4 TWO-PHOTON EXCITATION OF ELECTRONS IN SOLIDS

site directions at the point of contact.

As pointed out in Sec. 1V, the energy difference
between the threshold for two-photon transition and
for TPPAT is equal to u€;/b. u and b are equal to
the absolute values of the gradients of €;,(K) and
€5( K), respectively, near the point of contact of the
surfaces Fy,, F, and F, Since in this case a is
very small, €;is, in most cases, known either from
ir or Raman measurements. Thus, measurement
of the transition-rate spectrum may yield the ratio
u/b which can be directly compared to theoretical
band-structure calculations.

The actual determination of the transition rate of
electrons to band 3 is, of course, a lot more diffi-
cult than the measurement of the parametric beam.
However, in cases where band 3 does not have points
in common with band 2, it can be carried out in the
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following way:

Electrons which have been excited to band 3 will
cascade to a local minimum in this band. From
here they will make transition to the almost empty
conduction band—band 2. Provided that radiative
transitions are allowed by symmetry at this point,
the transition will be predominantly radiative. The
photon energy of the fluorescent light is equal to the
energy gap between bands 2 and 3 at the local mini-
mum energy point in band 3. Thus, measurement
of the intensity of the fluorescent light at the appro-
priate wavelength as a function of Zw, will yield the
desired spectrum.
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The method of lattice statics has been applied to determine the strain-field displacements
about single octahedral and tetrahedral carbon interstitials in @-iron as well as the strain-

field interaction energies between pairs of octahedral interstitials.

A comparison of the

exact lattice-statics displacements to the corresponding results of an asymptotic lattice-statics
calculation indicates that elasticity theory is not valid closer than 254 from the octahedral
interstitial in either the [100] or [011] direction in the lattice, where a is half of a cubic unit-

cell side.

The lattice-statics displacements have also been compared to analogous results ob-

tained from a direct-space calculation, and some differences between the two sets of results are

apparent.

Relaxation energies have been calculated for the two types of carbon interstitial,
and the octahedral configuration is found to be the more stable of the two.

Assuming the tetra-

hedral configuration to be the saddle point for interstitial migration, the migration energy is

found to be 0.27 eV.

I. INTRODUCTION

Since the advent of the high-speed digital com-
puter, it has become possible to perform theoretical
calculations to determine the properties of crystal
lattices containing point defects. In particular,
given a reasonably reliable expression for the in-
teratomic potential between the atoms of the lattice,
one can obtain numerical results for the energy
change, volume change, and atomic displacements
associated with the creation or migration of va-

cancies or host-atom-type interstitials within the
lattice.

The most common approach to this type of prob-
lem is to treat the defect as though it were sur-
rounded by a small crystallite of host atoms, each
of which is permitted to move as a discrete particle
and allowed to interact by means of pairwise inter-
atomic potentials. The remainder of the crystal is
treated as an elastic continuum. The displacements
of the discrete atoms surrounding the defect are
found by minimizing the energy in the crystallite
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with the constraint that the displacements of the
atoms on the boundary between the crystallite and
the elastic continuum must be equal to the corre-
sponding displacements predicted by elasticity the-
ory. A number of workers have used this “semi-
discrete” approach to investigate the properties
of vacancies and interstitials in metallic lattices.!~®

In a number of recent papers Flocken and Hardy®"’
and Flocken® have applied a different approach to
this type of defect calculation. This technique,
which is referred to as the method of lattice statics
is based on Fourier transforming the direct-space
equilibrium equations of the lattice to reciprocal
space. The resulting set of equations are decoupled
and can be solved for the Fourier amplitudes of
the direct-space displacements by a straightforward
matrix inversion. This procedure allows all of
the atoms of the host lattice to relax as individual
particles and therefore does not rely in any way
on the theory of continuum elasticity. Rather, if
one evaluates the equations of lattice statics in the
long-wavelength limit, the equations for the discrete
lattice are found to transform smoothly and natural-
ly to the equations of elasticity theory. Hence, by
comparing the displacements obtained from the ex-
act theory with the corresponding results of the
asymptotic theory, it is possible to determine the
distance from the defect at which elasticity theory
becomes valid.

In a recent series of calculations®~® the method
of lattice statics has been applied to determine the
properties of vacancies in the alkali metals and
in a-iron, as well as the properties of interstitial
Cu atoms in Cu. In each case a comparison of the
results of the exact lattice-statics calculations to
those of the asymptotic theory indicates that elas-
ticity theory cannot justifiably be applied as close
to the defect as it has been in previous semidiscrete
calculations. The result poses a rather serious
question as to the future usefulness of semidiscrete
techniques in the study of point-defect problems.

