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Correlation factors for diffusion in binary and multicoxnponent alloys are calculated for a
random-alloy model with diffusion by a vacancy mechanisxn. This model, which should apply
best for nondilute alloys, assumes that atoms and vacancies are randomly distributed and that
suitable average values can be used to represent the actual atoxn and vacancy jump frequencies
in the crystal. In alloys, both atoms and vacancies follow correlated walks. Also, the atom
correlation factors are influenced by the nonrandom motion of the vacancies. Thus, in order
to treat correlation effects in concentrated alloys properly, one must consider not only the
correlation factors f; for diffusion of atoms but also the correlation factor f„for diffusion of
vacancies. In specific calculations, one also must find the parti i correlation factors f„for
diffusion of vacancies by exchange with atoms of the particular species i. Analytic expressions
for all of these correlation factors are calculated. These equations can be expressed directly
in terms of the measureable tracer-diffusion-coefficient ratios D~/Dz with no unknown jump
frequencies appearing. The calculations also yield a forbidden region in the plot of diffusion-
coefficient ratio as a function of alloy composition, with correlation factors going to zero at
the boundary of this region. Specific applications to binary alloys are discussed.

INTRODUCTION

When diffusion occurs by a random walk, the
diffusion coefficient D*, for species i in a cubic
crystal is given by

D*=—A. v, ,
1 2
6

where X is the jump distance and v, is the jump
frequency for species i. When there is a correlated

walk, this expression becomes

(2)

where f, is the correlation factor for species i.
Here f, takes into account the correlation between
the directions of successive atom jumps. In crys-
tals having sufficient symmetry and with diffusion
by a vacancy mechanism, the general expression
for f, is'
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f, = H, /(2w, + H, ), (3)

where w, is the jump frequency for exchange of a
vacancy with a neighboring atom of species i and

H, is the effective escape (or randomization) fre-
quency for vacancies which neighbor an atom of
species i.

In the present paper, a random-alloy model will
be used to evaluate f, for multicomponent alloys.
This requires the evaluation of H, in such alloys.

The probability that a vacancy will reexchange
with atom i and introduce a correlation between
succeeding jumps of atom i depends not only on the
jump frequency w, but also on the competing jump
frequencies for exchange of the vacancy with atoms
other than atom i. H, in Eq. (3) gives the depen-
dence of f& on these competing vacancy jump fre-
quencies. To a first approximation, H, is just the
sum of the competing vacancy jurnp frequencies
available immediately after an exchange with i. To
completely avoid a nonrandom reexchange with i,
however, the vacancy must not only refrain from
exchanging with i on its first subsequent jump but
also must not come back and exchange from a non-
random direction at a later time. Thus, H, does
not simply equal the sum of the competing jump
frequencies but instead is somewhat smaller than
this.

The physical measurement of H, is most easily
visualized by considering diffusion along a (100)
direction in a simple-cubic crystal and introducing
the concept of a randomization plane. A vacancy
which arrives on the same {100}plane as atom i
is in a random position with respect to i so far as
diffusion along the (100) direction normal to this
plane is concerned, since such a vacancy is just
as likely to cause a jump of f in the positive (100)
direction as in the negative (100) direction. This
plane can be called the randomization plane. H,
equals the jump frequency with which a vacancy on

site n neighboring on the impurity will exchange
with an atom other than atom i and begin a path
which leads it either permanently away from site
n or to a site on the randomization plane before it
returns to site Q. . Jump paths where the vacancy
returns to site n without reaching the randomiza-
tion plane do not contribute to H, . Thus, H, is
related directly to the rate at which vacancies
move from sites neighboring on atom i to sites on
the boundary of a specified crystal space, with the
randomization plane forming one boundary of this
space. The remaining boundaries in practice are
formed by the crystal surfaces and physical vacancy
sinks such as grain boundaries and dislocations.
In calculations, usually only a small error is in-
troduced if it is approximated that these other
boundaries are an infinite distance from atom i.

In the following discussion, the fact that H, de-

1 PD.= s».fu ~ (4)

Subscript v here and in subsequent equations indi-
cates that vacancies are the diffusing species under
consideration. Also, f„is the vacancy correlation
factor and

8
Vv= Vvfv ~

where v'„ is the effective frequency of random va-
cancy jumps.

In pure crystals, each vacancy does pursue a
random walk, so in this case f„equals unity. In

alloys on the other hand, f„usually does not equal
unity. Even in a dilute alloy, the equations for
vacancy motion are much less simple than in a
pure crystal. For example, there are several
different atom-vacancy exchange frequencies, and
also in the vicinity of an impurity the vacancy does
not follow a random walk. In a nondilute alloy,
with each atom species having a different atom-
vacancy exchange frequency, the situation is even
more complex. Then, there are no regions where
a vacancy will pursue a random walk.

