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In this paper the method of lattice statics is applied to the calculation of the atomic displace-
ments about a vacancy in aluminum using a fifth-neighbor force-constant model for the dynami-
cal matrix and the vacancy-host lattice interaction. The strain-field interaction energy be-
tween two vacancies is similarly calculated. The main object of this work is to demonstrate
the important modifications of earlier results, obtained for a first- and second-neighbor force-
constant model, when one uses the fifth-neighbor model designed to give a significantly better
fit to the measured phonon dispersion curves. In particular it is demonstrated that the dis-
placements about the vacancy continue to deviate strongly from the asymptotic elastic-contin-
uum values out much farther from the defect than is the case for the first- and second-neigh-
bor model.

I. INTRODUCTION

In this paper, using the method of lattice statics,
we extend the calculations of Bullough and Hardy'
for the displacement field about a vacancy in alu-
minum to include third-, fourth-, andfifth-nearest-
neighbor interactions. As we shall see, by extend-
ing the range of the interatomic forces we corre-
spondingly introduce long-range effects into the
displacement field.

W'e assume that total crystal energy can be written
as a sum of effective pairwise interactions between
the ions and a volume-dependent contribution from
the electron gas. This assumption is based on the
pseudopotential theory of metals, in which the
atoms are separated into ion cores and a "gas" of
quasif ree conduction electrons. Harrison shows
explicitly that the total energy contains a volume-
dependent term and an effective pairwise central
interaction between ion cores. We denote this by
the interatomic potential 4'(r) (r being the appro-
priate spacing).

For a crystal with total potential energy resulting
entirely from central pairwise interactions, the
Cauchy relations must hold. For cubic crystals,
this means that C»= C44, which are not equal for
most cubic metals (including aluminum) because of
the volume-dependent contribution to the total en-
ergy of the crystal. In other words, the crystal is
required to be stable only under the combined in-
fluences of the central pairwise potentials and the
volume-dependent part of the energy. Thus, the
Cauchy relations are violated.

We make two approximations: First, we assume
that the interatomic potential is of reasonably short
range and is essentially zero for atoms farther

apart than fifth-nearest neighbors. (Shyu and
Gaspari' have shown that this is a reasonable as-
sumption or all alkali metals except lithium; in
this paper we show that a fifth-neighbor model for
aluminum provides a good over-all fit to neutron
diffraction data. ) Second, we expand the energy of
the crystal to the harmonic approximation. Our
calculations suggest that this is reasonable since
the displacements we obtain are typically I.ess than
a few percent of interatomic spacing. However,
this restriction can be removed when we have a
reliable interatomic potential which is valid for all
values of r.

The method of lattice statics, originally intro-
duced by Kanzaki, ' involves writing the displace-
ment field about a defect as a Fourier sum, where
the coefficients are obtained by Fourier transform-
ing the equilibrium equations. The displacements
calculated, with this Fourier sum, are exact, with-
in the harmonic approximation and the assumption
of periodic boundary conditions, and in no way de-
pend on fitting the displacements of atoms "far"
from the defect to certain assumed values. That
is, this method allows for the simultaneous relaxa-
tion of all the atoms, and is therefore superior to
direct space calculations (see, for example, Ref.
3) which assume that atoms outside a certain region
(region I) centered on the defect are either held
fixed or forced to relax to positions determined by
elasticity theory. The major difficulty with such
calculations is that one does not know a Priori how
large to make this region.

Let us take the region to be spherical with radius
Ro and define it as that region in which the strain
field is not adequately described by continuum elas-
ticity theory. The displacements calculated in
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TABLE I. Force constants n~ for both isotropic and anisotropic aluminum together with coefficients A&& and P& in

Eq. (6)—units of o& and p& are 104 dyn/cm.

