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We have performed a self-consistent calculation of the energy levels of electrons bound in

the accumulation layer at the surface of a semiconductor in order to determine their depen-

dence on magnetic field. The calculation was performed by solving Poisson's and Schroding-
er's equations for the bound states and using a dielectric, i. e. , linear-response, formalism
to treat the mobile charge. Three different approaches to the dielectric response have been

compared. The first treats the dielectric function in B bulk Thomas-Fermi approximation.
The second introduces a local, but position-dependent, dielectric function to incorporate the

vanishing of the mobile electron wave function at the surface. The third approach uses a non-

local independent-particle response function for the mobile charge, again including the effect
of the surface. We find that the modification of the dielectric function by the surface has a
profound effect on the field dependence of the binding energies.

l. INTRODUCT10&

During the last few years, there have been a
number of theoretical and experimental investiga-
tions of the potential which exists near the surface
of a semiconductor subject to an external electric
field applied perpendicular to its surface. %hen
this potential is sufficiently attractive, it will sup-
port bound states —states in which the motion of
the electron perpendicular to the surface is limited
to a region close to the surface. ' In the early ex-
perimental study of these states, the field was
in such direction and of such magnitude as to
produce an inversion layer at the surface. In such
cases, the mobile charge in the bulk is physically
separated from the bound surface charge by the

energy gap of the semiconductor, as shown in Fig.
1(a). More recently, Tsuie has studied the bound
states in n-type InAs, where the field is in such
direction as to produce an accumulation layer.
Here, as shown in Fig. 1(b), the bulk mobile charge
is present all the way up to the surface of the semi-
conduc tor.

The physical situation in the two cases, inversion
layer and accumulation layer, is conceptually dif-
ferent. For the inversion layer, one assumes an
electric field at the surface of the semiconductor,
postulates a uniform fixed background charge, and
allows electronic states in the final self-consistent
potential to be occupied up to the Fermi energy.
The self-consistent potential arises, via Poisson's
equation, from the sources described above. There
is, in general, an electric field at the inner edge
of the inversion layer and this field is screened
out by the fixed charge in the depletion region. The
mobile carriers can therefore be ignored in studies
of the bound charge. For the accumulation layer,
on the other hand, the bound and mobile charges
occupy the same regions of space and enter Pois-
son's equation on an equal footing. The require-

ment of charge neutrality (the condition that the

electric field go to zero far from the surface) en-
ters directly into the determination of the surface
potential.

There have been a number of theoretical treat-
ments of the inversion-layer problem. In one of
the earliest, done by Handler and Eisenhouer for
nearly intrinsic germanium with a p-type inversion
layer, the authors remark that the degenerate
valence band of germanium contributes two types
of carriers, heavy holes and light holes. They
assume that the potential is influenced only by
background charge and the numerous heavy holes,
which they treat in a continuum approximation.
This gives them a potential which theyuse in Schro-
dinger's equation to determine the energy levels
of the light holes. The discrete states play no role
in determining the potential at the surface.

In situations where the charge associated with
the discrete states becomes large, their role in
determining the electrostatic potential must be
included. Such a calculation was done by Stern
and Howard. In that calculation they included
both the discrete-state charge density and the fixed
background charge associated with the inversion
layer. In the case they treated, the bulk P-type
charge density played no role in determining the
surface potential. This resulted from their assump-
tion that the width of the depletion layer was ex-
actly such that no field reached the region of mobile
charge. A calculation for surface bound states in
an accumulation layer was done about the same
time by Duke. Duke assumed an exponential sur-
face potential and allowed the two parameters of
the potential to be determined by the value of the
field at the surface and the decay length for the
weakest bound state in that potential. The mobile
charge here also played no role in determining the
potential.

There has been recent experimental interest in
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FIG. 1. (a) Schematic representation of the potential
in the neighborhood of a p-type semiconductor-insulator
interface for an electric field strong enough to support
one bound state at energy —Ez. (b) Schematic repre-
sentation of the potential in the neighborhood of a n-type
semiconductor-insulator interface for an electric field
strong enough to support one bound state at energy —E&.
Dashed lines represent filled states of positive energy.
The magnetic field indicated is normal to the interface.

the effect of a magnetic field on the energy of these
discrete states in accumulation layers. For this
reason, we have undertaken a self-consistent cal-
culation of. the energy of the discrete states in an
accumulation layer in the presence of a magnetic
field by solving Poisson's and Schrodinger's equa-
tions for the bound states and using a dielectric,
i.e. , linear-response, formalism to treat the
mobile charge. Because of our use of the linear-
response formalism, the calculation falls one step
short of being fully self-consistent. It does, how-
ever, represent the first attempt to include the
influence of the mobile electrons on the self-con-
sistent potential in the presence of bound states.

