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The lattice thermal conductivity X~ of three heavily doped (&10 cm ) p-type samples of
InSb has been determined in the temperature range 1.3-4. 2 K. The data are fitted to a
phenomenological model including boundary scattering, Rayleigh scattering due to impurities
and isotopes, and the scattering of phonons by charge carriers. That the charge carriers
are a significant source of scattering is indicated by a general T behavior at the lowest tem-
peratures and by a rapid increase in A~ at the higher temperatures because of phonons which
have wave-propagation vectors larger than the diameter of the Fermi surface, and which
therefore cannot be scattered by charge carriers. A probable screening in the carrier-
phonon interaction is apparent from the lowest-temperature behavior of X~. In general, a
good fit is made using the theories of charge-carrier-phonon interactions developed for the
treatment of ultrasonic attenuation.

I. INTRODUCTION

This work covers measurement and analysis of
the thermal conductivity in heavily doped degener-
ate P-type InSb in the liquid-helium temperature
range. Earlier work on P-InSb by Challis et al. '

indicated that a quantitative study of the electron-
phonon scattering could be obtained should higher
doping concentrations be used. The relatively
simple way in which the hole distribution is affected
by doping was expected to yield more straightfor-
ward analysis than in the case of Sb studied in a
previous work.

The principal features of the thermal conductivity
which in this work would strongly confirm phonon
scattering by charge carriers are (a) a general
tendency toward a T dependence in the proper tem-
perature range, (b) a rapid increase at the high-
temperature range similar to the effect of the cutoff
in the phonon-electron interaction for phonons with
wave-propagation vector larger than the diameter
2k+ of the Fermi surface (FS) (the variation of 2k+
with the doping concentration allows some detailed
study of this point), (c) a departure from the T
dependence of the thermal conductivity at the lowest
temperatures which would empirically agree with
the screening of the phonon-electron interaction
in the regime of the long-wavelength phonons, and
(d) a good fit with the relevant theories.

Theory ' developed for the electron-phonon in-
teraction in ultrasonic attenuation seems to adapt
well for this case, and also probably could explain
some similar anomalies found in other heavily doped
semiconductors. " '3

Section II is a brief description of the experimen-
tal procedure. Section III presents the develop-
ment of the theoretical expressions to which the
data are compared. Section IV consists of the re-

suits and discussion of the thermal-conductivity
measurement. Section V presents the conclusions
drawn from this study.

II. EXPERIMENTAL DETAILS

The samples were obtained from Cominco Ameri-
can. " They were rectangular parallelepipeds cut
from heavily doped p-type single-crystal Insb to
have cross-section dimensions 2x4 mm, and to be
as long as possible with the [111]axis perpendicular
to within 5' of the large face. Sample A was 22
mm long and doped with zinc. Samples B and C
were cadmium doped with lengths of 30 and 28 mm,
respectively. The surfaces of the crystals as re-
ceived were lapped.

The measurement of the thermal resistivity gras
made using a steady-state heat-flow method. Two
Allen-Bradley carbon-resistor thermometers
(510, —,

'
W) were used to measure the temperature

at two points along the InSb samples. The ther-
mometers were constructed by wrapping the re-
sistors tightly with 38-gauge Formvar-coated cop-
per wire, the ends of which were brought together,
twisted, and soldered to the sample. The sample
heater consisted of 44-gauge Constantan wi.re wound

on a horseshoe-shaped piece of 20-gauge copper
wire which was soldered to one end of the crystal.
The other end of the sample was soldered to a cop-
per piece which was firmly clamped to the heat
sink which extended outside the evacuated container
in which the sample crystal, thermometers, and
heater were placed. This container was sub-
merged in the liquid-helium bath. All soldering
was done with pure indium. Electrical leads from
the heater to the helium bath were superconducting
niobium.

