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&g+(27'at) for T& 0,

upon introducing impurities into a two-band super-
conductor. It is the interband impurity scattering
which causes the decrease of the s-band specific
heat at low temperatures. The change in &, due
to impurity scattering in this temperature region
is clearly indicated in Fig. 1. The tunneling ex-
periments by Hafstrom and MacVicar5 further
support the conclusion that there is only one tran-
sition temperature associated with an impure two-
band superconductor.

Finally, we remark that it is found experimen-
tally that the transition temperature of niobium,

T„ is not sensitive to the amount of impurities
present. This can be partly explained by the fact
that the lowering of the transition temperature due
to the presence of impurity scattering as shown by
Eq. (21) is proportional to (2v&,), which is pro-
portional to the small s-band density of states at
the Fermi surface, N, (0) T. hus, the illustration
of the lowering of the transition temperature T,
from T~' due to the presence of impurities in Fig.
1 should be regarded as qualitative. Further, in
the present investigation, we have not taken into
account the possible contribution of phonon scat-
tering which might be important for niobium with

a transition temperature of the order of 10 'K.
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The usual Heisenberg Hamiltonian with bilinear exchange —2J S~
'

S2 has been extended to
include a biquadratic term —2&J(S&' S2), with an adjustable parameter &. A method equiva-
lent to constant coupling was employed to calculate the effect of the'biquadratic exchange
term on the Curie temperature, magnetization, susceptibility, specific heat, and entropy for
lattices with spin-1 atoms. As 0' goes from 0 to 1, the Curie temperature falls by a factor
2 to 3, while the asymptotic Curie temperature is reduced by the factor 2. The magnetization
rises much more rapidly belo~ T~, and the specific heat has a peak and discontinuity several
times higher for & =1. The curvature of the inverse susceptibility increases with n, as does
the entropy change taking place above T~.

I. INTRODUCTION

We will consider the Hamiltonian

3C=-2Z[S) ~ Sg+ a(Sg S3) ] —pH(Sgg+ Sag), (1)

where J is the Heisenberg exchange integral be-
tween neighboring spins S~ and S&, with magnetic
moments gS, parallel to an effective (applied plus
internal) field H.

For a = 0, this is the same as the two-particle
Eiamiltonian of the form employed by Kasteleijn
and van Kranendonk' in the constant-coupling ap-
proach. For a = 1, it is the same as that used by
Allan and Betts to investigate the effect of biqua-

dratic exchange on the Curie temperature by means
of a high-temperature expansion in powers of re-
ciprocal temperature.

For e small and negative, Josephe also used this
Hamiltonian for a high-temperature match of sus-
ceptibility data for KlvfnF~. The need for a small
negative biquadratic exchange term was first
pointed out by Harris and Owen and Rodbell et al.
to explain their data on paramagnetic resonance of
Mn pairs in MgO. A theoretical basis for the exis-
tence of such a term was established by calcula-
tions by Anderson and Huang and Orbach of the
superexchange interaction in the arrangement Mn-
O-Mn.
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Another possible origin of biquadratic exchange,
mentioned by Allan and Betts, is the fact that the
permutation operator for spin 1 is not P,~= 2S&

.
S&

+-,' as for spin 2, but instead

p;, = Si Sq+(S, ~ Sq) —1,
a result found in a paper by Schrodinger.

As pointed out by Birgeneau et al. , various ad-
ditions to the usual isotropic exchange interaction-
among them, biquadratic and anisotropic terms-
can be important for certain rare-earth compounds
with incompletely quenched orbital angular momen-
tum.

Finally, the procedure of taking the trace of the
density matrix over all but a small number of
spins, say, two, to get the two-particle density
matrix and its associated Hamiltonian can give
rise to a biquadratic term. For spin -„ this imag-
ined tracing process leads to the well-known equiv-
alent Hamiltonian employed by Kasteleijn and van
Kranendonk. However, for spin 1, there is no
simple identity to reduce a biquadratic term to a
bilinear one, and so (S, So), with an arbitrary
coefficient, remains.

We will calculate the Curie temperature as a
function of a for all lattices. Also, for a=0 and
1, we will calculate the magnetization, susceptibil-
ity, energy, specific heat, and entropy change.
Only the spin-1 case is thoroughly treated, although
spin —,

' is briefly considered. Graphical results
are given for the bcc lattice.

The procedure to evaluate the internal field in
(1) is equivalent to the constant-coupling approxi-
mation. As is well known this can be done in
several ways. The particular method employed
here is to take the partial trace over one spin of
a two-particle density matrix and require that this
reduce to the one-particle density matrix, i. e. ,
the molecular field theory (MFT). This, it turns
out, is equivalent to computing the average magne-
tizations from these two density matrices and
equating them. This will be called the consistency
condition.

