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cancies is negligible both in the solid and in the

liquid state.
The calculations were made explicitly for

sodium. In order to obtain a simple and accurate
value for other metals at low temperatures, with-

out the problem of detailed knowledge of the solid-
phase structure factor, one can use Eq. (A2).
This has been done for solid sodium at 40 K and

we find negligible error induced by using (A2)
instead of (Al). Calculations for solid copper and

solid silver at 40 'K using Eq. (A2) suggest a, sim-
ilar conclusion to that found for Na, namely, that
the effect of vacancies is negligible. One may thus
conclude that equilibrium concentrations of vacancies
present in pure metals have no significant effect
on the conduction- electron-spin-relaxation rate.
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Pseudopotential Approach for Dilute Alloys. I. Nontransition and Non-Noble Hosts

X. A. da Silva, A. A. Gomes, and J. 13anon
Centro Brasileiro de Pesquisas Eisicas, Rio de Janeiro, Brazil

{Received 16 November 1970)

The electronic structure of nontransition and non-noble-metal-based alloys including charge
and node effects are discussed within a pseudopotential scheme. An equivalent scattering equa-
tion for the pseudo-wave-function is obtained in terms of a nonlocal effective impurity poten-
tial. Orthogonality requirements with respect to the alloy core states are automatically ful-
filled and the effective potential is shown to contain contributions from node and charge effects,
whereas the scattering equation is free-electron-like. Finally the several contributions to
the charge-density variations are discussed.

I. INTRODUCTION

The impurity problem in metals involves, as is
well known, two different aspects. First, one
needs a precise description of the electronic struc-
ture of the host through a theoretical band calcula-
tion. Second, the self-consistent solution of the
scattering problem defined by the host-metal Ham-
iltonian and the impurity potential must be obtained
in terms of the parameters characterizing the im-
purity atoms. These parameters are essentially
the charge difference between host and impurity
atoms, and the row of the Periodic Table to which
the impurity atoms belong. The latter manifests

itself through the additional closed shells intro-
duced (or removed) locally in the host by the im-
purity. The above-mentioned aspects are, in gen-
eral, quite difficult to handle, although the main
difficulty lies in the second one through the defini-
tion of the impurity potential and its self-consis-
tent determination. Two limiting situations have
been extensively discussed in the literature'. the
free-electron-like host and the tight-binding (transi-
tion-metal) host. In the first case, accurate solu-
tions of the scattering problem using model poten-
tials (such as the square well) show considerable
success in describing situations where the impor-
tant parameter associated with the impurities is the
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charge difference. On the other hand, when im-
purity and host belong to the same column of the
Periodic Table, this picture gives quite inaccurate
results~; this may be ascribed to the existence of
new closed shells introduced (or removed) by the

impurity potential. Transition-metal alloys have
been successfully described within the tight-binding
3pproximation, using a phenomenological impurity
potential which is determined self-consistently,
but again only the cases where the charge difference
effects are assumed to play the dominant role
have been considered in detail.

However, several experimental results, in partic-
ular isomer-shift data, 4 suggest that quite system-
atic behavior can be observed in alloys where host
and impurity belong to the same column of the
Periodic Table. This "node effect" requires
special care in defining the impurity problem in
order to take into account the existence of these
new closed shells. Several attempts have been
made to formulate the alloy problem in such a way
that these effects are included naturally. It seems
to us that the pseudoatom approach of Ziman is
the simplest one which takes into account the de-
tails of the host and impurity atoms. However,
the pseudoatom approach for alloys ignores to a
certain extent the details of the scattering mechan-
isms, being then not directly applicable to local
properties such as the |somer shift.

In the last few years, pseudopotential theory has
been shown to be a very powerful tool to discuss
metallic systems, and in particular it has been
extended to include noble and transition metals.
It is the central point of the pseudopotential ap-
proach to include explicitly the inner-shell states
(through a self-consistent atomiclike calculation),
the orthogonality requirement between conduction
and inner-shell states being automatically satisfied.
Since the node effect involves these closed-shell
states in an essential way, it seems natural to start
from the pseudopotential picture to describe the
changes in electronic structure due to alloying.