Characteristic data on the samples used are
given in Table I. The quantities n., l, and &F, cor-
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responding, respectively, to the carrier density,
mean free path, and chemical potential, were ob-
tained from Hall-effect and resistivity measure-
ments at liquid-helium temperatures under the
simplifying assumption of a single isotropic qua-
dratic band. The expression used to determine
the density of carriers is valid for a single band or
in the high-magnetic-field limit for a material with

multiple bands. The measurements of p» were
made up to 6 kOe, which (considering the doping
levels) is a low-field regime for P-type InSb. The
error induced by using the low-field values of pz,
in the high-field expression for the carrier density
may be as high as 5'. is

III. THEORY

The analysis of the experimental results uses
an expression for the lattice conductivity' in the
limit of weak-phonon mixing. This expression,
assuming isotropy and nondispersion in the pho-
non spectrum, is

Z ZT ' ~" x'e"

where no distinction between transverse and longi-
tudinal phonon modes is made. In Eq. (1), s is an

averaged value of the velocity of sound, x= hsq/KT,
where q is the magnitude of the phonon wave vector,
~ is a q-dependent relaxation time, and 0 is the
Debye temperature. At low temperatures where
0/T is large (0 for InSb is approximately 200 K")
the upper limit of the integral will be taken as in-
finite with negligible error.

When a distinction between longitudinal and
transverse sound waves is to be made under the
same condtions as above, the conductivity is of the
form

(2)
where the indices L and T refer to longitudinal and
transverse modes, respectively. In either case,
the phonon relaxation time 7 is obtained assuming
the principle of additivity of scattering frequencies
as

~,'=B=s/I. .
The Casimir length for a sample of rectangular
cross section of area S is such that —,'mL = S.

(4)

B. Impurity Scattering

The impurity-scattering frequency ~, is some-
what complex and can be decomposed as the sum of
terms

Ti —7 iso+ Tim+ Tis+ Tir+ TO (6)

The first three terms are Rayleigh-type scattering,
i. e. , proportional to the fourth power of the pho-
non wave vector,

T, '=Dq =dx T (6)

where D is the constant of proportionality and
d=D(K/Rs)'. More specifically, r„', and ~, ' are
the mass-difference scattering due to isotope and
impurities substitution, and the combined D value
for mass-difference scattering is given by

D = (s/4' ) Q~N~(1 —M~/M )

Here the molecule is InSb and the summation is
carried over all the kinds of molecules AB formed
by the different isotope and impurity atoms. N&

and M& correspond, respectively, to the number
per unit volume and the mass of a given kind of
molecule (AB), M is the average molecular mass,
and A' is the number of AB molecules per unit
volume.

The other Rayleigh-scattering term 7„' is a
strain scattering caused by force-constant differ-
ence and volume difference' associated with the
impurities. We have

2
s 4F 4&V

2 N F V

-i -1 -i7' = 'l
b + Tc + T 4

where the scattering due to boundaries, charge car-
riers, and impurities, respectively, are included

and all other mechanisms are neglected.

A. Boundary Scattering

The scattering-relaxation frequency arising from
crystal boundaries is given by the ratio of the ve-
locity of sound to the Casimir' length L and is a
constant:

TABLE I. Quantities determined from Hall-effect and resistivity measurements. n= H/ecp2f 7', = m&p/ne, k&
2 i/3= (3& n), l =hk~v~/m, and e+ = K kz /2m where p2i is the Hall resistivity, Op is the dc conductivity, and m= 0.4mp

2 2

is the heavy-hole effective mass.

Sample

A.

B
C

n
(10"cm )

1.08
2. 20
7. 60

Op

(0 ' cm ')

136.0
218.0
537. 0

~e
(10 sec)

1.8
1.4
1.0

2k~
(107 cm )

1.01
1.16
1.5l

l
(10 6 cm)

l. 65
1.64
1.77

E'F

(me V)

24. 0
32. 0
54. 0
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~,' = O,(q)F,(q), (9)

where E,(q) is a cutoff function which takes account
of the fact that not every phonon can be scattered.

where N& is the number of j-type impurities and
hE/E and n, V/V are, respectively, the added stress
and added dilatation introduced by the impurity.
The addition of D„ for which there is not sufficient
information to calculate, may account for part of
the discrepancy between the experimentally deter-
mined value D and the calculated value for D

A resonance-scattering term &„' of the type
formulated by Pohl,

~2THg-' ccir
(

2 R)Z ( fi/ )2 Z Z

may modify the simple Rayleigh-type behavior, but
its effect is generally expected in a temperature
range higher than the range reported here, and
therefore will not be considered. Here coo is the
resonance frequency and 0 describes damping of
the resonance.