The first application of Green’s-function tech-
niques (such as the method of lattice statics) to
carbon interstitials in a-iron was the work of
Krivoglaz and Tikhonova,® who determined the
strain-field displacements in the vicinity of octahe-
dral carbon interstitials in @-iron in order to in-
vestigate the diffuse scattering of x rays induced
by such defects. Numerous other authors have ap-
plied such techniques to determine the formation
energies, ' interaction energies, !! and most re-
cently, the elastic free energy!? of iron crystals
containing carbon impurities. In all of these cal-
culations the iron-iron and carbon-iron interactions
are derived in terms of the elastic constants of the
host lattice and of carbon-iron alloys.

An investigation of carbon interstitials in a-iron
using a direct-space approach has been carried out
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by Johnson and Damask!® and by Johnson, Dienes,
and Damask'* in which the host-host interaction

was described by an explicit interatomic potential
developed by Johnson.® The host-defect interaction
was expressed in the form of a cubic equation whose
parameters were obtained from experimental de-
terminations of certain defect properties associated
with carbon interstitials in @-iron.

The purpose of the present paper is to perform
a lattice-statics calculation for carbon interstitials
in a-iron using the same potentials used by John-
son et al.'* The results of the present calculation
will therefore be directly comparable to those ob-
tained by the direct-space approach.

Both the octahedral and tetrahedral orientations
of the carbon interstitial will be treated, but since
the octahedral configuration appears to be the stable
one, the bulk of the calculations deal with that case.

The lattice-statics techniques applied in the pres-
ent paper differ from those of Refs. 6-8 in another
important respect in that the wave-vector sums in-
volved in the Fourier transformations are accom-
plished by a Gaussian quadrature technique first
applied by Boyer and Hardy, !° rather than by use
of a regular array of allowed wave vectors in re-
ciprocal space. This technique results, not only
in a significant savings in computer time, but also
has the effect of removing the supercell boundaries
to infinity so that one is treating a truly isolated
defect. The results of the asymptotic lattice-statics
calculation (in the long-wavelength limit) are there-
fore not influenced by “defects” in nearby super-
cells as in previous calculations.

Section II contains a brief discussion of the lat-
tice-statics formalism used in the present calcula-
tions as well as a discussion of the interatomic po-
tentials used. The details of the computer calcula-
tions, the strain-field displacements, and strain-
field interaction energies obtained as a result of the
present calculation will be discussed in Sec. III.

In Sec. IV a comparison is made between the dis-
placements obtained using exact lattice statics and
those obtained from the asymptotic theory and also
with the direct-space results of Johnson et al. *
Section V is a summary of the conclusions drawn
from this investigation.

II. THEORETICAL APPROACH

The lattice-statics technique has been described
in detail elsewhere, ® and the present discussion
will be confined to a brief outline of the method and
a statement of the equations used in the calcula-
tions.

In the lattice-statics approach, the host lattice—
assumed to be infinite—is divided into a number of
equivalent volumes called supercells, each of which
contains a defect at the center surrounded by N host
atoms. The supercell boundaries are taken to be
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L3, + L3,+ L3; where L3=N and 3&,, &,, @; are the
basic vectors of the host lattice. The crystal can
therefore be considered to be a “superlattice” of
defects having the same unit-cell structure as the
host lattice. By applying periodic boundary condi-
tions across opposite faces of the supercell, one
can determine the displacement of any atom in the
lattice simply by determining the displacements

of each of the atoms in a single supercell.

The defect itself is considered to be at the origin
of coordinates, and the position of the Ith host
atom from the defect is denoted by ¥'+ ¢! where T
is the position vector of the /th atom in the perfect
lattice and E‘ is its displacement in the relaxed lat-
tice. It is most convenient, in a cubic lattice, to
use the (100) directions in the crystal as the axes
of a Cartesian coordinate system.

The method of lattice statics consists of trans-
forming the direct-space equations of the form

FL=§ZB:(‘1>1 UB' 55' ¢Y)
to a set of equivalent equations of the form

Fi=2,v5¢} @)
by means of the Fourier transformation

P=/MI; @, ®

In this set of equations, F' is the force exerted
by the defect on the Ith atom in the lattice, ®,(»)
is the host-host interaction potential, and V4is
essentially the dynamical matrix of the host lattice.
The subscripts @ and S8 refer to components along
the Cartesian axes and range from 1 through 3.
The Q¢ are the Fourier amplitudes of the direct-
space displacements, and the sum in Eq. (3) is over
the N allowed wave vectors in the first Brillouin
zone of the superlattice.