1 2

Coefficients A&&

10

Qg
Aniso- Iso-
tropic tropic

Aniso-
tropic

Iso-
tropic

1 0.5
2 0. 5
3 1.0
4 4.0
5 2. 0
6 1.0
7 4.0
8 2.707
9 1.707

10 2. 10

—0. 5
1.5

—1.0
4. 0
6. 0
5 ~ 0
2. 0
5 ~ 121
6. 121
4. 0

2 ~ 0 —2.0
0 ~ 0 2. 0
0.0 0.0
0.0 0.0
0.0 0.0
2. 0 4. 0
2. 0 4.0
1.0 1.0
1.0 l. 0
0.0 4.0

3.0
6.0
6.0
2.6667
6 ' 6667
4 ~ 6667
2. 6667
2. 1143
5.2191
4.0

—3.0
9.0

—6.0
13.333
9.333
7.3333
9.3333
7.8857
4.7809
8.0

2.0
2.0
4.0
0.0
0.0
0.0
0.0
3.0
1.0
4. 0

—2. 0
6.0

—4.0
0.0
0.0
0.0
0.0
3.0
5.0
4.0

14.6
1.8
3.6
8.0
4. 0
5. 2
1.6
4.4688
3.2688
4. 0

—14.6
18.2

—3.6
8.0

12.0
6.8

10.4
9.5312

10.731
8.0

4.3232
—0.3403

0.1919
0.0217

—0.0779
-0.0118
—0.1533

0.0778
0.0692

—0.0149

4. 3008
—0.3627

0.3268
—0.0457
—0.0151

0.0510
—0. 1196

0.1116
0.0175

—0.0666

3.2392
l. 1337
3.6447

16.0
6. 072
2. 9

16.7
9.856
5.3486
6.821

3.6441
l. 1337
3.6447

16.0
6. 072
2. 9

16.7
9.856
5.3486
6.821

Ref. 1, with a second-neighbor central-force model,
indicate that, for a vacancy in aluminum, R0 = 6a,
where &2a is the first-nearest-neighbor separation.
For the more realistic fifth-neighbor model our
results set a lower limit for R0 of about 25a. There
are approximately 30000 atoms in a region this
size. Clearly, a direct space calculation which
allows for the simultaneous relaxation of all atoms
within a region I of radius = 25a is for practical
purposes impossible.

In Sec. II we give a resume of the method of lat-
tice statics with particular emphasis on the assump-
tion of periodic boundary conditions. We prefer to
call this the superlattice assumption and will refer
to it as such in what follows. In Sec. III we list the
formulas pertinent to our problem and discuss in
some detail the procedure used to obtain the con-

stants in these equations. Results are listed and

discussed in Sec. IV.

II. METHOD OF LATTICE STATICS

Since a detailed account of the method of lattice
statics has recently been given by Flocken and

Hardy, ' we will present only the basic assumptions
and resultant formulas along with a brief discus-
sion of the dependence of the strain field on the
volume of periodicity.

Consider an infinite monatomic lattice with iden-
tical point defects regularly spaced to form a super-
lattice of defects having the same structure as the
host lattice and containing N lattice points per de-
fect. By symmetry the strain field due to the
superlattice is periodic over a Wigner-Seitz volume
(supercell) containing N lattice points and one de-

TABLE II. Comparison of calculated phonon frequencies with corresponding experimental values.

Dir ec tion
of
q

or
Eb 0.4 0. 5

PPl (d fo r
q (zone boundary)

0.6 0.7 0.8 0.9 1.0
(100)

(100)

(110)

(110)

&110)

E
T

E
T

E
T

1.82
2.07

6.15
5.47

1.11
1.18

4. 69
5.30

2. 35
2.43

l. 81
1.48

6. 87
6.89

2.74
3.05

8.42
7.63

1.65
1.65

7.02
7.83

3.68
3.82

2.55
2.04

9.43
9.40

3.69
4.04

10.50
9.87

2.04
2.07

10.08
10.47

5.45
5.54

3.21
2.66

ll. 72
11.34

4.48
4.90

12.34
12.09

2.42
2.43

13.23
12.93

7.51
7.49

3.83
2.34

13.05
12.37

5.21
5.55

14.05
14.07

2. 55
2. 69

16.30
14.94

9.49
9.57

4.44
4.07

13.10
12.35

5.83
5.94

15.45
15.49

2. 55
2. 85

17.34
16.26

11.31
11.58

4.98
4.77

ll. 91
11.40

6.07
6.07

16.00
16.00

2. 55
2. 90

16.30
16.72

12.95
13.33

5.35
5.35

9.86
9.86

me~ is in units of 10 dyn/cm; m =atomic mass. T denotes theoretical; E experimental.
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TABLE III. Comparison of displacements —[$(l, l, l) &3l ]/a at selected points obtained using P and Q methods.