II. MODEL

For the purposes of this investigation, we shall
ignore such details as the distribution of fixed
charges (if present) in the insulator or at the inter-
face, the polarizability of the insulator, etc. In-
stead. we shall start the calculation with the assump-
tion that there is a given e1.ectric field at z = 0, the
semiconductor-insulator interface, and ask what
potential this gives rise to at positive z, in the
bulk of the semiconductor.

For definiteness„we shall consider an n-type
semiconductor, so that the charges which ulti-

mately shield out the electric field are the conduc-

tion electrons and the fixed uniform positive back-
ground of ionized donors. The conduction electrons
will be treated within the simplest one-band ef-
fec tive- mass formalism. Thus, the specific de-
tails of the semiconductor disappear completely,
except that the electrons are assigned an effective
mass m, and the relation between the electric field
and the charges which give rise to it is character-
ized by a dielectric constant &. Within this simple
formalism, one would characterize the interface
at z=0 as a potential step which would cause the
wave functions of the conduction electrons to de-
cay exponentially into the insulator, for z & 0. There
is reason to believe that this potential step is
about 0. 5-1 eV and therefore that the electronic
wave functions are not negligible in the insulator,
although they are small there. Nonetheless, itis
unlikely that this tailing of the electronic wave
function plays an essential role in the phenomena
we are considering. We shall, for this reason,
treat the potential step as if it were infinite, that
is, we shall impose the boundary condition that
the conduction-electron wave functions vanish at
z = 0. Thus, the specific characteristics of the
insulator are also discarded in this approach.
Finally, the last assumption needed to define our
model is that the electrons interact with each other
only via the self-consistent field —the Hartreeap-
proximation. (In the materials of interest for the

study of these magnetic effects-small-band-gap
semiconductors —the small effective mass and large
dielectric constant lead to a small r, which em-
phasizes the Hartree term in the interaction rela-
tive to exchange and correlation terms. )

In Fig. 1(b) we have sketched the potential en-
ergy which an electron experiences in an accumu-
lation layer. It is convenient to let the potential
be zero at large z, so that the potential energy at
z = 0 is negative. The Schrodinger equation for
this situation is separable. The energy associated
with the electron's motion in the z direction may
be negative, in which case we speak of it as a
bound electron or it may be positive, in which case
we speak of it as a mobile electron.

The presence of a magnetic field in the z direc-
tion quantizes the motion in the x and y directions
so that only discrete values of the transverse en-
ergy are to be used. These discrete energies add
to the already discrete energies of the bound states
so that the total energy of an electron in a bound
state, while it may be positive, is still discrete.
The electrons in the mobile states have a con-
tinuous spectrum of energies made up of the con-
tinuous energy for their z motion and the discrete
energy imposed on them by the magnetic field.
Their response to applied electric fields will ex-
hibit all of the oscillatory phenomena usually
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associated with the Landau levels of a system of
conduction electrons.

The wave functions and energies for the bound
states will be calculated using Schrodinger's,
Hartree's, and Poisson's equations. However,
the wave function for the mobile states will not be
used. Instead, the charge density which they con-
tribute will be calculated using a linear-response
formalism to be described in Sec. III.
The equations of our model are the following.

—dU 4&0,
(2. Gc)

C. Equation for Charge Density

Here & is the background dielectric constant of the
semiconductor, p, is the charge associated with
the bound states described in (2. 1)-(2.5), p is
the charge associated with the mobile charge, and

o, is the surface charge which we use to represent
the fixed value of electric field at z = 0.

A. Schrodinger's Equation for Bound States

[(p+ eA/c)2/2m + V(z)] g(r) = Eg(r)

tl(z= o)=o,
q(z=-)=0 .

(2. 1a)

(2. Ib)

(2. 1c)

The charge density associated with the bound
states may be written, for a noninteracting system,
as

p, (z)=-2z f d~ Z„Z Z, y*„„,(r)t)„„(r)

x 5(E. , ~)fr(~——p) (2 7)

mm x
+ ' y„(x)= (n+ -2)lf(u, (p„(x),2m dx

(2. 3a,)

f dx y„(x}y (x)= 5„ (2. 3b)

(u, —= eH/mc

x2-= —kk/m(u,

The total energy of the state,

E„„=(n + —,')K(o, + z

(2. 3c)

(2. 3d)

(2.4)

and the bound-state wave function X„(z) are de-
termined by the one-dimensional Schrodinger equa-
tion

A is the vector potential for a uniform magnetic
field in the z direction, namely, A= (0, Hx, 0). The
stat s g have the form

g.. .,( )r= (f,) "'e""e.(x x2) X (—z), (2. 2)

where L~ is a normalization length in the y direction,
y„(x) is the nth normalized harmonic-oscillator
wave function

Here, the factor of 2 arises because of spin. The
function fr(u& —p, ) is the probability that a state of
energy (d is occupied when the Fermi energy is p, ,
the temperature is T, and the & function is the
spectral density of states. We shall always be
working at zero temperature, where fr is the unit
step function, taking the value zero if » p and
unity otherwise. Allowing the electronic states to
have finite lifetimes, such as would be produced
by scattering, is represented by softening the ~

function 5 into a function 52 (to be defined in Sec.
III) of finite width and height.

