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We have studied the problem of the penetration of a uniform external electric field at the
surface of a metal or degenerate semiconductor within the random-phase approximation. In
its most general form, this problem involves the solution of a complex integrodifferential
equation. This problem has been studied most recently by Newns using Fourier analysis
and numerical inversion of an infinite-dimensional response matrix. We have found that
using a parametric representation of the potential, V(x) = Vo(l —G.') ' (e ""-&e ""), in the
integral equation led to simple transcendental equations for determining the parameters. The
potential which resulted was tested for full self-consistency by using it as a source for a
single iteration of the full integral equation. A comparison between the first iteration and
results obtained by Newns (for the case r, =2) showed that they agreed within a few percent.

I. INTRODUCTION

II. FORMULATION

We consider the problem of a degenerate Fermi
gas in the presence of external electric and rnagnet-
ic fields perpendicular to the surface of the electron
gas. We wish to study the electric field penetration
within the RPA.

To this end we need to solve Poisson's equation

d V(x) Ko
( )dx' (2. la)

d V(x)
dx (2. Ib)

where V(x) is the electrostatic potential energy as
a function of x, the distance into the electron gas

There has been increasing interest during the last
few years in studying electron screening at the sur-
face of a metal or a degenerate semiconductor.
Perhaps the most detailed treatment of electric field
penetration into a degenerate electron gas is due to
Newns. ' Newns studied this problem within the
random-phase approximation (RPA). By working
within a finite slab and using Fourier-analysis tech-
niques, he was able to reduce the problem to the in-
version of a large matrix. This he performed nu-
merically to obtain the potential and charge density.
The purpose of this paper is to present a rather
simple parametric solution to the electric-field-
penetration problem within the RPA which approxi-
mates the exact solution obtained by Newns within
a few percent (for the case of a free-electron metal
with r, = 2). In addition, the problem will be formu-
lated in the presence of an external magnetic field
perpendicular to the surface of a degenerate elec-
tron gas. In such form, it provides the derivation
of results which we have used elsewhere with the
promise that the derivation would soon be made
available. '

Ko= Same /a &, (2. 2)

where a is the background dielectric constant (rele-
vant to degenerate semiconductors, where m should
then be viewed as the effective mass m"). p(x) is
the induced electron charge density, given by

p(x) = fR(x, x')V(x')dx'. (2. 3)

R(x, x') is the charge-density response kernel,
which, within the RPA and in the presence of a mag-
netic field 8, takes the form

g f(~(j))-f(~(j))
, , ~(i) (u(j) —-i5

&4i (r')0;(r')4&(r)4;(r), (2. 4)

where f(x) is the Fermi-Dirac distribution function,

y; is the wave function for an electron with energy
~ (i),

tJr, (r)= (L,)
'~ e'~g' y;(y —yt) (2/L„)'~asiru. k„',

2. 5)

(2. 5)~(i) = (i+ ,') E„+(k„')a, yo=——2y,'/E„,
where q&, (y —yo) is the harmonic-oscillator wave func-
tion with quantum number i. Note that we have repre-
sented the wave functions in the x direction as sine
functions, corresponding to the assumption of an in-
finite potential step at the vacuum-electron-gas in-
terface. EH is the magnetic energy associated with
the Landau levels.

The sum over all but one of the transverse quan-
tum numbers is easily performed in (2. 4), and one
finds

R(x, x')= —
a E„L~L,Z1

measured from the surface, and I' is the electric
force present at the surface of the Fermi gas. We
have expressed energies in units of I /2m and

charge densities, such as p(x), as number densities:
This results in a unit of inverse length,
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x sinkx sink'x sinkx' sink'x ', (2 7)
where

(u", = E„(n+-,')+ k' . (2. 8)

Combining (2. 7), (2. 3), and (2. 1), one sees that the

solution of Poisson's equation actually involves
solving a complex integrodifferential equation:

For the procedure adopted above to work, we need
an expression for the induced charge density pro-
duced by an exponential potential of the form

V0e (3. 1)

Inserting (3. 1) into (2. 3) and (2. 7) and doing the x'
integration, we find

p(x) = z dk dk '„„~ sinkx sink'xEHVO " "
3 f(~33) f(~33)-

2' 2
0 0

~a ~3'

n '+ (k —k')' n'+ (k+ k')' (3. 2)

Specializing to zero temperature,

y
p(x) = —

z dk dk' z „,z- sinkx sink'x
0 kt7

E(x, x')V(x')dx' . (2. 9)
dx 7T

To obtain an approximate solution to (2. 9), we as-
sume that we can represent V(x') near the surface,
in the region where it is largest, by a simple para-
metric form: The form we have found most conve-
nient is a sum of exponentials:

V, (x) = —[Vo/(I —n)] (e "*—ne ""). (2. 10)

This three-parameter representation for V(x) is in-
serted into the right-hand side of (2. 9), converting
it into a differential equation. This equation can be
integrated straight away and the first iteration of the
integrodifferential equation obtained in terms of
known functions. The parameters are now deter-
mined in a self-consistent fashion by requiring that
the value of the parametrized potential and the first
interation agree both with respect to their value and
their first derivative at the origin. These two con-
ditions, coupled with the requirement that the elec-
tric field at the surface is fixed by the boundary
condition (2. 1b), constitute three equations for de-
termining the parameters n, X, and V0. If the first
iteration and the parametrized form of the potential
agree rather well over the region where the poten-
tial is large, as we will see that they do, we will
have obtained an approximate solution to the inte-
grodifferential equation. Since the procedure out-
lined above is a hybrid between an iterative and
self-consistent solution, we will adopt the iterative
form of the potential as our solution to (2. 9).

III. EXPONENTIAL RESPONSE

+k —k' +k k'

where

k„= [EH —E„(n+-,')]' ' (3 4)

and F-F is the Fermi energy.
The next step in processing (3. 3) is to rewrite

x ln — " , . (3. 5)
(2k„+ (u)

n

Examination of the integrand reveals that it is well
behaved at (d = 0, has integrable singularities at
+ 2k„, and vanishes more rapidly at infinity than

A more convenient form for p(x) can be ob-
tained by means of contour integration,

16nx z (2k„—z) + n z2+ nz
C

(2k„+z)'+ eo
( )(2k„—z)'+ ezo

where z = ++i'„and we have closed the contour in
the upper-half of the complex z plane. E0 is an in-
finitesimal introduced to remove the branch cut of
the logarithm from the real axis. If we shrink the
contour c, we find that we pick up three contribu-
tions to the integral —one from the pole at z = in,
another from the logarithmic branch cut from
z = —2k„+in to 2k„—in, and the third from the loga-
rithmic branch cut from —2k„+i& to 2k„+ iE. Com-
bining these contributions one finds

E„VO~ 1 —e " ~ t sinxt

0

dt). (3. 3)
0

The charge density can be divided into two parts.
The first is short range, decaying exponentially,
while the second part is long range and oscillatory.
This long-range part is just the Friedel oscillations
set up by the surface potential. For small x, p(x)
behaves as x, which we expect since that is also
the behavior of the charge density near the surface
within our model. Note that the Friedel term is
necessary to ensure this behavior. In the limit
&- 0, corresponding to a slowly varying potential,

sinkx sink'x- —,
' [cos(k —k')x —cos(k+ k')x]

and to notice that the integrand is a separable func-
tion of the variables co' = k+ k' and co = k —k'. Mak-
ing this change of variables, it becomes a straight-
forward although somewhat tedious task to show that

E„Vo "
d&u (2k„+&u) + n

p x
v 16n

os'~ n 2 2 2 2(2k„—&u) +n n +&a
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FIG. 1. Self-consistent parametric
potential and its first iteration com-
pared for &, =2. The charge density

V)

p(x) induced by the parametric poten-
tial is also platted.

x

-.2

2kFX

7~ 8~9

e E»vo g sin k~
(3. 8)

„1 (t' —3ta ) sinxt+ (n' —3t~a) costx+8
Q (to o)2 dt

(3. 9a)

—= VoG(x, a). (3.9b)

IV. SELFXONSISTENT EQUATIONS

%e are nom able to determine the self-consistent
parameters Vo, e, and X which enter the paramet-
ric potential (2. 9). For the purpose of this paper
me mill specialize to zero magnetic field. The ap-
plication of this work to finite magnetic field has
been made by the authors in the context of strong
electric fields where it is necessary to include the
contribution of bound states to the screening of the
electric field. The three conditions to be required
of V,~ are

d V,m(0)
4x

d V(0)
dx

v.„(o)= v(o),

(4. la)

(4. lb)

(4. lc)

which is just proportional to the position-dependent
density of states.