The last impurity-scattering term of Eq. (5) is
due to resonancelike bound electron-phonon pro-
cesses of the type proposed by Keyes"' ':

r~' ~ ~'[~' —(4n/5)' ]
' [1+r 0&v'/4s' ] ', (8)

where 4b, is the chemical shift related to the split-
ting of electronic states, and xo is the mean radius
of the localized state. If in p-InSb it is assumed
that Ace & 4h, then the resonance term vanishes.
The scattering appears then to be of the Rayleigh
type with a cutoff for q& 4/ro, where ro is the orbit
radius of the electron or hole in the hydrogenlike
state of the impurity. One may expect this cutoff
to be concentration independent, and to be well de-
fined only for low concentrations of impurities.

In summary, the impurity-scattering frequency
T,

' can be approximated by a Rayleigh term
= Dq . The deviation from this simple behavior

due to ~„' and ~& will be neglected with some justi-
fication given in Sec. IV. With this simplification,
one notes that both the coefficient B of the size
scattering and D of the impurity scattering are
proportional to s. Should distinction be made be-
tween longitudinal and transverse phonons, the
corresponding 8 and D terms will be expected to
be proportional to their corresponding velocities.

C. Charge-Carrier-Phonon Scattering in Semiconductors

Considering the eIectron-phonon scattering due
to charge carriers, Ziman derived the relaxation
time for the case in which the carriers are con-
tained in a parabolic isotropic band and the density
of the carriers is large enough that T~ & T, where
the temperature Tz is defined by KTF = k' ks/2m
Ziman showed that the scattering frequency is of
the form

This can be understood by the simple considera-
tion of momentum conservation. When the elec-
tron is scattered from a state characterized by a
vector k to a state characterized by k', with
k = q+k, the limit q ~ 2kF is set on q owing to the
upper limit k~ taken by both k and k'. One may
expect a cutoff function F(q) = 1 for q ~ 2k' and

E(q) = 0 for q & 2k~. This is what in practice is
realized by Ziman's cutoff function F,(q) T.aking
into consideration both momentum and energy con-
servation, E,(q) is determined to be

kTF,(q) =1-
Sqs

1+exp((kT) [-,kqs —(k'/8m)(4k~ —q ) ]]
1+exp{(kT) '

[ ——,'hqs —(g'/8m)(4k& —q')]]'

is a parameter of interest to characterize low-
temperature transport effects. ' The tempera, -
ture T, is defined by KT, = &ms .

The scattering function Q, (q) is taken by Ziman
to have the simple form

A, (q) =Aq= axT, (12)

with A=m C /2vpk and a=Km C'/2vpsk', where
C is the deformation potential and p is the mass
density. It is generally argued that the local strain
induced by the sound wave changes the energy of
the charge carriers by the amount

5E(r) = g C„n„(r),

where the C, &
are the components of the deforma-

tion-potential tensor and the n,~(r) are the com-
ponents of the local strain.

When an analysis of the conductivity is made
using Eqs. (1), (3), (4), (6), (9), (10), and (12) with

proper adjustment of parameters, a relatively
good fit is obtained at the highest temperatures con-
curring with the evidence of the Ziman cutoff of
the carrier scattering. However, at the low-tem-
perature end there are indications that the simple
linear term O(q) =Aq overestimates the scattering
of the low-q phonons. This is to be expected from
qualitative considerations. When the phonon wave-
length becomes of the order of or larger than the
carrier mean free path, i. e. , q/-1, a decrease
in the strength of the interaction should occur.
Also, the electron system reacts as a plasma to
low-frequency phonons, and the resulting screen-

or

1 e*~'+exp( —(T/16T, )[(0*/T)'-x ]]
x 8 ""+exp( —(T/16T.) [(o'*/T)' —x'lk '