Returning to (2. 7), we replace the sum over k

by an integral. Using periodic boundary conditions
over the normalization length L„,

2L„ /2 fmdk

replacing the k integration by an integration over
x2, using the normalization (2. 3b) of the harmonic-
oscillator wave functions, and using the expression
(2. 4) for the energy, we obtain

p, (z) = —— '
d&u ZZ X'(z)

m

h d
2 + V(z} Xm(z) = zm Xm(z), (2 5a)

2m dz
x 52 [z + (n + ~2)hu), —(u ]

X.(o) =0

X (")=0 .

(2. 5b)

(2. 5c}
where

k
' + +(z)&(p - z.) (2. Ga)

d 4m- „.U(.)=—[p,(.) p.(z)],
U(")= 0,

(2. Ga)

(2. Gh)

B. Poisson's Equation for Potential

The potential energy V(z) appearing in (2. 1) is
taken to be the energy of an electron in a potential
U(z), V(z)= —eU(z), where U is the electrostatic
potential which satisfies Poisson's equation

N(p —z )=—Z„ f 52[& + (n+ —,')li(o, —(o]d(u

(2. Gb)

The mobile charge density is, strictly speaking,
given by an expression like (2. 7) in which mobile
states replace the bound states g minus the back-
ground charge density. Instead of evaluating this
exactly we proceed as though the resultant density
can be represented as a linear respcnse to the
potential,
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K()——8wme /&ff (2. 10)

into Poisson's equation. The equations we mill
solve are, in the nem notation,

f R(, *')y(*')d 'I, (2. 11x)

y(oo) = 0

z = 0=EON,dQ
dz

(2. 11b)

(2. 11c)

p (z) = fo" R(z, z')V(z')dz' (2. 9)

where R(z, z') is a response kernel which is inde-
pendent of V. Such an approach is equivalent to
the use of first-order perturbation theory. Al-
though it is justified when the potential is small
enough, its use in this problem, where the poten-
tial is large enough to support bound states, is
undoubtedly the weakest point in our approach.
Clearly, the response kernel R will depend on the
magnetic field H. This dependence provides an

important coupling between the magnetic field and

the potential in the accumulation layer.
Before proceeding to the description of the ap-

proximation used for the response kernel, let us
introduce the dimensionless units which will be
used in the calculation.

All energies will be expressed in multiples of
8 /2m, which means that energy takes the dimen-
sion I . The scale of the problem is such that it
is convenient to use 100 A as the unit of length.
We shall use E+ to denote the Fermi energy p,
E~ to denote the magnetic energy h&„and E to
denote the z energy & in these units. The poten-
tial energy will be denoted by P(z). We express
charge densities such as p, and p as number den-
sity (units L 3), which introduces a unit of inverse
length

& 0. 5), this approximation of ignoring exchange
and correlation is a good one. The first case we
consider is the usual bulk Thomas-Fermi approxi-
mation. This has been studied by a number of
authors. ~0 We include it here for completeness
and also to present the results in the presence of
lifetime broadening. The second and third approx-
imations, which we call surface Thomas-Fermi
(STF) and nonlocal, explicitly include the influence
of the surface on the electron screening. This
problem has been discussed recently by Newns'
in the absence of a magnetic field, and without
lifetime broadening.

5p(x)o( f B(x, x') 5V(x')d x' (3.1)

If 5V(x') is slowly varying it can be taken outside
the integral sign and one obtains the local approxi-
mation

5p(x) = &V(x) f R(x, x')d'x' (3. 2)

5p(z) =- «(z)K (z) . (3.3)

If, in addition, the system is uniform, K (x) is in-
dependent of x and it can be determined by con-
sidering the limit in which 5V(x) is constant. The
induced charge density in this case is just the same
as that which would result from shift in the Fermi
energy E~ by 5V, i. e. , N(Ez)&V, where N(Er) is
the density of state at the Fermi level. From this
we get the familiar result that

K =N(Ez) (3.4)

This relation is equally valid in the presence or
absence of a magnetic field.

The energy levels of an electron in a magnetic
field are

A. Bulk Thomas-Fermi Approximation

In general, i.e. , within linear-response theory,
the induced charge density &p(x) is related to the

applied potential 5V(x' ) by

where N, is a fixed surface charge density, and

c
d2

-x, , ~ ei*)) x.(*)=x'.x.(*) .

III. LINEAR-RESPONSE FORMALISM

E„„=E„(n+-,')+kz

and consequently the density of states

N(e) = "- Z 5(& —E„, )
n, Ag

Doing the k, integration, one obtains

(3. 5)

(3 8)

In this section me will consider three separate
approximations in treating the mobile electron re-
sponse. The three approximations represent suc-
cessively more sophisticated approaches to elec-
tron screening at the surface of a metal or de-
generate semiconductor. As we shall see, they
behave qualitatively differently in a magnetic ield.
All three fall within the linear-response formalism,
ignoring exchange and correlation. Since, as we
discussed previously, r, is small (typically, r,

N(E,) =
2m2 „, k„

(3 7)

k„= [Er —E„(n+-,')]'f z, (3.8)

and the sum on n going over all n for which k„ is
real. As shown in Fig. 2, this leads to a density
of states which exhibits square-root singularities
as a function of magnetic field.