II. CURIE TEMPERATURE

If the spin quantum number is So, the eigenvalues
(ev) of the Hamiltonian (1) are given exactly by

ev of ( —pK) = —,pS o[nS —(4aSo —2)]+ AM+ const,
(2)

where

S =S(S+1), 8= San+So, M=S„+So, ,

p= p J, &= ppH, p= 1/kT .
The partition function and density matrix are

z= Z e-'", p=e~"/z,
S,M

(3)

X= (n —1)a, x'= na, (5)

where a is an internal field due to one neighboring
spin, the consistency condition gives the Curie
temperatures as the roots of

2n S', ~(2S+1)e"'"»'
S

(n 1) Q S2(2S+ 1,) etc|a(s&/2 (8)
S

pc= J /kTc ~ f'(S)=S [nS —(4uSo-2)] . (7)

For S~= —,', the solution is

(8)

Thus, T~ appears to vary linearly with &, decreas-
ing to one-half its a=0 value when o=1. Since a
is not an experimentally variable parameter, this
is not a verifiable conclusion.

For S~=1, the Curie temperature equation be-
comes

10(n —3)e" '~o-6(n+1) e' ~"~~ —4n=0. (9)

For n = 1, this has a simple solution:

Pc 4+ (10)

but otherwise must be solved numerically. Graphs
of T&vs n are shown in Fig. 1. Again, there is no
possible comparison with experiment, but there
are some theoretical data. The point obtained by
Allan and Bette for a=1 and n=12 is kTc/j=3. 07
and the earlier result' for n = 0 is kTc/7=12. 0 for
this fcc case. It is seen that there is considerable
difference in the results of the two methods (the
high-temperature approximation and the constant
coupling) although both indicate the same general
trend: T~ decreases as + goes from 0 to 1.

III. SPIN-2 CASE

If the consistency condition is solved for arbi-
trary values of X instead of only X«1 as in finding
Tc, we find the following result for the internal
field as a function of temperature:

where M is summed from -S to S and S from 0 to
2$0. On the other hand, the MFT Hamiltonian is

—PX= ~'S, .
To find the Curie temperature, let the applied field
be zero and the internal field small. If we then
require that, for a lattice with coordination number
Sy
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The "magnetization" (actually the average value of

S„)is

l2

1 8 lnZ
2 eA.

(13)

The consistency condition, using the MFT result

k Tc

J

IO 2 sinhA. '
m= 7

1+2 cosh'' (14)

and Eq. (5) give an implicit equation for the reduced
effective field a:

1+Ag~&+ Be@'—0

where

(15)

.8

sinh(n —1)a(1+ 2 coshna)2=1+2 cosh n —1 a—
2 sinhna

B=A+ C, (15)

FIG. 1. Dependence of the transition temperature
&c on the strength of the biquadratic exchange G', for
the fcc (n = 12), bcc (n = 8), and simple cubic (n = 6) lat-
tices for spin 1.

1+e )z sinh(z n —1}a
2 sinh 2 na

From the behavior of p, in (8), we see that the in-
ternal field and, hence, all thermodynamic prop-
erties will be independent of n if they are plotted
as functions of the reduced temperature, f = T/Tc.
That this must result is seen from the use of the
identity for 0=2S:

(&t' &z) = 3 2&i' &z

sinh2(n —l)a (1+2 coshna)C=2cosh2 n-1 a-
sinhna

The numerical solutions of this equation are then
put into the expression for m to give the spontaneous
magnetization. Since the magnetization per atom
is p. m, the susceptibility is

(o)* (o)' (o ) z) (~ )
where

c = pH()/kT, H= ()paplied field

and the derivatives are to be evaluated for zero
field. The derivative (fz/dc can be found by re-
placing (5) by

to get X=(n-1) a+e, X'=na+c (5')

2[S& ~ Sz+(z(S& ~ Sz) ]=2(1 ——,(z) (S, ~ Sz)+ const .
Thus, the presence of the biquadratic term serves
only to modify the magnitude of the exchange in-
tegral. The spin-& results for all n will be the
same as those of Kaste~. eijn and van Kranendonk. '

IV. SPIN-1 CASE

For the case SO=1, detailed examination of the
thermodynamic properties has been carried out
only for @=0and @=1. Other values of n present
no prob1. em.