It is the purpose of this paper to discuss the im-
purity problem within a pseudopotential scheme
for non-noble nontransition hosts, the case of noble
and transition metals being discussed in a forth-
coming paper. We adopt the following philosophy:
First we introduce the scattering problem for the
"true" wave functions, in terms of a self-consis-
tent "true" impurity potential which must be deter-
mined at the end of the calculation. The next step,
and this is the essence of the approach, is to obtain
an equivalent scattering equation for a suitably de-
fined pseudo-wave-function. This equation is ob-
tained by defining a scattering pseudo-wave-function
in such a way that the "true" scattering wave func-
tion is automatically orthogonal to the imPure-
metal inner-shell states, and requiring that when

the impurity potential is removed, the ' true' wave
functions reduce to their pure-metal limit. In this
equivalent-equation approach, it turns out that a
nonlocal effective potential replaces the otherwise
local self -consistent impurity potential. When
solutions of this equivalent equation are obtained,
the sen-consistency problem is solved through the
calculation of the change in electron density ob-
tained from the connection between pseudo- and
"true"-wave-functions.

II. FORMULATION OF THE PROBLEM

A. Pure Metal (Main Results of the Pseudopotential Approach)

In order to introduce the notation and the ideas
underlying the pseudopotential method, we begin
by summarizing the main results for the pure-metal
case. Let V(r) be pure-crystal self-consistent one-
electron potential, assumed to be known; the one-
electron states (inner and conduction) satisfy, re-
spectively,

(la.)

(lb)

the inner-shell states I n) being orthogonal to the
conduction states Ig~). The pseudo-wave-functions
are defined by

(2)

so the orthogonality requirement is automatically
satisfied. By substituting (2) in (lb), one verifies
that the pseudo-wave-function I P~& satisfies

(3)

Once the solutions of (3) are obtained, by substitut-
ing into (2) one gets the conduction states !pl& to the
desired degree of accuracy. One should note that
equatiors (la) and (3) involve a, self-consistency
problem in the sense that the energies E and the
wave functions I n) are not known a Priori Usual-.
ly, one starts from free-ion results for I n) and
introduces corrections until self-consistency is
achieved.

B. Definition of the Impurity Problem

An impurity entering substitutionally in an other-
wise perfect normal metal introduces in the above
formulation two essential modifications: (i) There
appears in Eq. (lb) a self-consistent impurity one-
electron potential U(r) which should be determined
through a Friedel-type sum rule involving scatter-
ing states (ii) The. scattering conduction states
should be orthogonal to the alloy core states.

Since these modifications define our procedure in
obtaining the equivalent equation we shall discuss
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them in some detail. We begin by specifying the
nature of the alloy core states, introducing the
following notation for them:

I o& = IR (4)

In expression (4), R„ is the position vector of the
Xth atom, the set (l, m, n] being the usual quantum
numbers specifying atomilike functions. If the
impurity is introduced at the origin (R, =0), we sepa-
rate the alloy core states into two groups.

(a, ) At the impurity site, one may have in the in-
volved I n&, quantum numbers (I, m, n f that do not
appear in the pure metal. This is the case when
the impurity and host belong to different rows of
the Periodic Table, since the potential is then suf-
ficiently attractive (or repulsive) to introduce (or
remove) some new closed-shell states. However,
if impurity and host belong to the same row, one
has at R~=0 the same angular quantum numbers,
but probably different radial parts.

(b) For R„&0 one has the same angular quantum
numbers as in the host, but the radial part is prob-
ably modified. Finally, one expects that for large

l R„l, inner states are not affected too much by the
impurity disturbances, so I a&:— I n&. It remains
to discuss the nature of the scattering conduction
states and the self-consistent impurity potential.
The one-electron Hamiltonian for the alloy being
given by

3C= T+ V+ U, (5a)

we define the scattering states I g,'& as the outgoing
solutions of the Schrodinger equation

(T+ v+ U) I ki& = E~ I li& . (5b)

Besides the outgoing requirement, the states
Ig;& must also satisfy

&olg-„'& =o for aU states lo& . (5c)

From the solutions of Eq. (5b) and using the pure-
metal wave functions (lb), one calculates the
change in electronic density as given by

~p(r) = ~ I. I & r i(i& I'-1(ritz& I'],
&ace

(8)

which, within a Hartree picture, using Poisson s
theorem, defines the self-consistent impurity po-
tential U(r) through the equation

q'U(q) = 4v[Z + ap(q)] . (?)
In Eq. (?), U(q) and hp(q) are the Fourier trans-
forms of V(r) and hp(r) and Z is the charge differ-
ence between impurity and host. Then, formally
Eqs. (Sb), (5c), and (?) define completely the im-
purity potential.