These singularities are clearly not present ex-
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FIG. 2. Density of states at the Fermi energy vs
magnetic field for a free-electron gas without lifetime
broadening. The square-root singularities as the Landau
level passes through the Fermi energy have been cut off
for clarity. Horizontal line indicates zero-field density
of states. (The energy plotted here is equal to 2 &&10 m/
I 2 times the actual energy in ergs because we have ex-
pressed energies as multiples of I2/2m and have chosen
100 A as the unit of length. The density of states is
that appropriate to these units. )

N= z E k„
ff 0

In the EQL this leads to

(3. 13)

2m 2N
0

k (x)=[x —2'~z(1+i)d]'Iz, Imk (0 . (3. 12b)

In Fig. 3 we have plotted 2vKOK, which is pro-
portional to N(EJ ) vs magnetic field for a broaden-
ing d = O. 1. Notice how the quantum oscillations in
K2 increase their amplitude as the magnetic field
is increased, until finally K becomes a monoton-

ically increasing function of E& in the extreme quan-
tum limit (i.e. , when there is only a single Lan-
dau level occupied). The latter behavior results
from the steady approach of the last Landau level
to the Fermi energy.

In the absence of broadening it is easily seen
how K2 depends on E& in the extreme quantum
limit (EQL}. The density af electrons in the sys-
tem is

perimentally, the infinite shielding they imply
would result in zero-field penetration and therefore
loss of the bound states. Including them would dis-
tort the magnetic field dependence of the bound-
states energies. We have therefore removed them
by iiitroducing lifetime broadening into the calcu-
lation of N(z). This was effected by smearing the
& function in (3.6). The usual procedure has been
to use the prescription

d m
6(z —x)-

(z —x) +d2 2 (3.9)

This proved unsatisfactory, for while it leads to a
well-behaved result for N(Er), the density of states
acquires a low-energy tail which makes it impossible
to calculate the Fermi energy EJ. as a function of
Ez from the broadened N(e). T. remove this de-
ficiency, we use instead of (3.9) the prescription

Since

we see that K increases as a quadratic function
«Ea

B. Surface Thomas-Fermi Approximation

Near the surface of the semiconductor the mobile
electron density is not uniform. The quantity K (z}
depends on z, the distance from the surface. If
we use the same reasoning as we used in Sec. II
we arrive at the result

K =N(z, Er)
where N(z, Er) is just the position-dependent den-
sity of states at the Fermi energy, defined as

0.8— THOMAS-FERMI SCREENING

The k, integration in (3.6) can then be done by con-
tours, and one finds

N(E(= ~ E Z(m( 4 )
1

k, E —E„k E —E„
where N (z) is the three-dimensional density of
states at zero field, E„=E„(n + —,'), and k, (x) are
the complex functions

k, (x)= [x+ 2 (1+i)d] ~, Imk, & 0 (3.12a)

O.e—
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I I I I I I I

0.5 0.7 0.9 1.1 1.3 1.5 1.7

EH (MAGNETIC ENERGY)

FIG. 3. Square of the Thomas-Fermi screening con-
stant multiplied by 2m (the unit of length is 100 A) plotted
vs magnetic energy. For the material constants con-
sidered in the text: 1 unit = 18. 8 meV= 32. 5 kOe.
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K'(z)= ", 5 im(I+f)
2m' .

1 - e2fk+4 1 ~-2ik s

k, k

where

(3. 21)

Z =1.0

Z =0.5

I

0.5

BN(x )X, g (3.18)

(3.17)
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FIG. 4. STF screening function times 21I/Ko plotted
vs magnetic energy Ez for several distances from the
surface of the semiconductor. (The energy plotted here
is equal to 2 & l0 m/I' times the actual energy in ergs
because we have expressed energies as multiples of
5 /2m and have chosen 100 A. as the unit of length. )

k, -=k,(Ez —E„)

This is plotted in Fig. 4 as a function of magnetic
field for various values of z. Notice that K does
not become field dependent until one has gone two
units (200 A) into the semiconductor.

C. Nonlocal Screening

If the potential V(x) varies on the scale of the
response kernel R(x, x'), removing it from the
integral in (3.1) is no longer permissible. It is
now necessary to have detailed knowledge of R(x, x').
Using the random phase approximation (RPA)~~ and
(3. i8) for the electron wave functions, one obtains

R(. ..) E g g f( n, ag) f(Enaf)-
n kpp En, k En, k
k' &O

where g, (x) is the wave function for an electron
with energy E,.