The reciprocal-space equilibrium equations con-
sist of a set of N 3 X3 matrix equations, each of
which is a function of the components of only one
of the Fourier amplitudes Q%. The Fourier ampli-
tudes can therefore be found by a straightforward
matrix inversion, and the direct-space displace-
ments can be obtained by performing the back trans-
formation indicated in Eq. (3).

It is often convenient to use the lattice-statics
technique to calculate quantities other than the di-
rect-space displacements in such a way that all
computations are performed in reciprocal space.
In particular, the equation for the strain-field in-
teraction energy between pairs of defects given by

E=Q1/NZ:FITH1Fcos(3-R), @)

where R is the interdefect separation vector, will
be used to determine the strain-field interaction
between pairs of carbon interstitials in the octahe-
dral configuration,
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In applying the lattice-statics formalism to im-
purities in @-iron, the direct interaction between
pairs of iron atoms was represented by the inter-
atomic potential developed by Johnson. 5 This po-
tential is composed of smoothly joined sections of
three cubic equations in such a way that the poten-
tial vanishes midway between the second- and third-
nearest-neighbor positions and provides a good
match to the radiation-damage potential of Erginsoy
et al.'® at short interaction ranges. The entire
potential is given by

®,(r)=2.195976 (» - 3.097910)°
+2.7040607 - 7.436448 eV
for 1.9 A<r<2.40 A s
&;(r)= - 0. 639 230 ( — 3.115 829)°

+0.4778717 - 1.581570 eV

for 2.40<»<3.00 A, (5)
&;(#)=-1.115035(r — 3. 066 403)*

+0.466 8927 —1.547967 eV

for 3.00<7<3.44 A .

Since both the first- and second-nearest-neighbor
positions in the perfect lattice lie in range 2.40
<7r<3.00 A, the force constants used in the dynam-
ical matrix, V& can be obtained from the middle
section of the a-iron potential, and the other two
sections play no part in the calculation.

The carbon-iron interaction potential was devel-
oped by Johnson ef al.!* and is given by

®c(r)=—3.365(2.236 - )%+ 0.8867—2.156 eV
(6)

where 7 is in Angstroms. The parameters of this
cubic equation were determined by matching to ex-
perimental values for the migration energy and the
activation volume of carbon impurities in @-iron
and to the binding energy between a carbon atom
and a vacancy in @-iron.

A carbon interstitial in a-iron, which has a bce
symmetry, can assume two possible configurations:
an octahedral or “O” configuration at the face cen-
ter of a body-centered cube, and a tetrahedral or
“T” configuration in which the carbon defect is
translated 3a in a (100) direction from the octahe-
dral site, where a is half of a cubic unit-cell side
in the a-iron lattice. These two configurations are
shown in Figs. 1(a) and 1(b), respectively. Evi-
dence seems fairly conclusive'* that the T configu-
ration is the saddle-point configuration for the de-
fect migration. For this reason, more extensive
calculations have been done for the O configuration
than for the T configuration.
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FIG. 1. Two carbon interstitial configurations in a-
iron showing the Cartesian coordinate systems adopted
for the numerical calculations. (a) shows the octahedral
configuration in the unrelaxed lattice, and (b) shows the
tetrahedral configuration in the unrelaxed lattice.

In the octahedral configuration the carbon inter-
stitial reacts with two atoms at a distance a in the
unrelaxed lattice and with four iron atoms at a dis-
tance 2a away. The form of the force array, ¥9,
for an octahedral interstitial defect in a bcc lattice
is given in Eq. (16) of Ref. (9) and will not be re-
peated here, although all of the equations involved
in the present work were derived separately in the
formalism presented above. Hence, M is ex-
pressed in terms of direct-space forces F; and F,
exerted by the defect on its nearest and next-nearest
neighbors rather than in terms of elastic param-
eters.

The initial phase of the calculation involves ob-
taining numerical values of F, and F, by simulta-
neously solving the set of equations of the form

gifF1cxlm“Lcmxlm (7)

for /=1 and 2 and obtaining a second set by differ-
entiating Eq. (6) with respect to &:

F;=10.095(0. 806 — £')>- 0.886 eV/A ,

(8)
F,=10.095(0. 214 - £%)2 - 0.886 eV /A .

The constants C}, and C};, can be thought of as ele-
ments of a “response” matrix and are obtained by
a process described in some of our previous cal-
culations. 8"

Once F; and F, are obtained from Eqgs. (7) and
(8) by numerical methods, the force array ¥ for
the defect is defined, and Eq. (2) can be used to
find the exact Fourier amplitudes Q‘f for the imper-
fect lattice. Equations (3) and (4) can then be used
to find the direct-space displacement for any atom
in the lattice and the strain-field interaction energy
for any desired pair of defects.