(10)
where m is the effective mass of the carrier and

p~ = 2k+( Ks/K ) = (4Tr T, )'
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ing decreases the phonon-electron interaction. A

number of theories3 ' have been worked out in the
field of acoustic attenuation which bring about these
features. For reasons of unity, the treatment by
Cohen et a/. with the extension of Harrison' and
Spector' (CHS) is used here with some slight modi-
fications. Referring to Eq. (2. 13) given by Spec-
tor, one has

4 2 2
11o11q '

N C13 (17b)
(o3|+Bu)mouP

These equations were used at first in the scattering
computation, but it was found that to within 1%, only
the deformation-potential terms were significant,
and that for present purposes Eqs. (17) were ap-
proximated by

2nmo m 3,C ~ qq B
7 cpm mo sm o(d

~ i
X(™O' + 8 )

m, &0' ~ qq C
g + o p

mo imow

(13)

2

Qi(q)= ' q' 3 &(q, si),nV'e C11

p ms~

2

Qr(q)= ' q' "3 T. (q, sr),
p ms~

where

(18)

If the 1 direction is chosen to be in the direction of
q, then 8 is a diagonal tensor with B» = —iy,
B33=B33=iyc /s, where c is the velocity of light,
C is the symmetrical deformation-potential tensor,
p, is a unit polarization vector, 0 ' is the diagonal
reduced-conductivity tensor

o '=( o /oo)(1 —n R ) ', (14)

R is a tensor with all components zero except
R„=p/i ~r, and o is the diagonal conductivity
tensor with relevant components

1 —S Te
o11 3o0

( I)3 pt

(15)
3oo 1-p (1 i~r )-
2 1 —i&@ 7 (ql)

where

p= 1-—' J',[I—iyq/(1-i&@ ) '3] dy . (16)

Other terms introduced here are 7e, the carrier
relaxation time, l, the carrier mean free path,
~, the phonon frequency, y= &u/&u3r„where
~3= (4voo/3', e)', and e, the static dielectric con-
stant. In Eq. (13) a distinction is being made be-
tween mp and m —the free and effective masses of
the carriers-to take account of Harrison's remark
that the drag and energy feedback involve the free
mass of the carrier. A coefficient n has been in-
troduced in o ' to take account of the possibility of
recombination, ionization, or carrier trapping. ~

The resulting scattering frequency for longitudi-
nal and transverse phonons becomes, respectively,

g-R 11 11 (19)

is the reduced conductance of the two impedances
I/o'„and 1/B„ in series.

It is interesting to note that the scattering terms
in Eq. (18) exhibit the same q dependency, as
opposed to the case of metals where the scattering
frequencies for the different phonon polarizations
appear as completely different functions of the pho-
non wave vector. In the range of intereSt here one
finds Zz/Zr = (s~/sr) and thus QL, (q)/Qr(q)
= (C|,/C|3) . This is an indication that the simplified
analysis based on Eq. (1), as compared to the anal-
ysis through Eq. (2), will correspond to a relevant
approximation, and that the empirically determined
scattering in this simplified analysis will be repre-
sentative of the basic scattering involved in the InSb
samples studied. More specifically, when

l, ' & q~F & q &2k~, (20)

X3= (7. 2128K p/vm )C T

the value Z simplifies and Eq. (18) yields the term
used in Ziman's theory for Q(q), i. e. , Eq. (12}.
In (20) q» = &u3/vs is the Thomas-Fermi wave vector
and v~ is the Fermi velocity of the carriers.

If the phonon-charge-carrier scattering is pre-
ponderant over &~' and r&', and if one considers
the temperature range where contribution to the
heat conduction comes mostly from phonons satis-
fying condition (20), it is expected that the lattice
thermal conductivity X, will exhibit the usual T
law

2 7' B CO (,)= Re +3 — '' "'")
Tepm m O ZCOmO

or

&3= (7. 2125K p/sm (}3 C||+3C|3 )T

(21)

2
11~el C11X —011+

mo immo (olg +Bye) (17a) using Eqs. (1) and (2), respectively. Therefore,
it may be seen that the average over modes yields
for the averaged deformation potential the relation

nmo (m/mo —o'„)(m/ma+ B33)Re~()
~22+ B22

-2 & -2 2 -2C —3C11 + 3C (22)
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The components of the deformation potential in
fact depend on the direction in which q is taken in
the crystal. However, the calculation of X, in-
volves an averaging over all q directions so that
the C» and C,a appearing in Eq. (22) may be con-
sidered as averaged quantities.

