those for
alakali halides by a factor of approximately 10,
but which is of a similar order to values observed
for solid argon and ice. From a more precise
value of B, the volume-dependent shift of the geu-
metric mean frequency couM be calculated, which
must be related to corresponding temperature-
dependent shifts in the infrared absorption and
neutron scattering properties of the crystals. The
experimental data permitting such comparisons
would be extremely valuable.
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