The total vacancy jump frequency v„ in Eq. (4)
can be expressed as a sum over all species i,

Vv Zgl WINI =Ql V„
i

where z is the number of nearest-neighbor sites
to which a vacancy can jump, w& is the average
jump frequency for the vacancy jump to a site oc-
cupied by an atom of species i, and N, is the frac-
tion of nearest-neighbor sites occupied by i atoms.
Also v„' is the total vacancy jump frequency from
jumps with species i and

vv= zw. N, .
Because of correlation effects, not all w, jumps

will be effective in causing random diffusion of the
vacancy. For each type of jump, the correlation
effect can differ. Thus, one must define a partial
correlation factor f „' for each species i, with

pends linearly on the rate at which a vacancy dif-
fuses away from site n will be used to calculate
the effect of vacancy correlations on H, . This re-
sult applies not just to the simple-cubic structure
discussed above but more generally to all cubic
crystals and to diffusion in certain directions in
some noncubic crystals where a randomization
plane can be defined.

VACANCY CORRELATION FACTORS

The preceding discussion of f, has described
correlation factors for atom diffusion. In addition,
the vacancies themselves can follow correlated
walks. As in Eq. (2), one can write for cubic
crystals
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~v ~ vfv ~~i+ifv~ie (8)

where v„" is the effective frequency of random va-
cancy jumps involving species i. Since

&v=
& ~v

one finds with Eqs. (5), (6), and (8),

(la)

Here, f„is the average correlation factor for dif-
fusion of vacancies and the f „' are partial vacancy
correlation factors applying to each individual
species i.

In principle, the f'„and hence f„could be calcu-
lated in a straightforward manner in terms of the
detailed correlations between successive vacancy
jumps. In a nondilute alloy, this would be a very
complex task. Thus, in the present paper a differ-
ent approach is used, taking advantage of the rela-
tions in a random-alloy model between the atom
correlation factor f, and the partial vacancy cor-
relation factor f '„.

RANDOM-ALLOY MODEL

The model which will be used assumes that
(a) the jump frequency w, for exchange of a vacancy
with an atom of species i depends only on i and does
not depend on the identity of other neighboring
atoms nor on the site, and (b) the vacancy jump
frequency to a neighboring site containing an atom
of unspecified or unknown species equals 8', with

where N, is the mole fraction of species i and W

is the average vacancy jump frequency in the crys-
tal. Thus, the vacancy jump frequency for exchange
with an i atom whose diffusion is being followed
equals M)„but other jumps are assumed to occur
with the average frequency 8".

This alloy model will apply best to random alloys
where there are no energetically preferred sites
for vacancies or for atoms of particular species.
Treating each site as an average site is then most
reasonable. In such an alloy, there would be zero
vacancy binding energy and no atom ordering or
clustering. Also, it is assumed in the present
treatment that all atom sites are erystallographi-
cally equivalent and all jumps by i atoms are geo-
metrically the same. Thus, a single atom correla-
tion factor f, and partial vacancy correlation factor
f „' can be associated with each species, and a single
average vacancy correlation factor f„can be applied
to all W jumps. In the case of nonequivalent sites,
a separate partial correlation factor would be
needed for each geometrically different type of u,
or 8' jump.

In actual concentrated alloys, a large variety of
local atom configurations ean occur, with each

EFFECTIVE ESCAPE FREQUENCY IN ALLOY

The effective escape frequency H, in the random-
alloy model will be closely related to a basic escape
frequency Ho, where Ho is the effective escape fre-
quency in a pure crystal having the same crystal
structure as the random alloy but containing only
one type of atom, whose atom-vacancy exchange
frequency is 8'. In a pure crystal, H can be cal-
culated from the known values of the correlation
factor. If fo is the correlation factor in a pure
crystal of the cubic structure under consideration,
one finds from Eq. (3) that

fo Ho/(2W+Ho) . -— (12)