Outside of the X,~ T range the averaging over
the different scattering is less clear. At the high-
er temperatures where phonons with q= 2k~ have
to be considered, Ziman's cutoff F,(q), as ex-
pressed as a function of x in Eq. (2), occurs for
the different values of x, or,"/T and er*/T, for
the different polarizations. Therefore, in the sim-
plified analysis where a single cutoff is used in-
stead of two, some indetermination will result
mainly in the averaged impurity-scattering term.
The impurity scattering is indeed the principal
scattering once the carrier scattering is cut off.
It is questionable whether or not the refinement
made by inclusion of the double cutoff might be
offset by the ambiguity in the determination of the
0*

I Eq. (11)]due to anisotropy in the phonon and
electron distributions.

At lower temperatures where phonons with
q= q» have to be considered, the Z function takes
a complicated form which nevertheless simplifies
if ql » 1 for which the scattering becomes

&(q) = &q(1+ 8(qrr/q)' j ',
which is a conveniently simple formulation of the
plasma screening cutoff. Thus for q) qT~ the scat-
tering approaches the unscreened term given by
Eq. (12), whereas for q & qrr the screening effect
for small q makes the carrier scattering term fall
sharply.

IV. RESULTS AND DISCUSSION

In the analysis of the conductivity it was felt that
the simple form of Eq. (1), where phonon polariza-
tion is not distinguished, could be used to determine
the nature of scattering, subject to the restrictions
discussed above. An averaged value for the veloc-
ity of sound s = 2. 28&& 10' cm/sec" is used in the
different computations, except when specific distinc-
tion between polarizations is made in the discus-
sion, in which cases s~ and s& averages are taken
as sr, = 8. VV&&10 cm/sec and sr= l. 88&&10' cm/sec.

The values for n,
"v'„and l are taken from Table

I. The hole mass used is m=0. 4 mo and the25

static dielectric constant & =18. From those basic
quantities, one can derive such quantities as k~,
8*, og, o$, vs, v~, and q» for the different
samples as well as D if one supposes the impurity
density is given by N, = n. In principle, only C is
an unknown quantity to be determined. But it was
found that a better fit between theory and experi-
ment was achieved when other quantities such as
8*, d, and q» were treated as parameters and
adjusted to fit the experiment. Then comparison
between experimental and computed values for these
parameters would serve as a check into the theory
and the validities of the approximations.

The values of C, d, 0*, and q T~ obtained for a
best fit are presented in Table II along with calcu-
lated values of d, 8*, and q» for each sample.
The results of the calculation of X, using the values
in Table II are represented by the solid curves
which accompany the experimental data points in
Fig. 1.

The curves fitted to the experimental data are
quite sensitive to the deformation potential since
it is the principal parameter v hich determines the
depthof the minimum for the X /T vs Tcur-ve. -
The values of the deformation potential obtained are
within the range expected. "' There seems to be
a slight dependency of the deformation potential on
the impurity concentration, with the magnitude of
C decreasing as n increases.

The effective Debye temperatures o~ resulting
from the analysis are in the same sequence, but
are larger than the values calculated from the mea-
sured carrier densities. As mentioned earlier,
the e~ for each sample should probably not be a
single value but take on a range of values between
8~~ and 0~1. . The 0* obtained experimentally for
all three samples are in the range between the cal-
culated values for o~ and e~» and should the
correction implied in Ref. 15 be performed a still
better match would be obtained. The analysis is
reasonably sensitive to 0* as this parameter located
the minimum along the temperature axis and in
conjunction with the parameter d determined the
slope above the minimum.