For the model we have adopted for the surface
in Sec. II, g&(x) takes the form

4&(X) = (2/L)'~zsink, z Q„(x —xo)e"", (3.18)

where P„(x) is the harmonic-oscillator wave func-
tion. After integrating over k, we obtain

K (z) = -"- Z sin k, z 8(Ez —E„—kz)
nk g

1 ~ sink„z-22 Ee (3. 18)

There are a number of interesting things to notice
about (3.19). In the small z, limit K (z) takes the
form

K'(z) = (I/2v')(Ez Z„k„)z' . (3.20)

This is independent of magnetic field, since,
from (3.13), the term in parentheses is simply
proportional to the number of electrons in the Fermi
sea. The screening charge at the surface of a
metal, within the local approximation, is conse-
quently independent of magnetic fields What is
happening here is that the total charge density is
oscillating towards and away from the surface of
the metal in just such a way as to cancel the os-
cillation in the electron density of states.

Once again we felt it necessary to introduce life-
time broadening into the problem. This was done
in precisely the same manner as in Sec. IIIA by
smearing the 6 function. In this way, one obtains

v(z)=- v, e" (3.23)

is

y ~~ 1 ~-)t' " t sinzt

Jp t +~

2kn
—e 2 2 dt . 3. 24

O )2+

Notice that p(z) at large distances consists of two
parts, one of which decays exponentially in the
same way as the potential, the other of which ex-
hibits long-range Friedel oscillations. The Frie-

x sink, z sink,'z sink, z' sink,'z', (3. 22)

where f(E) is the Fermi-Dirac distribution func-
tion.

A self-consistent solution to the screening prob-
lem would involve introducing (3. 1) into Poisson's
equation and then performing a numerical solution
to the integrodifferential equation which would
result. Considering the complexity of the kernel
in (3. 22), a direct attack on this problem seems
particularly unpromising unless considerable
analytic simplification of the expression for the
induced charge can be effected. To this end we
found'2 that an exponential parametrization of the
potential V(x) allows a rather simple expression
to be obtained for the induced charge. This canthen
be used for an iterative solution to Poisson's
equation.

In Ref. 12 we show that the charge resulting
from a potential
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del oscillations decay at large z as

max

( )
Vp E g cos2knz 2kn, (3. 25)(2k„)z+ ~'

the 1/z decay being typical of one-dimensional
systems. For small z, p(z) can be expanded in
powers of z and one finds

(3. 25)

This behaves quite differently depending on the
relative sizes of k„and X. For X small compared
to k„ the leading term is just Ezg 0„, which is ex-
actly the result we obtained in the surface Thomas-
Fermi (STF) approximation. This of course is not
surprising, for it is just this regime in which the
local approximation is valid.

In the nonlocal regime, where» k„

assumes the potential is sufficiently long range
that it couples to the average or bulk density, and

not the surface density, and hence the density only
enters once.

In Fig. 5 we have plotted p(z) vs E„for various
z. Notice the decrease in screening charge as the
magnetic field increases in the EQL. This should
be contrasted with the increase in screening in the
bulk Thomas-Fermi approximation and the field
independences of the STF approximation in this
same limit.

IV. CALCULATION

The calculation we shall describe is basically a
numerical one. As it turned out, there were sig-
nificant differences in procedure required by the
Thomas-Fermi and STF approximations on the
one hand and the nonlocal screening approximation
on the other. Let us first describe certain impor-
tant features common to both sets of calculations.

z EH~ 2
Vo

2' n

(3. 2V) A. Iteration Scheme

0.25—

0 20 — Z=1

0.15—
N

0.10—

Z =1.0

0.05—
Z= 0.5

0 I I I I I I I I

0.1 0.3 0.5 0.? 0.9 1.1 1.3 1.5 1.7

EH (MAGNETIC ENERGY)

FIG. 5. Induced mobile charge caused by a potential
of the form V=e~~ with & =1.1 plotted as a function of
magnetic energy Ez for several values of z. (The en-
ergy plotted here is equal to 2& 10 m/8' times the ac-
tual energy in ergs because we have expressed energies
as multiples of 8' /2m and have chosen 100 A. as the unit
of length. The density of states is that appropriate to
these units. )

In the EQL, the z coefficient is a rapidly decreas-
ing function of magnetic field, decreasing as 1/

This behavior comes about from the move-
ment of the electron charge away from the sur-
face in the EQL. The same movement occurred
in the STF approximation but here, in the fully
nonlocal treatment, the electron density enters
into the expression for the induced charge twice,
once because we are asking for the induced charge
in a region where the density is small, and again
because the actual perturbation strength is pro-
portional to the product of the charge density and
the potential. In the local approximation one

The basic method of handling Eqs. (2. 11) and

(2. 12) was iterative: We assumed a starting po-
tential, calculated bound-state energies and wave
functions and used these to calculate the bound
charge density. The mobile charge density was
evaluated and we were left with Poisson's equation
(or a modified Poisson's equation as we shall ex-
plain later), from which a new potential was ob-
tained by numerical integration inward from large
z. Self-consistency is achieved when the new
potential is sufficiently close to the old. As a
practical matter, we used the new potential to com-
pute new bound-state energies and stopped iterating
when each of the new energies differed from its
old counterpart by less than 1/p.