Since fo for any such crystal will be a pure number,
it follows that

configuration allowing a different characteristic
jump frequency. Thus, in real alloys, a spectrum
of jump frequencies for jumps by the various atoms
of species i would be expected. The present model
simplifies the situation by replacing this spectrum
of frequencies by a single average frequency sv, .
As a further simplification, the model then treats
each atom as being in identical surroundings. Each
i atom whose diffusion is being followed (as is nec-
essary to calculate its correlation factor) is as-
sumed to have jump frequency w, characteristic of
the particular species i, but a vacancy diffusing
away from this i atom is treated as encountering
only average atoms, all having the average jump
frequency S'. The introduction of the average fre-
quencies se; and 8' introduces an approximation into
the model. Nevertheless, in a random alloy, ef-
fects from these averaging approximations shouM

be small.
Mathematically, the random-alloy model makes

the correlation problem amenable to calculation
without detailed statistical analysis. This not only
simplifies the equations but also allows H, to be
calculated without introducing a "near-boundary"
approximation, where it is assumed that a vacancy
which has reached a site only a short distance from
atom i, for example a second-nearest-neighbor
site, will not further affect the diffusion of i. By
contrast, a near-boundary approximation often is
necessary when more detailed statistical calcula-
tions are attempted.

The random-alloy model should provide a good
approximation for any reasonably random nondilute
alloy and should show any major effects arising in
such an alloy. Also, the resulting equations con-
tain no unknown jump frequencies but instead can
be expressed in terms of experimentally measure-
able tracer-diffusion coefficients. This is especial-
ly important in allowing direct comparison with
experiment. 3'
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Crystal structure

Diamond
Simple cubic
bcc
fcc

fo

0. 6531
0. 7272
0. 7815

2

3.77
5. 33
7. 15

Ho=Mo W

TABLE I. Values of the correlation factor fo are those
quoted by K. Compaan end Y. Haven [Trans. Faraday
Soc. 54, 1498 (1958)]. Values of Mo are calculated from
Eq. (15) .

to an escape site. Without correlations, this first
jump to a neighboring site in a random alloy occurs
on the average with jump frequency g, N;w;, with

Ho being proportional to this sum. When there are
correlation effects, the effective jump frequency
for random exchange of vacancies with neighboring
A atoms becomes N&w„ f„, with neighboring B
atoms A&w& f„, and so on. Thus, in a random al-
loy, H, will be proportional to the sum 1V&w& f"„
+ N~w~ f„+~ ~ ~ . Since randomly directed effective
jump frequencies are assumed, the constant of
proportionality will be the same here as in the cal-
culation of Ho. Therefore, one obtains

where Mo is a numerical constant. Substituting Eq.
(13) into Eq. (12) yields

H; Naze„f"„+Nswsf „+~ ~ ~

Ho N~w~+A~wg+ ~ ~ ~
(17)

fo = Mo /(2 + Mo) (14)

or

MD= 2fo(1 —fo)
' . (15)

H;= f„HO. (16)

The derivation above uses a continuum approach
in that it does not include specific jump frequencies.
Explicit consideration of effective jump frequencies
yields this same result on an atomic scale. This
latter approach, presented in the following para-
graph, is particularly pertinent when the vacancy
reaches the randomization plane in only one jump
or a very few jumps.

On an atomic scale, one can consider the first
jump in a series of jumps which take the vacancy

Values of f, and Mo for several cubic structures are
listed in Table I.

In practice, the effective escape frequency H;
for a vacancy neighboring on an i atom in an alloy
will differ from Ho somewhat because a vacancy in
an alloy dees not follow a random walk as does one
in a pure crystal. The correlations between suc-
cessive vacancy jumps do not change the over-all
vacancy concentrations nor do they change the loca-
tions of the sites to which a vacancy must move to
"escape" from the diffusing atom. However, the
correlations do change the rate at which vacancies
will diffuse and hence the rate at which a vacancy
will move to an escape site, such as a vacancy sink
or a site on the randomization plane. With a con-
stant concentration of diffusing vacancies, vacancies
will arrive at escape sites less frequently if the ef-
fective rate of vacancy motion is decreased. A
vacancy correlation factor f„which is smaller than
unity decreases the vacancy diffusion rate. There-
fore, it also decreases the effective escape frequen-
cy H;. If correlation effects were neglected, H in
the random-alloy model would equal Ho. Thus, in
this model when vacancy correlations are included,
one finds

which is the same result as in Eq. (16). The right-
hand equality in Eq. (17) follows from Eq. (10).

It may be noted that the right-hand sides of Eqs.
(16) and (17) do not depend on i Th.is is a con-
sequence of the assumption that all vacancy jumps
other than with specified tracer atoms whose diffu-
sion is being studied occur with jump frequency W.

Since H; depends only on the frequency of these
nontracer jumps, it is the same for all species and
is independent of i.