The introduction of the Thomas-Fermi wave

TABLE II. Parameters determined from analysis of data using Eq. (1) along with calculated values of d, 8*, and

qTF. Here qTF is the value arising from the curve fit and qTF is the theoretical value of the Thomas-Fermi wave vec-
tor calculated from the relation qrr—- cuPvr, where a» is the plasma frequency and vs is the Fermi velocity

Sample

A
B
C

C
(ev)

—1.18
—1.12
—1.06

d
('K 4 sec ')

13.5
20. 0
25. 0

d
('K 4sec )

3, 2

2. 8
2. 9

17.5
20. 0
26. 0

88ALC
( K)

11.0
14. 0
21. 1

e
O'TF

(10' cm-')

0. 82
0. 80
0.75

C
QvF

(10 cm )

2. 38
2. 68
3. 29
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O. IO

0.08

I." o.o6

0.04

0.02—

T ( K)

FIG. 1. Lattice thermal conductivity Az of three sam-
ples of heavily doped p-type InSb, multiplied by T vs T
in a linear plot. The way in which the individual sets of
data break away from the low-temperature nearly T de-2

pendence of A~ is indicative of the abrupt cutoff in scatter-
ing by charge carriers of phonons with q & 2k+. The se-
quence in which these cutoffs occur follows the sequence
of increase of 2k+ due to increased doping. The some-
what-less-than-T behavior at the lowest temperatures is
attributed to screening of the charge-carrier-phonon in-
teraction for low-q phonons. The solid curves are corn-
puted from Eq. (1) using parameters listed in Tables I
and II.

tering mechanisms are shown in dashed lines in
Fig. 3 as functions of the phonon wave vector with
the sum of the scattering frequencies as the solid
curve. In Fig. 3 the carrier scattering displays
the very rapid fall due to screening when the pho-
non wave vector is of the order of qTF or less.
Other features apparent in Fig. 3 are the very
abrupt cutoff of charge-carrier scattering at 2kF
as calculated for T= 2'K and the linear wave-
vector dependence of the carrier-scattering fre-
quency for q& q» which agree with the Ziman
theory. The boundary scattering appears as the
term independent of q.

It can easily be seen that an increase in the scat-
tering due to crystal boundaries would compensate
in part the effect of screening in the low-q region.
However, to fit the experimental behavior of A., in
this region by adjusting vb would require an un-
justifiable order -of -magnitude increase in boundary
scattering.

A number of other possible explanations for the
discrepancy between experimental and theoretical
values of q» or for partial compensation of the
screening effect have been examined. The case
of additional bands of scatterers lends itself to
a relatively simple study which is given here in
some detail.

Awareness of the fact that semimetals such as

0.05

vector as a parameter allows control of the amount
of screening by delaying the onset of screening as
q» is decreased. That some control over screen-
ing is necessary is indicated in Fig. 2, where the
data for sample B are presented, along with solid
curves representing best fits using the carrier scat-
tering represented by Eq. (12), where there is no
screening (curve 1), CHS with the full effect of
screening (curve 2), and CHS with the screening re-
duced by adjustment of q» (curve 3). Table II shows
that the values of q TF obtained by curve fitting
are much smaller than those calculated, varying
from 34% of the expected value for sample A to
only 23% for sample C. By comparison Challis
No. 6 sample with less doping yields 42%. It may
be noted that the purer the sample the closer to
the theoretical expectation for q». Attempts to
explain such a small empirical value of the param-
eter used in place of the Thomas-Fermi wave
vector will be made later.

To illustrate the different types of phonon scat-
tering as obtained for sample B, the phonon-scat-
tering frequencies due to the three principal scat-

lO

bC
0

E
EP

0.04—

0.02—

O.OI
I

T( K)

FIG. 2. Lattice thermal conductivity of sample B,
multiplied by T vs T in a linear plot, showing the effects
of screening of the charge-carrier-phonon interaction for
low-q phonons. Curve 3 uses Eq. (1) with parameters
listed in Tables I and II with the value of qT'F which intro-
duces the full theoretical effects of screening. Curve 2
was computed exactly as curve 3 with the exception that
qTF was adjusted to the value of qT'F to reduce the screen-
ing. Curve 1 is a fit to the data with no screening. The
parameters for this curve were adjusted to give a best fit
and are somewhat different than those for curves 2 and 3.
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1O'0

109—

1Q8
CP
47
VI

I

~ lO'-

1O6

lO'
lo5

q{cm ')