The next step is to calculate the potential which
results from substituting (3. 1) into (2. 1). It is
straightforward to do the required x integration
mithin the integral sign. Vfe find for the induced
potential

Kovo E» ~ ~" 1 sinxt
Vx =

Q ~ 0 Q +fa a

i (t' —sta')didst ~ (a' —3 )c t
ta) doss

Q (to az)o

(4 4)

Evaluating (4. 4) and its derivative at x=-0, one finds
for (4. lb) and (4. lc)

E-
2

b
2k -Qbk 1-a (4. 6)

where

b(x) = 1/x —tan '(1/x), (4. 6)

TABLE I. Parameters A and & as well as
t, Vp(dV/dx) ) -p plotted vs x~ for a free-electron gas and

comparison made to Newns's results for [Vp(dV/dh)

kF

1.25 0. 355
1.70 0. 387

(s dc)

0. g8
1.75

where V(x) is the potential energy that results if V„,
is substituted into the right-hand side of (2. 9). Us-
ing (2. 10), condition (4. la) reduces to

(4. 2)

To obtain expressions for (4. lb) and (4. lc) we need
the zero-magnetic-field limit of (3. 9b). It is a triv-
ial task to show that this is obtained by replacing

E„Z„y "
~ ~ dt y [b —(—'t) ] ~ ~ dt, (4. 3)

so that (3.9) becomes

KoVo ~» k» —(—', t) sinxt
va a'+ t' t
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FIG. 2. Self-consistent parametric
potential end its first iteration com-

I-
pared for y~=4. The charge density
p(x) induced by the parametric poten-
tial is also plotted.

X
O

I2

2kF X

1 = a —I2 — 1 —0. ,

where

(4. 7}

'0= &9/8vkr. (4. 10)

V. RESULTS AND DISCUSSIONS

The solution of (4. 5) is trivially obtained by

a(x) =, , +~ ——tan '—1 1 m, 1 (4. 8)
x'(1 + x') x 2 x

Equations (4. 2), (4. 5), and (4. 7) constitute the set
which determines n, X., and Vo. We can eliminate
a and Vo to obtain a single transcendental equation
for y = X/2k+ .

[qa(y) —1]/[7Ia(2y) —1]= [y —27Ib(y }]/[2y —27}b(2y)],
(4. 9)

where

graphical methods. It admits two roots, one of

which has n&1, the other n)1. We have studied

systematically only the former. Once o. , X, and Vo

have been determined for a given k& and Ko, we cal-
culated V(x) and p(x) from (4. 4} and the zero-field
limit of (3. 7).

In order to make contact with the work of Newns

and assess the accuracy of the method, we have cal-
culated V(x) and p(x) for a free-electron gas in

which r, = 2 and x, = 4. In Table I we have listed for
a given r, the values of X, a, and V(0)(dV/dx) ' and

we obtained and compared it with the Newns value.
The agreement is quite satisfactory. Before pro-
ceeding further with the comparison, we would like
to turn to an examination of the internal consistency
of our solution. It is clear that our procedure is
most accurate at small values of r, . In Figs. 1 and
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FIG. 3. Iteration potential and
charge density calculated in this paper
(solid line) compared with those ob-
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tained by Newns for y =2.
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FIG. 4. Self-consistent potential
and its iteration compared and the
charge density plotted for r, = 0. 485,
corresponding to the parameters

w relevant to InAs with m*=0. 02, a=15,
and kF-0. Ol A.
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2 we have plotted both V, (x) and V(x) for r, = 2 and
4, respectively. For the case r, = 2, V(x) and

V,„,(x) agree very well as to their general shape
and magnitude, and for r, = 4, the agreement is sat-
isfactory. In Fig. 3 we have compared V(x) and
p(x) with those values obtained by Newns. We be-
lieve this agreement to be excellent.

The two cases just considered correspond to elec-
tron gases at metallic densities. While the modifi-
cations of the screening at the surface compared
with the Thomas-Fermi result are sizable for these
cases, the modifications being greatest for large
r„ it is also true that the RPA is strictly valid only
for x, &1. We have found, however, that the case
of narrow-band degenerate semiconductors is an ex-
cellent example of a system where the effective r,

is much less than 1 and at the same time the devia-
tions from bulk screening are still substantial. For
example, the r, value of InAs with an effective mass
of 0. 02 and a dielectric constant of 15 is 0. 485 when
the doping is 2&&10, corresponding to a Fermi en-
ergy of 20 meV (see Fig. 4). For this example, the
bulk Thomas-Fermi screening distance is approxi-
mately 200 A, while we calculate that the compara-
ble distance as measured by

V(x= 0) (x=0)dV
dx

is 257 A. Note also that for this case, V,„,and
V(x) are in extremely close agreement, and we ex-
pect therefore that our results for the logarithmic
potential should be rather good.
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