The calculation of the strain-field displacements
and interaction energies for the tetrahedral configu-
ration proceeds in the same manner as outlined
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above, except that the tetrahedral interstitial in-
teracts directly with only its first-nearest neigh-
bors. The form of the force array for the tetrahe-
dral configuration is given by Eq. (4) of Ref. 10.
The force T exerted by the defect on its nearest
neighbor is again found by simultaneous solution of an
equation involving the elements of a response ma-
trix and another obtained by differentiation of Eq.
(6) with respect to displacement z. However, in
order to avoid assuming that the nearest neighbors
relax radially (which effectively was assumed for
the octahedral configuration), it is necessary to
solve for the x and y components of displacement
E and obtain the magnitude of the separation vector
r from the equation

r= [(70x+ gx)a"‘ (70y+ Ey)a]l/z ) (9)

where 7, is the position vector of the nearest-neigh-
bor atom in the perfect lattice. Once T is deter-
mined, the force array ¥ associated with the de-
fect can be specified exactly and the Fourier am-
plitudes and direct-space quantities can be found.

The derivation of the equations used in obtaining
values of the strain-field displacements in the
asymptotic limit as § —~0 has been discussed in de-
tail in a previous paper!” for cubic defects and
double-force defects. In the present work, asymp-
totic displacements were calculated for the octa-
hedral carbon interstitial, which does not exhibit
either of these symmetries exactly, hence, a more
general set of equations than those derived in Ref.
17 must be obtained. From Ref. 9 it can be seen
that the first-order approximation of ¥4 for the
octahedral interstitial in the limit as § -0 has the
form

Clkl
F&o<| Cup,

Csky

s (10)

where C;=-2iF;, C,=Cy= — 2V2iF,, and k.= q,0.
Using the approach outlined in Ref. 17, one arrives
at an expression for Q%°? of the form

QY *=[Coko(ER* + FR k?+ HRyR?)
+ Caky (MEPRG? + NEg?k,%)

+ Cyko (ME*R2 + NB2RD)]/P(K) ,  (11)

where @, B, and y again range from 1 through 3,
but a#8#y. We have

P(K) = DI® + BR* (ko ki + ks2k,? + k,2R 2) + Ak 2Rk 2

(12)

and the constants A, B, D, E, F, H, M, and N are
the functions of the three independent elastic con-

stants of the host lattice given by Eq. (10) and Eq.
(20) of Ref. 17. The asymptotic direct-space dis-
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TABLE 1. Displacement results for octahedral carbon interstitials in a-iron.
1E142
+indicates outward
Displacement components of neighbors relaxation
Neighbor around an interstitial (units of 2q) —indicates inward

(Ly, Ly, Ly £y I I relaxation
1,0, 0 0.099192 0.0 0.0 +0.099192
0,1, 1 0.0 —0.020847 —0.020847 —0.058964
1,2,0 0.007096 - 0.005233 0.0 +0.044086
2,1,1 0.018127 0.007699 0.007699 +0.126874
1, 2,2 ~0.002184 ~0.005766 —0.005766 —0.075974
3,0,0 0.016945 0.0 0.0 +0.152500
0,3,1 0.0 - 0.005918 —0.003696 —0.069771
3,2,0 0.008143 0.002481 0.0 +0.1106R3
2,3,1 0.002808 - 0. 000964 0.000253 —0.041736
1,4, 0 0.000946 —0.002749 0.0 —0.049426
3,2,2 0.006444 0. 003092 0.003092 +0.132393
4,1,1 0.007394 0.001862 0.001862 +0.141281
0, 3,3 0.0 —0.003146 —0.003146 - 0.080086
1, 4,2 —0.000393 —0.002747 -0.001978 -0.071561
2,3,3 —0.000616 —0.001955 - 0.001955 - 0.062270
50,0 0.005297 0.0 0.0 +0.132428
3,4,0 0.002050 —0.000295 0.0 +0.051782
0,51 0.0 —0.002218 —0.000940 - 0.062648
4,3,1 0.004021 0.001496 0. 000684 +0,112957
3,4,2 0.001424 - 0.000219 0.000254 +0.042438
52,0 0.004406 0.001333 0.0 +0.133493
2,5, 1 0.000585 —0.001341 —0.000258 —0.044550

placements are found by evaluating the expression

g'=[iv/@n®] [ [ [ Q¥ sin(§-Fdg,

FBZ

13)

where v is the volume of a unit cell in the iron lat-
tice and FBZ stands for the first Brillouin zone.
The actual evaluation of Eq. (13) is accomplished
by a complicated numerical integration procedure,
also discussed in Ref. 17.