For o( = 0, the partition function is (including the
constant in the eigenvalues of X)

Z= [1+e'z(1+2 cosh'. )

+e z(1+2cosh)). +2 cosh2)). )]e 'z . (12)

and applying the consistency condition, keeping
only linear terms in a and e. The result obtained
is

=1+ n —1

2+Gx +10x
2n+ 3(n+ l)x' —5(n —3)x' '

where x=e . Finally, the susceptibility (for small
fields} is

C 3(x +3x +5x +20x +25x )
T (1+3x + Sx )[2n+ 3(n+ 1)x 5(n —3)xz] '

with
(1S)

2 P S() S()+ 1) .C= " o ' ' ' ooo) oooo)'o ) (19)
3k 3k

For high temperatures, T» Tc, the susceptibil-
ity takes on the Curie-Weiss form
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X= C/(T-e)

with

(20) the specific heat numerically from (26) by the re-
lation

ke/J = f n= p nSp(Sp+ 1) (21)
C
k a(1/P)

' (29)

8/Tc-—p—n—P, = 1.79, 1.36, 1.23, l. 14,
respectively, for n=4, 6, 8, 12.

The exchange energy per atom is

n elnZ
2 aP

or, in units of J,
E, n 8lnZ
J 2 ep

(22)

(23)

The result given by (28) can be used to find the
discontinuity in the specific heat at T~. It is found
to be

(30)

by expanding & and p in powers of g . For SO=1,
o. = 0, and n = 8, we have hC/k = 1.76 per atom.

By numerical integration, we can find the entropy
change above T~ from

Above the Curie temperature, this is

n(3x +15x )
g 6 +2ny1+3x +5x

and below,

(25)

as C dt——= 0. 1316 for n=s.
k

q
k t

The partition function for n = 1, So= 1 is

(31)

n(ax +3Px')
z 6 +2n )1+ Qx +Px

where, in this equation only, we have

~ =1+2 cosh'. , P= a+2 cosh2~,

(26)

(27)

2 = [I+ e ~(1+2 cosh') + (1+2 cosh' + 2 cosh2h)) e ~,

(32}
from which we find

1 alnZ
2 eX

which must be evaluated numerically from the
consistency condition. The exchange contribution
to the specific heat per atom dE„/dT can be written
as

(1+e ~)sinhX+ 2 sinh2A
2(1+coshX+cosh2X)+e ~(1+2 cosh'. )

'

(33)

C p Q 3 eg dX~p ~ ~p +
k dp 8P aZ dp

(28)

Above T~, the second term is zero and the result
can be found directly from (25). Below Tc, the
X-p relationship is known only implicitly from (15).
Instead of using this to find A/dp we have evaluated

The MFT result is given by (14). Using (5), the
consistency condition gives an explicit expression
for p(a):

m C]
It

I
2

I

.5
T

t =—
Tc

/
/

-I
/

1

00 l.23 l.5

C

TcX
FIG. 2. Thermodynamic prop-

erties of the bcc lattice with
spin 1 and &=0. m (dashed
curve) is the average value of
~, or the reduced magnetization,
C (dash-dot curve) is the mag-
netic contribution to the heat
capacity per atom and )( (solid
line) is the susceptibility (the
C there is the Curie constant).
The dashed straight line is the
Curie-Weiss limit of g ~.
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3 Same as Fig 2 but
for & =1. Note the change in
scale for the heat capacity.

0
.5 I.46

C e 4'+5
T (n+1)e ~ —(n —5) ' (35)

with C given by (19). The limiting Curie-Weiss
form (20) gives

k8 2n nSp(Sp+ 1)
J 3 3

(38)

2 sinh(n —2)a+ sinh 2(n —1)a —sinhna
sinh(2n —1)a+ 3 sinh a+ 2 sinhna —sinh(n —1)a '

(34)

with which we evaluate m numerically.
The susceptibility is considerably simpler than

for n=O:

e = —2n(1+ -,' e '
)

'

above Tc and

1 + 2 cosh'.
2(1 ~ coshx ~ cosh21) )

below. The specific heat above Tc is then

C/k=4np e (1+—,'e ~)

and just above Tc this becomes

(
C n (n —5)(n+ 1) n+ 1

Z ln
k r+ 9 (n —1)

C
n —5

(38)

(39)

(4o)

(41)

or one-half the value in (21), whereas the ratios

—=-np = 1.95 1.46 1.24
8 2

C
C

(37)

respectively, for n=6, 8, 12, are considerably
larger than for a=0 because of the decrease in T~.

The reduced exchange energy per atom is found
to be

Below Tc, the specific heat per atom is found
numerically from (39). The discontinuity at Tc
can be found explicitly by using (30):

AC 1 n(n+ 1) (n —5) n+ 1
k 18 (n-1)(n —2) n-5 (42)

which, for n = 8, has the value 9.31.
The total entropy change above T~ can be found

C

TcX

00 0
I

FIG. 4, Results for the reduced magnetization, m
vs reduced temperature t compared for + = 0 and 0' = 1.