If each H, equals the value given in Eqs. (16) and

(17), Eq. (3) becomes

fl=Hof„/(2w(+Hof„) . (16)

In Ref. 5, a relation between the f, and the f'„.
was obtained for a binary random alloy. In the
present paper, similar relations are derived for
the more general case of a multicomponent random
alloy. The method is to calculate contributions to
the vacancy flux J„in two separate ways: one di-
rectly in terms of the vacancy drift velocities and
the second indirectly by calculating the atom Quxes
J,. and using the equation

J„=—Q z(.
The partial vacancy correlation factors f '„enter
into the direct calculation of J„whereas the atom
correlation factors enter into the calculation of
the J;.

With vacancies in equilibrium, the vacancy flux
which might result from the vacancy concentration
gradient Sc„/Sx or chemical potential gradient
Sp.„/Sx disappears. '6 Thus, the vacancy flux J„
in a system with vacancy concentration maintained
at equilibrium equals the vacancy concentration c„
multiplied by an average vacancy drift velocity

Thus, in order to calculate the atom correlation
factor f„eonmust know something about the vacan-
cy correlation factor f„.

RELATION BETWEEN ATOiN AND VACANCY
CORRELATION FACTORS
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~s= cu (vz)u = ca+a (vz)u ~ (20)

Here (vz)„' is the contribution to the vacancy drift
velocity arising from the driving force F„' (other
than Bp„/Bx) influencing the atom exchange fre-
quency for exchange of vacancies with atoms of the
particular species i and (vz)„ is the total vacancy
drift velocity from these forces F„'.

For any randomly diffusing entity, the drift ve-
locity (v~) is proportional to the driving force F
multiplied by the random jump frequency v'. In
cubic crystals if there is a single random jump
frequency

(v~) = DF/k T = 6 Av'F /k T. , (21)

where k is Boltzmann's constant, T is the absolute
temperature, and the random-walk expression in
Eq. (1) has been used for D. In the present case,
Eq. (21) becomes

(v~)„'= —,
' X'(kT) ' v'„'F„', (22)

where F„' is the force influencing i-type vacancy
jumps. With Eq. (8) this yields

(vz)„resulting from forces other than Bp„/Bx.
When there are several atom species i, vacancy
exchanges with each atom species should be treated
separately and the results summed over all atom
species to obtain the total vacancy drift velocity.
Thus

F =—
Bx

(28)

When these are the only forces present, Eq. (27)
can be expressed as

J„=-g. L„q
Bp, ;

5

where

L„&——(c,D f /kT)( f„/f&) .

(29)

(30)

Bp. g

Bx (31)

A detailed kinetic calculation of J& with the random-
alloy model used here has previously been per-
formed. ' ' In a multicomponent alloy, this analy-
sis yields an equation having the form of Eq. (31)
with

Here, Eq. (29) has the form of the general thermo-
dynamic diffusion equation for diffusion of vacan-
cies, where the mobility coefficient L„, is the pro-
portionality constant relating the flux J, to the driv-
ing force Bp, /Bx.

Equations similar in form to Eq. (29) can be writ-
ten for the fluxes J& of the various atom species j.
When the only driving forces are those from the
atom chemical-potential gradients Bp,/Bx, one can
write

c„(vz)„'= 6 X zsv&c„(kT) 'f„N&F„'. (23) L(( = (c;D f /kT)(1+ 2c( D(*/MOP~ c D ~), (32)

To obtain a final compact equation for J„, it may
be noted that in a random alloy the atom jump fre-
quency v; is given by

v] = 2'N] N (24)

where N„ is the mole fraction of vacancies in the
crystal. Also, for atoms i and vacancies e, the
mole fractions N and the concentrations c per unit
volume are related by

c) ——N)C,

c„=N„C,
(26)

(26)

where C is the number of sites per unit volume.
Combining Eqs. (23)-(26) with Eqs. (2) and (20)
yields

J„=Q; (c;D f /kT)(f „'/f)) F„' . (27)

Here f, enters in the denominator since it appears
in Eq. (2) for the atom diffusion coefficient D~& but
does not appear in Eq. (23). By contrast, f „' enters
in the numerator since it appears in the kinetic ex-
pression for (v~)„' through Eq. (8), substituted into
Eq. (22).

The fore s F„' which arise from chemical concen-
tration gradients equal the negatives of the chemi-
cal-potential gradients,

L„]-——Qy L (34)

Inserting values of L«and L„from Eqs. (32) and
(33) then yields

c&D*, 2 c&D*,

kT Mo kTfo (36)

where fo is the atom correlation factor for self-dif-
fusion in a pure crystal, given by Eq. (14). Values
of f, are given in Table I. Comparison of Eqs. (30)
and (35) yields

f$ =fof (36)

This equation is valid for every atom species i even

L&, = L,&-—(2c,c&D~~D&~/MokTP c D*) for i 4 j .
(33)

Here, the summation over m includes all atom spe-
cies in the crystal and Mo is a numerical constant
given by Eqs. (13) and (16).