III. NUMERICAL CALCULATIONS AND RESULTS

The method of lattice statics has been applied to
determine the strain-field displacements for 22 non-
equivalent neighboring iron atoms in the vicinity
of an octahedral carbon interstitial and for 20 such
neighbors near a tetrahedral carbon interstitial.
The results of these calculations are shown in
Tables I and II, respectively. Equation (4) was used
to evaluate the strain-field interaction energies
between 20 nonequivalent pairs of octahedral carbon
interstitials in @-iron and the results of this cal-
culation appear in Table III.

The approach to the numerical computations in
the present investigation differs from that of pre-
vious lattice-statics calculations®-® in two important
respects: First, in previous calculations in which
the defect had cubic symmetry, it was possible to

shorten considerably the computer calculations by
making use of the fact that the Cartesian compo-
nents of the Fourier amplitudes Q¢ exhibited the
same symmetry as the components of the wave vec-
tor § itself. Hence, a cyclic permutation of the
components of q resulted in an identical permutation
of the @% components. In the calculations presented
here this was no longer true. The elements of Al
and ¥ had to be permuted separately whenever the
g, were permuted; Q% was then obtained from the
equation

Q= (P17

However, since the host lattice had cubic sym-
metry, it was still possible to generate all of the
allowed wave vectors § in the FBZ of the supercell
from the wave vectors contained in % th of the
FBZ.

A second modification to the lattice-statics ap-
proach used here involves the manner in which the
wave-vector sums in Egs. (3) and (4) were per-
formed. In previous calculations these sums were
evaluated using a regular array of allowed wave
vectors within the FBZ of the supercell. The larger
the size of the supercell, the more nearly the de-
fect can be considered as being “isolated,” and in
practice it is generally necessary to consider

(14)
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TABLE II. Displacement results for tetrahedral carbon interstitials in a-iron.
1E142
+indicates outward
Displacement components of neighbors relaxation

Neighbor around an interstitial (units of 2a) — indicates inward
(Ly, Ly, Ly) 13 & &3 relaxation
1, 30 0. 049356 0.015774 0.0 +0.064769
0,31 0.0 —0.011910 —0.004437 —0.041308
1, 4,2 0. 006289 0. 002658 0. 004533 +0. 043029
1, %0 0.002234 - 0.002320 0.0 +0.023350
2,31 0.009948 0. 006101 0. 006443 +0. 096646
3,40 0. 005978 0.000348 0.0 +0.055390
0,33 —0.000796 —0.001037 0.000848 —0.015067
1, 3,2 0.0 —0.002058 —0.000704 —0.026822
3, % 2 0.003580 0.000046 0.002608 +0. 058696
0, '%', 1 0.0 —0.003087 —0.000861 —0.042467
2,33 0.002712 0.001636 0. 002512 +0.061647
3,30 0.003673 0.001643 0.0 +0.061367
1,3, 4 0.001217 0. 000536 0.001894 +0.039926
2,21 0.001107 —0.000378 0. 000565 +0. 022407
3,32 0.003659 0. 002404 0.002765 +0.099678
4, 3,1 0.002868 0.000939 0.001189 +0.062435
1, %, 4 0.000086 - 0.000173 0. 000589 +0.014412
2, ;—, 3 —0.000049 — 0. 000369 0. 000229 +0.011034
5 % 0 0.001441 0. 000006 0.0 +0.036392
4, % 3 0.002038 0. 000553 0.001616 +0.072451

supercells containing at least 64 000 atoms in order

to obtain reliable displacements for atoms within
Supercells con-

a radius of ~5a from the defect.

taining 512 000 atoms have been used in investigat-

ing the asymptotic properties of the direct-space

displacements, but the increase of computer time
with increasing supercell size makes it prohibitive

to use larger supercells.

[[]r@da=z [ [ [ fl@)d’q. (16)
FBZ [}
Hence, Eq. (4) becomes
r/a
E'=§zv(:lr)s / f Qi ag . (7)

-r/a

Recently, Boyer and Hardy'® have used a new
approach in evaluating wave-vector sums, which
is equivalent to extending the supercell walls to in-
finity and transforming the wave-vector sum to an

integral
v -
(2”)3 '/-.// dq 3

1
=3~
FBZ

N7
where v is atomic volume. As Boyer points out,
this integral can be more easily evaluated as an in-
tegral over the cube C, which inscribes the more
complicated FBZ since

15)

The numerical evaluation of the integral in this ex-
pression was performed by a Gaussian quadrature
technique, which is discussed in detail by Boyer. !®
Briefly, the Gaussian quadrature method is equi-
valent to representing the integral in Eq. (17) as
a polynomial function in the variables p,=gq, a/7.
Such an integral can be evaluated numerically by
a summation of the form
'El _v "f P o= =1
16,7, Qo sin(P-T)A; (b)) A;(p;) A(py) ,
(18)

where the p;, p,, and p, are the roots of the
Legendre polynomial of order m and the A4;, Ay, and
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TABLE III. Strain-field interaction energies for
octahedral carbon interstitials in a-iron.
Interaction energy (eV)