The principal decision in such a scheme is the
choice of the potential to be used in starting the
next round of iterations, as Stern has so clearly
discussed. " We chose, as input to the (n+1)th
round of iterations, a potential equal to a fraction
(1 f) of the i—nput potential to the nth round plus a
fraction f of the output potential from that nth round.
Since too small an f gives slow convergence and
too large an f gives oscillations (and often diver-
gence), we presume that keeping f at the largest
value which provides monotonic convergence will
give the fastest convergence. To this end, we had
the computer store the three most recently com-
puted values of the lowest bound-state energy. If
these showed monotonic progress, f was increased
by a factor of 1.125. If these showed oscillatory
progress, f was decreased by a factor of 0. 8. In
all cases, f was not allowed to become smaller than
0. 1 nor larger than 1.0. The method led to values
of f near 0.4 on the final iteration.
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B. Eigenvalues and Eigenfunctions

For the purpose of streamlining the calculation,
eigenvalues were calculated using the WEB method
and these eigenvalues, used in the Schrodinger
wave equation, allowed us to calculate the cor-
responding wave function by an inward integration.
The measure of accuracy of the eigenvalues is
provided by the smallness at the origin of the wave
function calculated in this way, the exact eigen-
value (no matter how it is obtained) leading to a
wave function which vanishes at the origin. We
estimate that errors due to this approximation are
less than 1/~.

C. Lifetime Broadening of Bound States

In Sec. IIIA, we discussed in connection with the
linear response of the mobile charge, the replace-
ment of the & function in the spectral density by a
broadened 6 function. It was necessary for us to
use this same procedure when we calculated the
bound charge density. Had we not done so, we
would have found that the total amount of bound
charge changes discontinuously as the energy of
one of the bound Landau levels E= E + (n+ ~«)E«

passes through the Fermi level. We used the same
broadened & function, with the same broadening
parameter, for both the bound charge and the mobile
charge.

There is a significant difference in our numerical
treatment of the two local-screening approximations
and the single nonlocal-screening approximation.
In the local-screening approximation, Eq. (2. 11)
can be rewritten as

d2 -«'(x))(( )= x,
" & x'.(*)«(«, -«.),

(4. 1a)

Q(z)- —Vo « (4. 2)

Let us stress that this replacement is not used in
the calculation of the bound-state energies. The
two parameters of the potential, Vp and &, have
to be adjusted so that the parametrized form is a
reasonable approximation to the true potential it
replaces. There are various ways in which this
can be accomplished. However, there is one
constraint which must be imposed on Vp and &, a
constraint which bears no obvious relation to the
shape of the potential but which must be satisfied
if we are to obtain a solution to (2. 11), namely,
the total amount of induced charge must be such
that the sum of the integrated mobile charge and
the integrated bound charge is just the charge
needed to give zero electric field in the bulk of the
semic onduc tor.

To see in more detail what this condition leads
to, consider (2.11a). On the right-hand side, we
replace (t)(z) by its parametrized form (4. 2), ob-
taining

, y(z)= " Z g'. (z)N(E, -E.)
nfl

—««(*, x)), (4. )l

stant, so thatbeyond that value of z, the two

homogeneous solutions behave as e" . We use
the solution which goes as e ' at large z and in-
tegrate the homogeneous equation numerically
towards smaller z.

In the case of nonlocal screening, the calculation
is completely different. The first step in the

computation of the mobile charge is to replace the
actual potential (f)(z) by its parametrized form

where

Kp EH&'(z) = — ' " &(z, z')dz'
0

e(-)=0,

(4. 1b)

(4. 1c)

(4. Id)

where E(z, X) is the function which appears in
(3. 24), namely,

&max

„p X p t2+ A2

2k„ 1 —coszt
&t 4 4

t2 g2

The potential is to be calculated by solving (4. 1).
We do this by choosing some large value of z at
which 1 (z) is negligible, setting $(z) = 0 and 4)'(z)
= 0 at this point and integrating (4. la) inward.
The potential so obtained satisfies (4. 1c) but, in
general, does not satisfy (4. 1d). However, we
have obtained in this way a particular integral of
(4. 1a) and we can always add to this any multiple
of the solution to the homogeneous equation. We
add just as much of the homogeneous solution as is
needed to satisfy boundary condition (4. 1d). To
obtain the homogeneous solution of (4. 1a), we
choose values of z large enough that K (z) is con-

Note that

0

~max

dzF(z )).)=—Z z
"

z —= Q(A) .
n=p ff +

(4. 5)

N, = E«[Z„N(E« —E„)—Vo Q()x)] (4 6)

It is this relation between Vp and ~ which must
be satisfied. Having done so, we then can inte-
grate (4. 3) inward to obtain the potential.