I

I -I
I
Tc

I

107

FIG. 3. Sum 7 'of the separate scattering frequencies,
and v; vs the magnitude of the phonon wave

vector q in a log-log plot for sample B at 2 'K with qTp

=qT~F. Principal features of this plot are the cutoff in
charge-carrier scattering 7'~ at 2k+, the linear-in-q
dependence of ~~ just below 2k+, and the rapid decrease
in ~, below qTF . Also indicated are the q -dependent
impurity scattering v~ for high-q phonons and the q-inde-
pendent boundary scattering ~&, which comes into promi-
nence at the low end of the phonon spectrum.

tensor, depending on whether the relaxation fre-
quency for longitudinal or transverse waves is de-
sired. One may note that for ac=0, Eq. (24) re-
duces to Eq. (1V), the limiting form obtained by
CHS for a single band.

In the case where I
B'

I » I 0, I, which is roughly
equivalent to q+q», this becomes

A(q) = (q'/pe s ) Re(a, C, +acCc') . (»)
However, for small q where I

B'
I
« I 0& I, the re-

sulting expression is

A(q) = (q /pe s ) Re [cr,ac(C, s C2) /a, + ac ] . (26)

Assuming that the impurity band could be treated
as a normal conducting band of electrons, the posi-
tive sign is appropriate for Eq. (26) and the effect
of going from q» q» to q«q» would amount to
a, step down (or up) in the linearly varying scat-
tering frequency by a ratio of approximately
cr2 to 0&. This is in contrast to the extremely rapid
( & q') fall in A(q) below qrr in the case of a, single
band.

Should we instead consider the case of the light-
hole band, the negative sign applies and, owing to

antimony, which have many similarities to degen-
erate semiconductors, show only a limited amount
of screening was a clue in the search for a reason
for the unexpectedly small empirical values of qT~ .
Usually in sernimetals, carrier compensation is
cited as the cause for the absence of screening,
even though a less restrictive condition such as the
existence of multiple bands without compensation
would be sufficient to diminish the screening. In
this respect, there are two possibilities for an ad-
ditional band in the samples under study: first,
an impurity band ' and second, the light-hole band
which is degenerate with the principal heavy-hole
band at the center of the zone. Eekstein' has de-
veloped the theory of charge-carrier-phonon inter-
actions for the case where there are two compen-
sated bands of carriers. From this theory, the
expression for the relaxation frequency ean be
established in a relatively simplified form when
only deformation-potential scattering terms are
considered. The resulting expression, which is
valid even if there is no compensation, is

(, 7, (C, sC) ~ B'(,C, ~ vC ))3 & Re
pe s 0'1 + 0'g+B

(24)
where the + sign is used when the sign of the car-
riers of bands 1 and 2 are different. Here 8'
=iea//4s and a, = a, a;„', where the a, are the dc
eonductivities with 0'2&0'l 0p, 0«j' is the 11 com-
ponent of cr' for the ith band, and the C, are either
the 11or 12 components of the deformation-potential
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FIG. 4. Lattice thermal conductivity A~ of five sam-
ples of heavily doped p-type InSb vs T in a log-log plot.
The data for the most heavily doped samples of Challis
et al. (No. 6 of Ref. 2) and of Shalyt (No. 2 of Ref. 30)
are shown with data for the three samples described in
this work. The data for Challis's sample No. 6 was
analyzed using the method outlined here with the result
for the values of the parameters: C= —1.25 eV, d=16. 5' K sec, 0*=15 5 ' K, and qT'p ——0 87 x 10 cm . These
values are in good agreement with the values for sample
A, B, and C presented in Table II. The data of Shalyt
No. 2 falls as expected between Challis's No. 6 and
sample A.
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the near equality of C, and C& in this case, the
scattering frequency is negligible. Thus, the light-
hole band does not appear to assist in explaining the
added scattering.

No attempt was made to use Eqs. (25) and (26)
to analyze the data under the impurity-band hy-
pothesis due to the additional unknown parameters,
but it may be seen that his process would work in
the desired direction to compensate for the screen-
ing.