We now are in a position to compare the vacancy
flux calculated directly in Eqs. (27) and (29) with
that obtained from the kinetic calculation of the
atom fluxes J&. Since in general the driving forces
Bp, , /Bx are independent of one another, it follows
from Eqs. (19), (29), and (31) that
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in a rnulticomponent alloy under the random-alloy
model used here.

This equation is reasonable. For example, in
the limit where all atom species have the same jump
frequency, one obtains a random walk for the va-
cancies, making all f„equal unity. In this limit, it
also is obvious that all f, equal fo. The resulting
relation between f '„ in this special case is exactly
that given by Eq. (36).

D f =
p X N„zwqf(.2 (37)

Here D*, depends on i only through the factors zv&

and f; since there is no dependence of N„on i. This
equation along with previous equations derived for
a random alloy relating H, to Hp and f „' to f, allows
f, in such an alloy to be expressed in a simple ana-
lytic form in terms of diffusion-coefficient ratios.

Substitution of Eq. (10) for f„ into Eq. (18) with

f '„being given by Eq. (36), Hp by Eq. (13), and W

by Eq. (11) yields

f;=M fp'gpN w f /(2 &wM+fop'g NM( f ).
(38)

After some algebra and substitution of Eq. (14) for
fp, this becomes

ATOM CORRELATION FACTORS

In the present random-alloy model, the probability
N„of any particular site being occupied by a vacancy
is independent of the identities of neighboring
atoms. With Eq. (24) substituted into Eq. (2), one
obtains

M (Mp+2)(N D +N D ) RB

)
(4)(

M p+ 2 Mp( N„D ~+ N pD p)

2Ns(D~ —D p)~'=~'(' M,(x„a'„x,D,') (42)

Similarly, we have

(43)

When D & equals D~» one obtains simply f&=f~ =fo,
since (D*„—DPp) appears as a factor in the last term
in Eqs. (42) and (43). When the two tracer-diffusion
coefficients differ, the correlation factor calculated
from these equations for the faster-diffusing species
will be smaller than fo whereas that for the slower-
diffusing species will be larger than fp. Figures 1
and 2 give values of f„and fp in a fcc crystal (where
Mo= V. 15 and f0= 0.78) as a function of composition
and of D*„/D~&. For purposes of this presentation,
A is taken to be the faster-diffusing constituent and
B the slower-diffusing constituent. It may be noted
that in Figs. 1 and 2 the maximum value of fp is
unity and the minimum value of f„is zero, with
there being a strong dependence of the correlation
factors on both N„and D~~/D~p.

It might appear from Eq. (42) that f„could be-
come negative when D&»D~. Negative values of
f„are not allowed by Eq. (3), however. This for-
bidden region is discussed further in a subsequent
section.

f(= [ —2w, f, +(Mp+ 2) Q N„w+ ]/

(Mp+ 2) g N~w f„. (39)
(.0

Finally, the products av,f, and u f„can be replaced
by the appropriate tracer diffusion coefficients from
Eq. (37) to yield

0.8—

f( = [ —2D P(+ (Mp+ 2) Q„N D ~ ]/(M p2+) Q~ N~D ~~ .
(40)

This expresses f, in terms of the experimentally
measurable quantities D*;, D*, and N„.

Equation (40) shows that, when D f is zero, f,
equals unity. Since D*, cannot be negative, a non-
zero D*, will always make f, be smaller than unity.
The deviation of f, from unity, which measures the
strength of the correlation effect, increases as D~&

increases, being largest for the fastest-diffusing
species. Also f, itself is smallest for this fastest-
diffusing species.

ATOM CORRELATION FACTORS IN BINARY ALLOYS

In a binary alloy containing species A and B, Eq.
(40) becomes

0.2

0
0 0.2 0.4

Na

0.6 0.8 I.O

FIG. 1. Correlation factor f& of faster-diffusing atom
species A in random binary fcc A-J3 alloy with diffusion
by vacancy mechanism. Similar curves for other crystal
structures can be obtained from Eq. (42) by using the
appropriate Mo values quoted in Table I.
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1.0
p= oo

P =10

0.9

o.s
]

DA"
3Ds"

0,7
0.0 0.2 0.4 0.6 0.8 1.0

FIG. 2. Correlation factor fz of slower-diffusing atom
species 8 in random binary fcc alloy with diffusion by
vacancy mechanism. Here p = D&/Dz. Similar curves
for other crystal structures can be obtained from Eq.
(43) by using the appropriate Mo values quoted in Table I.