We integrate (4. 3) from z = 0 to z = ~, using the
boundary conditions (2. 11b)and (2. 11c)with the result
that
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FIG. 6. Binding energy of the single bound state is
plotted vs magnetic energy for the three approximations
used for the mobile charge response. (The energy
plotted here is equal to 2&&10 mI'h2 times the actual
energy in ergs because we have expressed energies as
multiples of I' ~2m and have chosen 100 A. as the unit of
length. )

This constraint leaves us free to apply only
one fitting condition which we choose to be the
requirement that the parametrized potential and
actual potential agree at z = 0.

In order to assess how sensitive our results are
to this particular scheme, we used a second param-
etrization, namely,

4(a)- [l'2(& —u)](e "-« ') (4 7)

Our main concern in this paper is to understand
the magnetic field dependence of the bound-state
energy E&. In Fig. 6 we have plotted that energy
as a function of magnetic field for the three separate
approximations already discussed. The electric
field at the surface was chosen so that only one
bound state existed in the potential well. This
simplifies our task of trying to understand the
rather complicated structure exhibited by these
curves. The parameters we used for this calcu-
lation are E~ = 1.06, Ko = V. 30, N, = 0. 33, and a
broadening parameter d = 0.1.

The magnetic field influences E~ through two
separate mechanisms. The first is through the

in which there are three parameters. We must
still satisfy the constraint which is equivalent to
(4. 5) but now we have two free parameters left.
These were set by requiring the true potential
and the parametrized form to have the same value
and slope at z= 0. While this improved param-
etrization of the potential resulted in a closer fit
to the actual potential, the shapes of the curves of the
binding energies E vs magnetic field, our primary
concern here, were essentially unaffected.

V. RESULTS AND DISCUSSION
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FIG. 7. Plotted here is the total charge contained in
a, bound state with binding energy- —E~, in a system with
Fermi energy Ez and magnetic energy Ez. The dashed
curve depicts this information in the absence of lifetime
broadening. Notice the precipitous drop in bound charge
each time a Landau level passes through the Fermi
energy. The solid curve was calculated assuming that
the lifetime broadening parameter (see text) is 0.1.

modification of the mobile electron screening, as
has been discussed somewhat in Sec. III. The
second is through the introduction of magneto-os-
cillations of the bound charge density caused by
change in the number of filled bound-state Landau
levels. The shape of the bound charge density,
unlike the shape of mobile charge density, is not
directly influenced by the magnetic field.

Let us start our analysis with the bulk Thomas-
Fermi approximation. The curve exhibits strong
magneto-oscillation above EH = 0. 3. Near EH = 0. 68
and for EH & 1.3 the potential no longer supports a
bound state. Some of the structure in the curve is
clearly identified as arising from the oscillations
in K . For example, let us focus on the dip in E~
near EH = 0. 68. An examination of the screening
function K shows that there is a large increase in
K (caused by the second Landau level going through
the Fermi surface) in precisely this vicinity. This
leads to a shorter-ranged potential, and for a fixed
electric field at the surface, a shallower potential,
which decrease the binding energy. For this par-
ticular dip it turns out that the variation of the
bound charge density plays no role. To see this in
more detail, consider the amount of charge in a
bound state. In Fig. 7 we have plotted [using Eq.
(2. Sb)] the total charge (solid line) in a bound state
with energy —Ea versus magnetic field. (The
dashed line represents the same information for
no broadening. ) An examination of Fig. 7 reveals
that near EH=0. 68, and E~=O, the charge density
in the bound state is almost exactly equal to its
zero-field value. Change of bound charge there-
fore plays no role in producing this dip. The strong
decrease in binding energy above E„=1.0 is due to
a simultaneous increase in K and an increase in
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FIG. 8. Bound-state energy —Ez plotted vs magnetic
energy E~ for the nonlocal approximation in the low-field
regime. Notice the rapid oscillation caused solely by
the passage of the unbroadened bulk Landau levels through
the Fermi surface. Introducing reasonable lifetime
broadening (& =0.1), would completely surpress these
oscillations. (The energy plotted here is equal to
2 ~10 m/8 times the actual energy in ergs because we
have expressed energies as multiples of I'2/2m and have
chosen 100 A. as the unit of length. )

the bound-state charge density as a function of
magnetic field. The two prominent peaks in the
curve at E& = 0. 52 and 1.0 are due to a decrease
in E in those neighborhoods as well as decreases
in the bound charge. These two effects do not
happen to occur at exactly the same field values.
This accounts both for the skewed shape of the peak
at 0. 52 and the shift of both peaks to slightly higher
field values than those at which E is most reduced.
The remaining structure in the curve at low fields
is similarly explained.