C. Definition of the Mixing Potential

The above formulation of the scattering states

V(X ) = V+ 6 V(X ) . (sb)

The dependence on X (the position of the atom in the
lattice) indicates that different solutions are ex-
pected at the impurity and next neighbors. Now we
proceed to define 5 V(X), considering first the im-
purity site. Let V,"' be the ionic potential (as ob-
tained from standard atomic calculations) corre-
sponding to the fl, m, n] level of the impurity atom.
We define the potential V of Eqs. (Ba) and (Bb) as

v(o) = v', -+ v, , (Bc)

where V~ is a purely conduction-electron contribu-
tion to the total potential. This electronic contri-
bution is calculated by adding to the host-metal
contribution V —V„'" a correction due to impurity
scattering effects, namely, V„„„which is calu-
lated from the change in electronic density Lp(r)
through V V„~„=4mbp(r). Equation (Bc) can then
be written as

(9a)

Comparing with equation (Bb), one gets for R„=O,

5v(0)= v', -- v„'"+v„., (9b)

For R„& 0 one just replaces in (Bc) V',."by V&'"
which gives for 6V(X)

5v(~)= v„..., . (9c)

In conclusion Eqs. (9b) and (9c), together with
(Ba.) and (Bb), define completely the solutions I n&,
E- in this approximation. It should be emphasized
that the self-consistency problem involved in pure-
metal calculations still exists here through the
determination of V„~„. Using these formulas it
is possible now to calculate (T+ V) I n& through the
following steps of Eqs. 10.

(a) Define the expectation value of T + V by E .

E;=(~IT+ v lo& =(ol T+ vl ~& -& o lsvl o&

=z.--&nlsvlo&; (IOa)

(b) define the mixing potential a(X) by

~(&)
I ~& = 5 v(~)

I o& - ( o
I
5 v(~) I o& I o& (Iob)

involves the inner-shell states l o. & through the
orthogonality condition (5c), so one needs the alloy
counterpart of Eq. (la) in order to complete the
formulation. More specifically, inner-shell states
enter in the problem through the orthogonality re-
quirement and through the calculation of (T+ V) l a&
that will be needed below in order to obtain the
equivalent scattering equation for the pseudo-wave-
functions. We start by defining the states I go as the
solutions of an "atomiclike" Schrodinger equation

(T+ v) I ~& =E-.
I ~&, (sa)

the potential V being defined by
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(c) Now one calculates

(T + V) I
o') = (T + V}

I
o'& —5 v(& } I

n &

=E-I o& —5V(~) In& .
Using (10b) and (10a) one finally gets

(T+ V) I
o.&

= E la. ) -—n(x}
I

o& .

and defining the effective nonlocal impurity potential
U by

U'= U(1-~;I o&& ~l)

(Z. E. I
n& & &

I

-~E.- I ~& & o
I }

This formula will play an essenatial role in the de-
termination of the equivalent equation. It is inter-
esting to note that the diagonal matrix elements of
6(&) vanish identically, as can be seen from (10b).

one gets

++~;n(~)I~)&~l, (14d)

(15a)

D. Definition of the Pseudo-Wave-Functions and Equivalent
Equation

We define the scattering pseudo-wave-functions
by

(12a)

I g-',
& being the "true" scattering wave function de-

fined in (5b). It should be emphasized that the
orthogonality condition (5c) is automatically satis-
fied in (12a) since

(~'ls-',
& =(~'le-',

& -Z;& ~ IQ&5—=0. (12b)

The next step is to obtain the scattering equation
for I Pj&; to do that one substitutes (12a) in (5b) to
get

(T+ V) I pi& -&. (T+ V) I
&& & o I43&

=E;lel& -~.-E;I ~) & ~lel& (»)
Using expression (11), the left-hand side of (13) can
be written