Neighbor between interstitials

(Ly, Ly Ly) at (0, 0, 0) and (Ly, Ly, Ly)

(1, 1, 0) 0.000281

1, 1,1) —0.113536

2, 0, 0) 0.438958

0, 2, 0) —0.075626

(1,2,1) 0.000051

2, 2, 0) —0.005368

0, 2, 2) 0. 022726

2, 2, 2) —0.045519

3,1, 0 —0.000216

(1, 3, 0) - 0.000002

3,2,1) —0.000028

1,2, 3) —0.000008

3,3,0 0.000032

3, 3,2 0. 000039

4, 0, 0) 0.062078

0, 4, 0) —0.010336

(1,4,1) 0.000035

4, 2, 0) 0.019869

@2, 4, 0 —0.005914

4, 2, 2) 0.013211

A, are weight factors. The roots and weight fac-
tors for various orders of Legendre polynomials
ranging from m=2 to m =96 have been tabulated
in Ref. 18.

The displacement results obtained from the
Gaussian quadrature technique do not exhibit the
supercell effect since there are no surrounding de-
fects in the lattice. However, the accuracy of
numerical results improves with the order m of the
polynomial representation of the integrand in Eq.
(17). The summations which must be performed
in the Gaussian quadrature approach converge much
more rapidly than the corresponding wave-vector
sums evaluated using a regular array of wave vec-
tors associated with a finite supercell. Hence, it
is generally necessary to use only a polynomial of
order m =20 to obtain direct-space displacements
comparable to those obtained using a supercell con-
taining 64 000 host atoms. The results presented
in Tables I-III were obtained using a polynomial
representation of order 20. Polynomials of order
40 were used to investigate the asymptotic behavior
of atoms surrounding an ocathedral carbon defect
along the [100] direction in the lattice.

The exact lattice-statics calculations were per-
formed on the IBM 360/65 at the University of
Nebraska at Lincoln, and smaller supporting pro-
grams were performed on the NCR 315 at the Uni-
verisity of Nebraska at Omaha.

In addition to the atomic displacements and in-
teraction energies, it is of interest to calculate the
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relaxation energy Ej associated with a defect.

The relaxation energy, defined as the difference
between the energy of the imperfect crystal before
and after relaxation, can be expressed, to a sec-
ond-order approximation, as

En=lz ‘ELFHO’ 19)
20:,!

where the superscript zero indicates that the forces
are to be evaluated in the unrelaxed positions. The
relaxation energies for the tetrahedral and octahe-
dral configurations are shown in Table IV.

IV. DISCUSSION

In applying the method of lattice statics to deter-
mine the properties of interstitial carbon atoms in
a-iron we have purposely adopted the host-host
and defect-host interactions used by Johnson et al.*
in order that the atomic displacements obtained by
the method of lattice statics would be directly com-
parable to those obtained from a semidiscrete ap-
proach. A comparison between the atomic-dis-
placement results of Ref. 14 and the corresponding
lattice-statics values for 14 iron atoms near an
octahedral carbon interstitial and 10 iron atoms in
the vicinity of a tetrahedral interstitial is given
in Table V. The semidiscrete results were obtained
by considering the 530 host atoms to move as in-
dividual particles and treating the remainder of the
crystal as an isotropic elastic continuum. It is
apparent that the semidiscrete displacements in the
octahedral case are consistantly higher than the
corresponding lattice-statics results. While there
is no definite trend in the tetrahedral case for one
set of displacements to be higher or lower than the
other, there are certainly noticeable discrepancies
between the two sets of results. Also, except for
atoms which lie along the high symmetry axes of
the crystal, there is no tendency for the Cartesian
components of displacement from one set of results
to be proportional to the corresponding components
in the other set.

It is difficult to make an analytic comparison of
the lattice-statics technique to the semidiscrete
approach since the defects considered in this case
do not exhibit cubic symmetry. In the case of the
octahedral interstitial, for example, the defect
essentially exerts a direct force only along the
[100] direction in the lattice, and the corresponding

TABLE IV. Relaxation energies for carbon
interstitials in a-iron.

Relaxation energy (eV)

Symmetry Present work
Octahedral —1.68
Tetrahedral —0.94
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TABLE V. Comparison of the atomic displacements obtained in the present calculations to those of Ref. 14 (units ofa).