DIFFUSIONXOEFFICIENT RATIOS RELATED TO
JUMP-FREQUENCY RATIOS

3
WA/W&

FIG. 3. Relation in fcc structure between jurnp fre-
quency ratio re~/so& and diffusion-coefficient ratio
Dz/Dz in random binary A-8 alloy with diffusion by
vacancy mechanism. Note that for Dz greater than Dz
all curves lie below the dashed line, which indicates the
locus where u~/so& =Dz/Da . Relations for larger values
of so~/so~ pre given in Fig. 4.

The fact that f( can be expressed directly in terms
of the D ~» makes it particularly easy to derive an
analytic expression relating the ratio w(/w, to the
ratios D f/D f. Because of the correlation factor,
D f /D f in a random alloy equals w(/w, only when

w, /w, equals unity and f(= f~. When w( and w~ are
unequal, the correlation factor of the slower-diffus-
ing species will be larger than that of the faster-
diffusing species.

Equation (37) for the random-alloy model yields

In a binary alloy, this becomes

KA D„(N~D ~ +N((D (() —(1 —fo)D ((

D(( (NgD~ + N((D (() —(1 —fo)D g

Figures 3 and 4 were obtained from Eq. (49) with

(1 —fo) in a fcc structure set equal to 0. 219. The
graph for other cubic crystal structures will be
similar, the only difference being in the value of Mp

orf

D ( /D a
= w( A/'A fa ~ (44)

In a multicomponent alloy, one finds from Eqs. (40)
and (44) that

w(/w(, = (D f/Df) [ —2Df +(Ma+2)~N D*]/

5
0

WA /WB

10 20

20

or

[-2D(+ (Ma+ 2) &~NmD']

w(/w, = (D f /D f )(1+2(D f —D;)/

(45) 0.1

0.2

D

[ —2D f + (Mo+ 2) Q N D* ]}. (46)

These equations can also be expressed in terms of
fp by using the equation

0.3 3.33

1 —fo 2/(Mo+ 2) . —— (47)
0.4

0.2
I

0.1

WS/ WA

2.5
0

For example, Eq. (45) reduces to

w(/w(, = (D +(/D f )[Q~ N D + (1 fo)D f]/'
[Q N D" —(1 —fo)D(] . (48)

FIG. 4. Relation in fcc structure between jump fre-
quency ratio so~/co& and diffusion-coefficient ratio D~/Dz
in random binary A-8 alloy with diffusion by vacancy
mechanism. The dashed line indicates the locus where
mz/ce&=D&/Dg. Relations for smaller values of so~/w~
are given in Fig. 3.
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—2D«+(Ma+2)Q N D* = 0 (5o)

or

Df 5 2(MO+ 2)Q N~D« .

Species i is included in the sum over m. If the i
term is removed from the sum, one obtains

D) [1 — (M~+2)010, ] 5 ~(MO+2) Q N D«, (52)

where the summation is over all atom species m
except m =i. This inequality obviously is obeyed
whenever —,'(Ma+2) N, is greater than or equal to
unity. Thus for N, ~ 2/(Mo+ 2) = 1 —fo, there is no
restriction on D*, . However, if

In structures where correlation effects are larger,
so that fo is smaller and (1 —fo) larger than in a, fcc
crystal, a larger deviation from the condition D*„/
D «q = w„/ws will be found. The line where these
ratios are equal is indicated as a dashed line in

Figs. 3 and 4. At large or even moderate values
of w&/w~, deviations from this line are appreciable.

In a random multicomponent alloy, the deviation
of w, /w„ from unity will always be greater than the
deviation of D*, /D«« from unity. This statement is
valid for all values of w, /w„, both large and small,
either greater than unity or smaller than unity. In

addition, if one of the two ratios Df/D««or ~&/ur„ is
larger than unity, the other also willbe larger than

unity. Similarly, if one is smaller than unity, the
other will be smaller than unity. These results can be
obtained directly from Eqs. (3) and (44). According
to Eq. (3), if w, is greater than w„ then f, is
smaller than f„since in our random alloy it is as-
sumed that 0 does not depend on the diffusing spe-
cies. It then follows from Eq. (44) that w, /w« is
larger than Df/D«« if w, /w«&1 and that w;/w« is
smaller than D, /D«« if w, /w, &1.