FIG. 5. Comparison of reciprocal susceptibilities
for & =0 and l.
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FIG. 6. Comparison of the
specific heat per atom for & =0
and 1 on the same scale.

'O l.5

from (40):

DS C dt lnu du
(43)

where u=e ~. For n=8 the result is

nS/k= 0. 3775 per atom,

considerably higher than for n = 0. For the whole

temperature range, T=0 to ~, the result is

ES/k = In(2SO+ 1)'= 1.099.

V. RESULTS

The behavior of T& vs n, shown in Fig. 1, has
already been discussed. Figure 2 shows the re-
sults of our calculations for n=O, SO=1, and
n= 8. Included are the values of m below Tc (m is
also the reduced spontaneous magnetization,
M/AQ ), the reduced reciprocal paramagnetic sus-
ceptibility, C/T&y, where C is the Curie constant
(19) along with its high-temperature asymptote
(20), and the exchange specific heat per atom in
units of Boltzmann's constant, C/k, above and be-
low Tc, all as functions of the reduced tempera-
ture, f = T/Tc. Figure 3 shows the same quantities
as in Fig. 2, calculated for n= 1. The rather con-
siderable differences brought about by this change
in n are made more obvious by plotting the corre-
sponding curves together, as in Fig. 4 for m,
Fig. 5 for I/y, and Fig. 6 for C.

The magnetization in Fig. 4 is seen to rise much
more rapidly just below Tc for n=1 and to approach
absolute zero along a more nearly horizontal line.
The net effect is that the n = 0 curve is the usual
almost circular arc while the n=1 curve is closer
to the two sides of a square formed by the horizon-
tal and vertical lines for m = 1 and t = 1, although
not so extremely as for an Ising model.

The susceptibility curves show an increased
curvature (for I/y) for the o = 1 case and a higher

----In 3

OO I.5

FIG. 7. Net change in the entropies, M =S(t) —S(0),
for 0'=0 and 1.

intercept on the f axis for the asymptotes (see
Figs. 2 and 3). While the asymptotic Curie tem-
perature is lowered by one-half in this case, the
Curie temperature falls faster as n goes from 0
to 1, hence the higher intercept on the t axis.

The specific heat is considerably lower well be-
low T~ for n=1 and considerably higher as T~is
approached and has a discontinuity at Tc some five
times greater than for a=0 (9. 31 to 1.76). This
behavior is related to that of m through the (dX/dP)
factor in the specific heat [Eq. (28)].

The entropy change of the spin system is there-
fore brought about more slowly for n = 1 as tem-
perature is raised from absolute zero than for
n=O, but shows a more rapid rise as Tc is ap-
proached. The qualitative behavior is shown in

Fig. 7. The entropy changes from 0 to T~ are ap-
proximately 88% and 66/0 of the total for n = 0 and

1, respectively, for the bcc. Allan and Betts
found the corresponding fractions for the fcc to
73 jp and 67/p.

The results show that by including a positive
biquadratic exchange interaction we are able to ob-
tain a considerably steeper magnetization curve,
as is experimentally observed, and that the curva-
ture of the inverse susceptibility curve can be ad-
justed as can the intercept by adjusting the strength
of the biquadratic term. The theory allows values
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of 8/Tc between l. 28 and l. 46 for n going from
0 to 1. The ferromagnetic elements have values
in the range 1.03-1.06 but many ferromagnetic
compounds (CrC1„CrBr3, MnP, FeP, Femp,
Fe,P, and CoS2) have ratios from l. 06 to 1.84."

Additional freedom is also given to the value of
the specific-heat discontinuity as n is varied. Ex-
perimental values of 4C for the ferromagnetic
elements go from about 2 to 7 cal/deg mole. Our
derived values for the spin-1 bcc lattice for
o. = 0 and 1 are given by Eqs. (80) and (42) and have
the approximate values 0. 9 and 4. 7 cal/deg mole
(k erg atom= 2 cal/mole). Again, the presence of
this extra parameter e allows the possibility of
approximate agreement with experiment. Finally,
the persistence of spin ordering as temperature is
raised is considerably greater for n= 1 than for

a =0, as is seen from the specific-heat and entropy
curves.

We are not interested in exact numerical com-
parisons since the theory presented here should be
applicable only to spin-1 isotropic nonconducting
ferromagnets. Rather, we are interested in de-
termining what quantities will vary, roughly by how

much, and in which direction when biquadratic ex-
change is included.
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