%e turn now to the STF screening approximation.
The first thing to notice is that —Ea lies above
that for the bulk approximation. This is easily
understood from the fact that the screening in the
STF approximation is considerably poorer, in the
vicinity of the surface, than in the bulk approxi-
mation because of the requirement in STF that the
mobile charge density vanish at the surface. This
results in a deeper and wider potential. In under-
standing the magnetic field dependence of the STF
curve it is important to notice that mobile elec-
tron screening contributes very little structure.
As we discussed in Sec. IIIB, the screening at the
surface is only a weak function of magnetic field.
Recall that motion of the mobile electron density
is such that it just cancels any change in the density
of states. This can be seen clearly in Fig. 4 where
E (z) is plotted versus magnetic field for different
values of z. Beyond z= 2, the potential is suf-
ficiently weak so that the behavior of E has no
significant influence. The peaks and dips in E~ are
produced solely by the oscillation in bound charge

density. For example, the peak at 1.15 is due to
a dip in Ns at Ez/(Ez —Ez )='0. 76 (see Fig. 7).
Similarly, the dip at EH = 0.86 is due to the peak in

Ns at Ez(E~ —Es) = 0. 59 and so for the remaining
structure.

Finally, consider the nonlocal approximation.
Because of the already complex numerical situation,
we have neglected broadening in the calculation of
the mobile charge response although the bound

charge is broadened just as before.
Let us consider first the low-field regime. In

Fig. 8 we have plotted the bound-state energy vs
magnetic field for low fields. The points represent
the value for which E~ was calculated, the lines
connecting the points are just for guiding the reader s
eye and do not represent the actual continuous curve
of EJ3 vs E&. The rapid oscillations exhibited by
this curve are caused by the motion of the un-
broadened mobile charge Landau levels through
the Fermi surface. This structure was suppressed
by broadening in the previous approximations.
Notice that the average value of this curve lies
somewhat above that of the STF approximation.
This is to be expected since there is effectively
less screening charge near the surface in the non-
local screening approximation than there is in the
local screening approximation. For higher field
values (See Fig. 6) the curve exhibits two peaks
in the same regions where they occur in the STF
approximation. As before, this is caused by the
bound-state charge oscillations. The major dif-
ference between the nonlocal and STF approxi-
mations occurs at high field values, where the
nonlocal E& does not decrease with field as it does
for the STF and bulk Thomas-Fermi approximations.
This is because of the decrease in mobile electron
screening which occurs in the extreme quantum
regime for the nonlocal approximation. This
counteracts the increase in screening due to the
bound charge density, leaving the curve of E& vs
EH a weak function of magnetic field.

Let us discuss now the limitations of the model
calculation just presented and the modifications
we would expect from an improved treatment. Ne
will focus our attention here on the two surface
approximations, STF and nonlocal, since it is clear
that the bulk Thomas-Fermi is inadequate for
treating screening at the surface.

Probably the most unjustifiable approximation
we have made is using a linear-response formalism
for calculating the mobile charge. The potential
is considerably larger than the Fermi energy and
therefore the usual justification for linear-response
theory is totally lacking. The potential is in fact
so strong that it supports bound states. The bound
state already contains a significant fraction of the
charge needed to completely screen the electric
field. The response of the mobile electrons is
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only large enough to supply the remaining fraction.
This feature is correctly included in our calcula-
tions. What has been left out of our calculation is
a further exclusion of mobile charge from the
surface region which is brought about by the re-
quirement that the mobile electrons be orthogonal
to the bound states. The major change we would

expect from a nonlinear treatment of screening is
an increase in bound-state energies due to this
further exclusion of mobile charge.

There are a number of limitations inherent in
the model itself. The first of these is our assump-
tion of an infinite potential step at the edge of the

semiconductor. This will have two effects. The
penetration of electron charge density into the in-
sulating barrier will reduce the depth of the po-
tential well in the semiconductor. On the other
hand, the bound states in a given potential will
move downwards as the height of the step is re-
duced. The net motion of the bound-state energies
due to these two effects is difficult to assess but
we see no mechanism by which this should inQuence
the magnetic field dependence of the bound states.

Tsui's measurements of the field dependence of
the binding energy in n-type InAs show a definite
increase of the binding energy at low magnetic
field and small Fermi energy. In some of the units
Tsui studied, this increase was of the order of

50 meV from 0 to 30kOe.
In an attempt to make a comparison with Tsui's

work, we chose input material constants which
correspond to those of InAs at a doping level of
2&& 10'~ atoms/cms. (This corresponds to a Fermi
level of 20 meV. ) In the experimental units re-
ferred to above, the electric field at the surface
of the semiconductor was sufficiently strong that
two bound states, one at 200 meV and the other at
50 meV, were observed.

We have performed calculations using the STF
approximation and electric fields large enough to
support bound states at approximately these en-
ergies. We found nothing in those calculations
that differed substantially from what we have pre-
sented here; in particular the binding energies show
no increase at low magnetic fields. We do not ex-
pect that removing any of the deficiencies in the
treatment of the model will remedy this disagree-
ment.
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