FORBIDDEN REGION

In Fig. 4, ws/w& and D s/D *„are used as coordi-
nates in order to show what happens when w&/w~

goes to infinity (or ws/w„goes to zero). It may be
noted that for N„= 0 and N„= 0. 2, the ratio D «~/D «

never goes to zero, not even when w~/w„goes to
zero. Thus, for particular values of N&, there are
certain values of D«s/D «which are not allowed by
the random-alloy model. There are minimum
values allowed for D «s/D*„and maximum allowed
values for D*„/D«~.

The limits of the region of allowed values can be
deduced from Eq. (40). Physically, the jump fre-
quencies w, and 0& cannot be negative. Thus, one
concludes from Eq. (3) that the correlation factors
f; cannot be negative and, from Eq. (40), for a
multicomponent random alloy that

Ng ~1 fo

it must be true that

Df=(1 —fo N-) ' Q N D*.
m44

(53)

(54)

Na'= fo ~ (55)

An equation giving the boundary of the region of al-
lowed values

[I —(D s/D ~)m„](1—N~) = fo (57)

can be obtained from Eq. (55). This equation has
the form of a hyperbola. At the boundary line de-
fined in Eq. (57), the equality sign in Eq. (55) ap-
plies. This line also corresponds to the locus where
w~/w~ goes to infinity, as can be seen from Eq. (49)
by noting that the denominator on the right-hand side
goes to zero when the equality sign in Eq. (55) is
used but remains positive if the inequality is used.

The graph of Eq. (57) for a fec crystal with fo
= 0. 781 is shown in Fig. 5. The intercepts on the
N„and D«s/D"„axes are at 1 —fo. The region below
this curve is a forbidden region, which contains
values of D«s/D*„smaller than allowed by the ran-
dom-alloy model for these values of N&.

COMPARISON VfITH EXPERIMENT

The present random-alloy model contains several
simplifying assumptions. In particular, the model
is consistent with zero vacancy binding energy.
Consequently, results obtained from this model will
not apply to all alloys. For example, they usually
will not be valid for dilute alloys having appreciable
vacancy-impurity binding. However, in a more
concentrated alloy, which contains 10%& or more
atom fraction of impurity, each lattice site has a
large probability of neighboring on at least one im-
purity. Then, the vacancy binding energy will be
more nearly equal at all sites in the crystal. In the
absence of ordering or clustering, the random-alloy
model then can be expected to provide a very rea-
sonable approximation.

It would be of interest to compare experimental
results in nondilute alloys with those predicted by
the present model. This could help to ascertain the
range of validity of the model. This model may ap-
ply well even to some alloys with less than 10% im-
purity.

Isotope-effect experiments yield estimates (or at
least upper limits) for the atom correlation factors
f,. ' These experimental figures can be compared

In a. binary alloy with N„+N~ = 1 and with the faster-
diffusing species i being identified as species A, Kq.
(54) becomes

D*, /D'„=' I —f,/N, .
This equation applies in the region W&= 1-fo, which
is also the region where
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FIG. 5. Forbidden region for diffusion
by vacancy mechanism in random binary
fcc alloy. Values of Dz/Dz in the forbidden
region are not allowed in the random-alloy
model.

with theoretical values given by Eqs. (40)-(43),
some of which are displayed in Figs. 1 and 2.

Heumann and Reerink measured in an interdiffu-
sion experiment the strength of the isotope effect E
for Cr and Cr diffusing in fcc Ni-Cr (0-20%%uc Cr)
at 1245'C, where D~~, /D*„, =2. As discussed in
Ref. 8, E should equa. l f nfl, where f is the atom
correlation factor of the diffusing isotopes and ~K
is related to the number of atoms moving during the
jump, probably being nearly unity for a simple va-
cancy mechanism in fcc crystals. Heumann and
Reerink's value of E =0. 5 thus leads to the estimated
value fc, =0. 5. This value is smaller than 0.78,
as expected for the faster-diffusing constituent in an
fcc alloy. Detailed comparison with Fig. 1 probably
is not justified since the critical data in determining
the E value were taken mainly in the range 2-5% Cr,
where the random-alloy model used for Fig. 1 per-
haps is not valid. However, the value of fc, =0.6
from Fig. 1 is in reasonable agreement with the
measured value and its possible experimental error.

A similar interdiffusion experiment by Johnson'
for Ni, Ni, and Ni diffusing in fcc Cu-Ni
(0-100'%¹)at 1053 'C yielded results which indicate
an E of 1.0~ 0. 2. Here the critical data were those
in the range 2-13% Ni. Since D~c„/D*q, -—3 in this
range, " this measurement is consistent with the
result (f„,=0. 9) predicted by Fig. 2.