Octahedral carbon interstitial

&1 & £3

Neighbor Present Present Present

(Ly, Ly, Ly Ref. 14 calc Ref. 14 calc Ref. 14 calc
1,0, 0 0.225 0.198 0.0 0.0 0.0 0.0
0,1,1 0.0 0.0 - 0.042 - 0. 042 —0.042 — 0. 042
1,0, 2 0.017 0.014 0.0 0.0 -0.014 —0.011
2,1,1 0. 045 0. 036 0. 025 0.015 0. 025 0.015
3,0,0 0. 046 0. 034 0.0 0.0 0.0 0.0
1, 2,2 - 0.004 - 0.004 -0.01 —-0.012 -0.01 —0.012
0,1,3 0.0 0.0 - 0.008 —0.007 -0.012 —0.012
3,0,2 0.018 0.016 0.0 0.0 0. 007 0. 005
2,1,3 0. 005 0. 006 0.001 0.0005 0.0 - 0.002
1,0, 4 0.002 0.002 0.0 0.0 —0.005 —0.005
3,2,2 0.015 0.013 0.01 0.006 0.01 0. 006
4,1,1 0.016 0.015 0.006 0.016 0. 006 0.016
0, 3,3 0.0 0.0 - 0.005 — 0. 006 —0.005 —0.006
1, 2,4 —0.001 —0.0008 —0.003 - 0.004 - 0.004 —0.005

Tetrahedral carbon interstitial
&1 ) £3

Neighbor Present Present Present

(Ly, Ly, Ly Ref. 14 cale Ref. 14 calc Ref. 14 calc
0,% 1 0.0 0.0 0. 029 0. 032 0.116 0.099
1,3 0 -0.017 —0.008 —0.041 —0.024 0.0 0.0
2,31 0.011 0. 009 0.006 0. 005 0.015 0.012
0,351 0.0 0.0 —0.008 - 0.005 0.004 0. 004
1, 3,2 0.015 0.013 0.013 0.012 0.023 0. 020
0, % 3 0.0 0.0 0.0 0.0007 0.018 0.012
3,30 0. 001 0. 002 —0.003 - 0.002 .0 0.0
2,51 —0.004 —-0.001 - 0.007 —0.004 —-0.004 —0.002
1, Z—, 0 - 0.003 —0.002 —0.008 - 0.006 0.0 0.0
2,3, 3 0. 006 0. 005 0.0 0.0 0.008 0. 007

contraction of the lattice in the vicinity of the (011)
plane is primarily due to the host-host interaction.
It would seem that assuming a portion of the crystal
to act as an isotropic medium might have a rather
strong influence on the nature of the displacement
results obtained in this case.

In general, as we have pointed out before®!”
there appear to be two possible sources of discre-
pancy between the results obtained from a semi-
discrete calculation. The first is that the lattice-
statics results are exact only within the harmonic
approximation, i.e., in the expansion of the lattice
energy only terms out to the second order in the
expansion are retained. It should be stressed,
however, that the defect-host interaction has been
used exactly throughout the present calculation and
only the host-host interaction has been treated in
the harmonic approximation. The largest relative

displacement between any two host atoms in the
vicinity of an octahedral carbon interstitial occurs
between the atoms at (1,0, 0) and (3, 0,0) and amounts
to approximately 8% of the perfect-lattice separa-
tion between the two. The direct interaction energy
between these two atoms calculated using the exact
potential ¢, varies from that obtained from the
harmonic expansion of ®, by only a few tenths of

a percent. It does not seem, therefore, that an-
harmonic effects should contribute greatly to the
discrepancies noted between the lattice-statics and
semidiscrete results.

A second source of discrepancy arises from the
approximation made in semidiscrete calculations
that elasticity theory is valid beyond some arbi-
tarily chosen distance from the defect. If this
“cutting radius” is too small, the effect will be
equivalent to imposing a nonphysical constraint on
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the motion of the atoms in the discrete region.

Since the equations of lattice statics in the limit
as q— 0 are identical to those of elasticity theory,
it is possible to determine the distance from the
defect at which elasticity theory becomes valid by
comparing the results of the exact lattice-statics
calculation for atoms far from the defect to the
corresponding results obtained from the asymptotic
lattice statics. .