Some justification for the neglect of the scattering
terms given in Eqs. (7) and (8) may be presented
here. The scattering represented by both of these
terms depends on resonance phenomena-the first
a resonance with localized phonon modes due to
the presence of impurities and the second a bound
electron-phonon resonance associated with localized
impurity states. For both types of resonance scat-
tering the depth of the "dip" in the thermal conduc-
tivity as plotted versus temperature varies with
the concentration of impurities while the location
of the dip along the temperature axis does not
change. This is opposed to the data presented here
in which the depth of the dip remains approximately
constant and the location of the minimum shifts to
higher temperatures as the doping increases.

Further evidence favoring the neglect of reso-
nance scattering are the recent results of Shalyt
et al. , who obtained the same conductivity for
two n-type samples with the same carrier concen-
tration but different acceptor-donor concentrations.

This indicates that the scattering due to localized
phonon modes and to localized bound-electron
states associated with the acceptor impurities are
not influential factors in the existence of the con-

ductivity minimum. This agrees with the conclu-
sion of the present work that the conductivity min-
imum is due to scattering by free charge carriers.

For comparison, the data for the samples studied
here along with the data for the most heavily doped
samples by Challis and Shalyt are presented in

Fig. 4.

V. CONCLUSIONS

It has been shown that the lattice thermal con-
ductivity of degenerate P-type InSb at helium tem-
peratures can be successfully accounted for with
a phenomenological model in which a principal
phonon-scattering mechanism is due to charge
carriers. The other mechanisms incluc ed in this
model are Rayleigh scattering due to impurities
and isotopes and boundary scattering.

Partial plasma screening in the charge-car-
rier-phonon interaction seems also to explain
some conductivity features.

This model with emphasis on carrier-phonon
scattering has been chosen, with some justifica-
tion, in preference to a model in which phonon
scattering by ionized impurities is a dominant
mechanism.
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Dielectric Screening and the Mott Transition in Many-Valley Semiconductors
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We show that the donor density N, required for the Mott transition to occur in a many-valley
semiconductor is given by ap(&c) =0.25C(v), where ap is the radius of the first Bohr orbit in
the material, v is the number of equivalent conduction-band valleys occupied by electrons, and
C(v) = v in the Thomas-Fermi (TF) approximation. This result is identical to Mott's for
v=1 and is in good agreement with experiment for that case, but predicts an N, which is smaller
than the experimental results for Ge (v =4) and Si (v =6). This discrepancy is attributed to the
fact that the TF approximation does not include the result, predicted by the dielectric-screen-
ing theory, that only those Fourier components of the potential for which q & 2k~ are effectively
screened by the conduction electrons. This is of increased significance in the many-valley
case due to the decrease of kz for a given N. We have calculated the condition for zero activa-
tion energy assuming dielectric screening and find C(1) =1.14, C(2) =0.96, and C(4) = C(6)
=0.92 in good agreement with the available experimental results. We also note that it may be
possible to observe a metal-to-insulator transition when stress is applied to a degenerately
doped Ge crystal.

I. INTRODUCTION AND CONCLUSIONS

It is well known that as the density of donors in a
semiconductor increases, the activation energy de-
creases owing to the electron-electron interaction
and that for sufficiently high donor concentrations
the activation energy will vanish resulting in metal-
lic conduction. ' It was Mott who first pointed out
that this insulator-to-metal transition might be
abrupt with a definite critical density which experi-
mentally appears to be slightly smeared out because
of the variation in the local density of donors about
the average density.

In order to get an estimate of the critical density
S, at which the transition would occur, Mott as-
sumed Thomas-Fermi screening of the donor atoms
by the electrons and found the condition for zero

activation energy, i.e. , when the binding energy of
the electron to the donor is zero. The result was

a+,'~'= 0. 25,

where ao is the first Bohr orbit in the material.
Mott and Mott and Twose found that there was good
agreement between theory and experiment for heav-
ily doped Ge and Si, the constant on the right-hand
side of Eq. (1) being approximately 0. 2. More re-
cently Alexander and Holcomb have made a detailed
analysis of the transport data on Si:P, Ge: Sb,
Ge: P, Ge: As and found that the average v3lue of
the constant in Eq (I) is 0. .22. In each case, the
value of the effective mass appearing in ao was taken
as the one that gave the experimentally observed
binding energy of an electron bound to a donor in the
light-doping range for each particular dopant.