+Z.-n( )I ~&& ~ly-„&

+U(1-~;l~&&~l}ly3&. (14a)

By adding and subtra, cting P E Io.&( o IPj&, la&
being the pure-metal inner-shell state, one gets

(T v-~;IE. I~&&~l}le & (&.E. I~&&ol

-&.E;I~&&~l)l@l& ~=n( )l~&&~l@i&

(14»
Similarly, the right-hand side of (13) can be

transformed to give

E-.
I el& -~.E;I o) ( ~

I @3&+(E;L.I ~) ( ol

—EfZ; IQ)(o. l)lip)-„'& . (14c)

Equating (14b) and (14c), introducing the host-metal
pseudo-Hamiltonian

x', = T+ v+E. (E-„-E„)lo.& & nI,

This is the equivalent equation for the scattered
pseudo-wave-function, which is the alloy counter-
part of the pure-metal pseudo-Schrodinger-equa-
tion (3). lt remains however to incorporate the
condition

as U-0 and lo'&- ln&, (»b)

where I pf& is the solution of Fq. (3} and the out-
going behavior of the scattered wave functions.
These two conditions are fulfilled if instead of
(15a) one writes

(16}

Equation (16) is the Lippman-Schwinger equation
for pseudo-wave-functions. At this point it is
worthwhile to rewrite (16) in coordinate space and
to introduce the transition amplitudes. Following
Harrison it will be assumed that the pure-metal
inner states I u& are accurate enough to a.liow the
representation of I gg& by a single plane wave.
Although not essential, this assumption simplifies
the following calculations. Multiplying Eq. (16)
by Ir), defining the effective potential in coordinate
space as U (r„r,) =(r, I U I r3&, and remembering
that plane waves form a complete set (gl lt)(t I

= 1),
one obtains

i t ~ (1- Pg)
+ ilr. ~ P dt e4f(r) =e' '

+ dr~dr3
(

32v) E"„—Eq+ s c

&&U (r, , r ) Q„-(r ) . (17)

The transition amplitude is defined in the usual
way

f(k', k) =(- 1/4v) f f dr, dr3e '"'

x U'(r„r, ) yj(r3) . (16)

In terms of the transition amplitudes, the scattered
pseudo-wave- functions read

~+(q;f. t. 4
dt f(t, k)e" '

(2v)' E;—El +ie

showing that these transition amplitudes specify
completely the scattered function. It remains to
obtain the integral equation from which one calcu-
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lates the amplitudes f (k, k). To do that it is use-
ful to define the T matrix, whose matrix elements
between plane-wave states give directly the transi-
tion amplitudes. The T matrix is defined as

(20)

From this definition, and comparing with (18), the
connection between (k IT I k& and f(k, k) turns out
to be

T(k', k) =&k'ITlk&=&k IU'I4i&

= jf dr~drm&k'I r~&V (r~, rz)gj(r z)

= —4'(k, k) . (21)

The integral equation for the T-matrix elements is
easily derived from the Lippman-Schwinger equation
(16). Applying the operator U to (16) one has

&k'I U'I y';& =(k'I U'Ik&

+&k IU'(E;-I~~o+ie) 'U'I@'-.& (22)

Using the definition (20} and gf It) (t I =1, and de-
fining U (k, k }= & k I U I k &, one obtains

T(k, k ) = U (k, k )

From (26} it is clear that

Iim)I)j(r) = e"' —Z, &nik&(I), (r)

as U-o, in) —in)

which is the true wave function for the pure metal.

E. Change in Electronic Density and Self-Consistency Problem

The solution of the scattering problem defined by

Eq. (23) involves the self-consistent impurity po-
tential U. As we have discussed above [cf. Eqs.
(6) and (7)], for a given charge difference Z, the
potential U is defined through Eq. (7} self-consis-
tently in terms of the U dependence of the charge-
density variation defined in (6). Now we obtain an

explicit expression for ~(r), starting from the
solution (26) of the scattering problem, which de-
pends explicitly on U only through the transition
probabilities f(k, k ). This calculation (cf. Appendix
A for details) shows that the change in electronic
density is the sum of these terms:

m(r) = Z, apg(r) = m"'"(r)+ap" (r)
OCC

+ Z~" ''"'"(r), (27)