Tracer measurements made by Peterson and
Rothman' of Zn ' and Zn diffusing in ordered
(411 C) and disordered (560'C),8-phase CuZn (ap-
proximately 48% Zn) yielded E values of 0. 20 and
0. 24, respectively. These alloys are bcc with'
D~z, /D c„=2. Thus, the predicted value of fz, from

Eq. (42) is =0.6, which is appreciably larger than

0. 20 or 0. 24. The discrepancy here may arise from
a very small bK or from short-range-ordering phe-
nomena which persist even in the "disordered" al-
loy.

Similar measurements" on the diffusion of Cu '
and Cu gave values of E for copper diffusing in
P-CuZn which were larger than these for zinc, as
would be expected from the present equations. For
the disordered P-CuZn, the ratio Ez, /Ec„was very
close to that predicted from Eqs. (42)-(43) for the
ratio fz, /fc„, with Ez, /Ec„= 0. V38 compared to
fz, /fc„= 0. V32. This is consistent with the supposi-
tion that ~ is nearly the same for copper and zinc
in these alloys. For ordered P-CuZn, the agree-
ment between Ez, /Ec„and the value of fz, /fc„pre-
dicted for the random alloy was less good (0. 615
vs 0. 721), which is not surprising since a theory
designed for random alloys might not apply well to
ordered alloys.

In a-phase CuZn, Peterson and Rothman's mea-
surements" of EzJEc„showed rather poor agree-
ment with predicted fz, /fc„values from Eqs. (42)—
(43) at 4-at. % zinc (0. 55V vs 0. 456) but better
agreement at 30-at. % zinc (0. V06 vs 0. 650). Agree-
ment in the disordered P-CuZn at nearly 50-at. k
zinc was best of all (0. V38 vs G. V32). Thus, as
might be expected, the random-alloy model seems
to apply increasingly well as one moves from the
dilute range toward a 50-50 alloy. In all cases, the
E values were less than the corresponding random-
alloy correlation factors, as would be expected if
~&1.

Measurements of EF, and Ec, by Fishman, Gupta,
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in random binar.„ fcc alloy.
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D*, and A, alone,

f„=1 —(2/Mo) [P(N(D»( P((D»( —D*)/

D Q(N(D ( ((((),

where
g(= [MoD —2(D*; —D*)) ' .

(60}

(61)

goes to zero at the boundary of the forbidden region.
This is illustrated in Fig. 1. Also, Fig. 6 shows
that the vacancy correlation factor in a random bi-
nary alloy goes to zero at the boundary of the for-
bidden region. This general result can be demon-
strated from Eqs. (55) a,nd (62).

At the boundary of the forbidden region, Eq. (55)
yields

This becomes for a random binary alloy, D (( = D „"(1 —fo N ((' ) . (63)
2 (Mo+2)N~N(((D~ D(()

M o (Mo+ 2)(D*) —2D~gD»((
(62)

Values of f„ for a binary alloy calculated from Eq.
(62) are shown in Fig. 6. These values differ
slightly from approximate values shown previous-
ly. " In Ref. 5, an approximation was introduced
by the assumption that 0 equaled Ho. This approxi-
mation is important when f„ is small. In Ref. 4, an
error was made in the numerical computation of the
f„values.

By definition, the atom correlation factor f& for
the faster-diffusing species in a random binary alloy

D» oX Wf -—z (64)

would allow f„ to be determined experimentally in
an alloy where D„and 8' could be measured. No
such measurements are available, however.

Substituting this into Eq. (62) with fo equal to Mo/
(Mo+ 2), as shown by Eq. (14), and D» equal to
N„D *„+1V~D ~~ yields the result f„=0 for all values
of Bg.

It would be interesting to compare experimental
values of f„with Eq. (60) or (62). In principle, the
equation
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Multiband Model for the Electronic Heat Capacity of Chromium

J. F. Goff
Naval Ordnance Laboratory, White Oak, Silver Spring, Maryland 20910

(Received 15 December 1970)

The anomalous high-temperature values of the electronic heat capacity of Cr have been
analyzedby a rnultiband model of the density of states with a nonstandard distribution of states
about the Fermi level. This model was obtained from analysis of the anomalous high-tempera-
ture values of the conductivities without use of rigid-band arguments. The agreement of the
model with the data not only explains their anomalous values but confirms that the anomalies
in the conductivities are the result of band structure.

I. INTRODUCTION

It has been recently pointed out that the anoma-
lous high-temperature Lorenz number of chromium

(L=k/oT, where k is the thermal conductivity, o

is the electrical conductivity, and T is the temper-
ature} seems to depend upon the peculiar character-
istics of the density of states of that metal. ' A