In an elastic continuum the value of [£]72 will be
a constant for any given direction in the medium.
Hence, the values of IZ172 obtained from exact lat-
tice statics for atoms along a given crystallographic
direction will approach a constant limit as one con-
siders atoms sufficiently far away from the defect.
Exact lattice-statics results have been obtained for
|1 72 for atoms lying along the [100] and [011] di-
rections relative to an octahedral carbon interstitial
oriented as shown in Fig. 1(a). Atoms as far away
as (37,0,0) were considered in the first case and
as far as (0,37, 37) in the second. The Gaussian
quadrature technique was used to evaluate the lat-
tice-statics equations, using a polynomial of m =40
to represent the integral in Eq. (17). A plot of
1172 as a function of » along the [100] direction is
shown in Fig, 2. It is apparent that the asymptotic
limit is not attained within the distance shown on the
plot. It is quite obvious that the elastic regime has
not been approached at a distance of 8a from the
defect, which is the cutting radius assumed by
Johnson et al, **

Figure 3 shows the variation of |£|7»2 as a func-
tion of V27 along the [011] direction in the lattice.
The 1£]|72 curve crosses the asymptotic limit in
this case at a distance of about 40a from the defect,
and one can only assume that it oscillates about
the limit before settling down at some greater dis-
tance from the defect. In any case, it is again ap-
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parent that elasticity theory is certainly not valid
within a radius of 8a from the defect.

Johnson et al.'* calculated the strain-field inter-
action energies between pairs of octahedral carbon
atoms and found binding energies of 0.13, 0.11,
and 0.108 eV for the [111], [020], and [210] inter-
stitial pairs. These values compare favorably with
the values shown in Table III for the [111] and [020]
orientations. The interaction energy for the [210]
case was not calculated. Binding energies greater
than 0.01 eV were also found for the [222] and [040]
interstitial pairs. As one would expect, the [200]
and [400] interstitial pairs show large repulsive
interaction energies. The values shown in Table
III represent only the strain-field interaction ener-
gies; since the direct carbon-carbon interaction
has not been specified, the total interaction energy
between these carbon interstitials can not be found.

Although no relaxation energies as such are
quoted in Ref. 10, if one assumes that the tetrahe-
dral configuration is the saddle point for the migra-
tion of carbon interstitials, the lattice-statics re-
sults yield a value of 0. 27 eV for the migration
energy. This isconsiderably different from the ex-
perimental value of 0.86 eV used by Johnson et al.!*
in determining the parameters of the carbon-iron
interaction. The migration energy depends upon
the relaxation energies of the tetrahedral and octa-
hedral configurations as well as the energy re-
quired for direct defect-host bond formation in the
unrelaxed lattice. The latter quantity is the same
in both the direct-space and lattice-statics calcula-
tions. The relaxation energies, on the other hand,
are calculated in different ways in the two ap-
proaches. Equation (19) for the relaxation energy
is admittedly an approximation, but has been
checked against the work of others’ and found to give
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reasonably good numerical results. It is interest-
ing to note that if one used the displacements of
Ref. 14 in Eq. (19) of this paper, one obtains a
migration energy of 0.36 eV, rather than 0.86 eV
as claimed in Ref. 14. However, if one neglects
the energy due to direct bonds and merely takes the
difference between the relaxation energies using
the direct-space displacements, one obtains a value
of 0.83 eV, which is in very good agreement with
the experimental value of migration energy.

V. SUMMARY

The method of lattice statics has been extended
to treat point defects which do not exhibit cubic
symmetry. The resulting equations have been ap-
plied to determine the strain-field displacements
about isolated octahedral and tetrahedral inter-
stitials in a-iron as well as strain-field interaction
energies between pairs of octahedral carbon inter-
stitials. The strain-field displacements have been
utilized to calculate the relaxation energies as-
sociated with the tetrahedral interstitial.

The atomic displacements obtained by means of
exact lattice statics were compared to the corre-
sponding results obtained from a semidiscrete cal-
culation'* using identical interatomic potentials.
While the over-all agreement between the two sets
of results is rather good, discrepancies do exist
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due to certain approximations made in the two dif-
ferent approaches. A comparison of the exact lat-
tice-statics results with those of the asymptotic
theory indicates that the discrepancies which do ex-
ist arise primarily from the choice of cutting radius
used in the semidiscrete calculations.

The discrepancies observed in the present case
are not as large as those found in earlier investiga-
tions, 6~ and the lattice-statics results agree quite
well with the direct-space results for experimental-
ly observable quantities such as the strain-field
interaction energies and the migration energy. In
addition, the qualitative results of the lattice-statics
calculation agree quite well with those presented in
Ref. 14. It is apparent, for example, that the oc-
tahedral carbon interstitial is much more stable
than the tetrahedral interstitial, and the directions
in which various atoms relax in the vicinity of the
defect are the same in both cases. It is only the
actual numerical results which differ somewhat as
a result of the approximations used in the two ap-
proaches. However, the lattice-statics results are
exact within the limits of the harmonic approxima-
tion which, in the present case, appears to be valid.
The successful application of lattice-statics theory
to noncubic defects should provide the groundwork
for the extension of this very powerful technique
to multiple defects and the calculation of atomic
relaxations near crystal surfaces.
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