.) Ik& 4
dt f(t k}It&

(2v)' E-„-E;+ ie

Substituting (24) into definition (12a) one gets

(24)

iy';&= ik&-Z& nik& In&-4.
e ((

4 p
i

—
)

dt f(t k)(nit&
( )

(2v) E„—EI +ie-
Finally, introducing the notation (I)-(r) = &r I n) for
the alloy inner-shell states, one gets

0'- (r }= e'" ' - & & n
I
k & P. (r)-

+ 3U k, t-- . Tt k . 23
E~ —Et+ ze

These equations must be solved either for model
potentials (giving exact solutions) or numerically
for the effective potential defined in (14d). In Ap-
pendix B, Eq. (23) is solved exactly for a model
potential.

When solutions of (23) are available, one obtains
through the definition (12a) the "true" scattering
wave functions. The formal expression for I Pj& is
more easily obtained by transforming (19) back to
the ket notation

where these contributions are defined as follows.
First we have

ap"'"(r) =2Re 2 e '1'' 2 (I),(r)(nik)
"OCC

—Zy-(r)&nik& + Z Z (I);(r}g*-.
R }t Opted

&&(r)&nik&&kin'&

(.(F)(;( )& ic)&&l ')) .
f2 ~ O

One notes that in the contribution hp"'"(r) the
scattering amplitudes are absent and only inner-
shell differences are present. This can be then
interpreted as the "orthogonalization charge" and

gives a measure of the effect of the orthogonality
condition in introducing (or removing} new closed
shells. This effect is expected to be small when

impurity and host belong to the same row of the
Periodic Table.

Second we define

Lp'""(r) = Z, (-2Re[e '" ' 'F(k, r)]+ IF(k, r)
OCC

where

—4~
dt f(t, k) e'

3(2))) Ef - EI +ie

d't f(k 't)e
(2v)' Ef —E;+ie (29)

( )
dt f(t k)(nit)

( )
&g (2"7) Ej E$+je—This "free- electron" contribution corresponds

formally to the change in electronic density pro-
duced by the scattering of free electrons by a poten-
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tial which is defined through the transition ampli-
tudes f(k, k }.

Finally, there remain the "interference terms"

np"'"' ""(r) which describe how orthogonality re-
quirements affect the scattered free-electron waves.
These terms are given by

ke"""'"(e)=2Re 7 Tk-(E)e' '( (E(k)) +2Re Z 7&k( )2 ( )E(k, F))
kocc & occ

—2Re L Zk(E)E(k, )& ~E(k)) —2Re Z Z &2
~

) ke( ) II; (2)& '(~E(k)))
jf occ O ~ occ

~ T- 7 2;(F)2';(2)& (E(k)) &E(k)
(

')) .
"occ ~ ~ 6

(6O)

The self-consistency problem is solved through Eqs.
(6) and ( I}.

Iu. DISCUSSION

The equivalent problem described by Eqs. (14d)
and (16) provides a very clear picture of node and

charge effects. As was discussed in the Introduc-
tion, the usual description of non-noble non-transi-
tion-metal-based alloys corresponds to solving the
scattering problem defined by a free- electron gas
and a potential mell, whose depth is adjusted by the
Friedel sum rule. In the picture developed here
one still has a "free-electron-like" scattering equa-
tion, but band effects are incorporated in the effec-
tive potential U defined by (14b) and in the energy
E~. It is also possible to separate the contributions
from the node effects and the pure charge effects,
as will be discussed now. The effective impurity
potential (14d) contains two different terms, which
are nonlocal, and correspond to the following.

(i) The mixing potential

&.—&(&)
I
o & & a I+ ( &.E.I

o & & a
I

zero, and the existence of new closed shells pro-
duces a nonvanishing value of the mixing potential.
If this mere the only contribution to U, this would

displace a net charge Z different from zero, thus

violating the charge neutrality requirement. The
role of U(1 —g„- I o. & &al) is then to compensate these
charges, and corresponds to a rearrangement of

the electron gas to compensate the orthogonalization
hole. Then for the Z = G case, the potential
U(1 —g- l n& &nl) has the meaning of a reaction po-
tential.

For the general case, U contains both the charge
and reaction components.

APPENDIX A: CALCULATION OF THE CHANGE IN
ELECTRONIC DENSITY

In this Appendix we evaluate Ao(r), expression
(6), explicitly for P-„(r) and (C)'-„(r) given, respec-
tively, by expressions (2) and (26). The pure-metal
electronic density associated to wave vector k is
given by

describes hom the orthogonalization requirement
affects the nature of the conduction states. In fact,
when acting on plane waves, this potential couples
to the spherical harmonics corresponding to the
nem core states introduced by the impurity. One
may therefore have enhanced P- or d-wave scatter-
ing according to the existence of new p or d closed
shells. It should be noted that when impurity and

host lie in the same row of the Periodic Table
(charge effects dominant) these terms may be ne-
glected since E =E„and I a & = t a &. -

(ii) The "charge" and reaction potential
U(1 —g- I o. & & a I) is just the self-consistent impurity
potential U reduced by the factor (1 —g- I o& &el },
the reduction being introduced by the orthogonaliza-
tion. The meaning of "reaction" potential can be
understood by considering the case of impurity and
host belonging to the same column of the Periodic
Table. In this situation the charge difference Z is

x[e'"'-j .q. (r)&oil&],

(A 1)

Ng o(

The alloy electronic density is then calculated from

—4m
dt f (t, k)e"'

3(27() E"„-E;+ ie

dt f (t, k)&o. l t)
(2v} E-„-E;+ ie3

From (A2) one sees that three types of terms oc-
cur. First one has terms involving only orthogo-
nality effects through the inner-shell functions
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For such a class of potentials, the T-matrix equa-
tion reads

T(k', k}= Q r A„vr (k') vr (k) + Q r Ar vr(k )

dt v„*(t)T(t,k)
( 4)

(2v) E-„—EI+ ie

Introduce the auxiliary notation

f dt' vz", (k')T(k', k)
(2v)' Er E-p+ ie

(2 v) EI —Er. + ie

vP, (k')vr(k') dk'
E-„—E;,+ ie (2 v)' ' (85)

d t vP(t) T(t, k)
(2v) E-„—E,+ ie

which gives for (84}

(85a)
which can be written as

xr (k) = Br (k)+Q Arr~(k)xr (k),
where

(87a)

T(k, k)=+r Arvr(k )vr(k)+Qr Arvr(k )xr(k) ~

(85b)
-) dk' vr, (k')vr(k')

(2v) Er —Ep+ ie
(8'Ib)

From (85b) it is possible to derive a system of
linear equations determining the x„(k}. Multiplying

(85b) by vr (k')/(E-„—Ep+ ie) and summing over
W] 1
k one gets

B,(k) =Q v*(k)A, (k) . (8 fc)

Equations (87) and (85b) provide the exact solutions
for the T ma, trix.
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Harrison's pseudopotential approach for noble and transition metals is generalized to discuss
the corresponding alloys. In the noble-metal-based alloys, d-band effects are shown to be in-

cluded in an effective nonlocal potential, the scattering equation for the pseudo-wave-function
still being free-electron-like. In transition-metal alloys, s-d mixing and s-s corrections are
introduced in a perturbative scheme, to the pure d-d scattering problem described in the tight-

binding approximation. In both cases the contributions from host-metal-induced and impurity-
induced s-d mixing are clearly separated.

I. INTRODUCTION

In a previous paper' (referred to as I} the case
of non-noble-, non-transition-metal alloys was
discussed within a pseudopotential approach, paying
special attention to node effects. In that case the
electronic structure of the host was characterized
by a broad conduction band a,nd a set of atomiclike
narrow bands derived from inner-shell states
(Fig. I). The node effects discussed there involved
essentially orthogonalization effects introduced by
the extra atomic states associated with the impurity
(cf. Fig. I).

The main difference between noble, transition,
and normal metals lies in the existence of a d band
(filled in the case of noble metals and partially
filled for the transition metals) in the neighborhood
of the Fermi level (cf. Figs. 2 and 5).

These d states introduce further difficulties in the
discussion of the alloy electronic structures even
in the absence of node effects, so in this work we
restrict ourselves to the simplest case of dominant
charge effects. The pseudopotent al theory for
noble- and transition-metal hosts has been recent-
ly discussed by Harrison, and the main point of
the approach is to realize that tight-binding sums