Displac ements

Lattice
points

8000
samples

P method
64 000 512 000

samples samples
4 096000
samples

4 000
samples

Q method
32 000 55 296

samples samples
256 000

samples

(4, 4, 4)
(8, 8, 8)

(12, 12, 12)
(16, 16, 16)
(20, 20, 20)
(24, 24, 24)
(28, 28, 28)
(32, 32, 32)
(36, 36, 36)
(40, 40, 40)

O. n01623
0.009936

0.005428
0.032531
0.030763
0.016820
0.0

0.005972
0.036824
0.044483
0.045137
0.042198
0.036494
0.028462
0.018795
0.008714
0.0

0.049360
0.050413
0.050443

0.006288
0.036356

—1.919646
8.401566
1.004831

—0. 137893

0.006046
0.037420
0.046502
0.049922
0.050872

—2. 605500

0.006046
0.037421
0.046507
0.049949
0.051568
0.052298

—0.711894

0.006046
0.037421
0.046509
0.049957
0.051584
0.052473
0.053010
0.053357
0.053545
0.053763
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feet. This hypothetical periodicity permits a
Fourier transformation of the 3N equilibrium equa-
tions which leads to the strain field given by a sum-
mation over the N wave vectors (reciprocal-super-
lattice vectors) of the first Brillouin zone (B.Z. );
namely, '

&(1;N) = (1/N) Z; [ V (q)l
' &(q)e""" .

The term $(1;N) is the displacement of the 1th
atom for its perfect lattice position at r(1) due to
a superlattice of size N. The term [y(q)] ' is the
inverse of the dynamical matrix for wave vector q
exclusive of the inverse mass factor. The term
F(q) is defined by

&(q) =Z- f (1)e"'""

where F(1) is the force on the 1th atom in its dis-
placed position due to the defect at the origin.

Similar arguments have led Hardy and Bullough'
to the following expression for the interaction en-
ergy of a defect at the origin with a second defect
at r(1):

E(1;N) = ( —1/N) P; F(q)[p(q)] ' 0(q) cos[ q. r(1)] .
(3)

The summation over q in Eqs. (1) and (3) includes
all the distinct wave vectors in the first B.Z. If
we let q, = (n, /M) x (v/a) (where M' = N), the allowed
wave vectors for the fcc lattice are those for which

n„n~, and n, are either all odd or all even integers
with n&+ n2+ ns 2 3M.

Considering only the three symmetry directions,
boundary conditions require zero displacements for
points (-, M, —,'M, O), (M, O, O), and (M, M, M), since
these are points of inversion symmetry for the
superlattice. Although the point (—,'M, ~M, —,'M) is
not a point of inversion symmetry, it is the center
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of the tetrahedron formed by the vacant sites at
(0, 0, 0), (M, M, O), (M, O, M), and (O, M, M). There-
fore, the displacement of the atom at this point is
also forced to zero. These symmetry requirements
are somewhat troublesome since we want to obtain
the displacement field of an isolated vacancy. How-
ever, by using increased values for N, we can iden-
tify the effect of this imposed symmetry and es-
timate the displacements caused by an isolated
vacancy.

The above sampling technique (which we call the
P method) has been widely used since the advent of
computers as the method for treating problems
which require a summation over lattice vibrational
modes. A recent example of lattice-statics cal-
culations with this method is given by Flocken and
Hardy. '

It was mentioned above that the method of lattice
statics is exact within the harmonic approximation
and the superlattice assumption. The superlattice
assumption introduces the dependence of ( and E
on N. This is not a serious difficulty if the range (1/N) P;-[v/(2v) ] f dq, (4)

of the atom-atom and atom-defect forces is small
compared to the size of the maximum attainable
supercell. For such problems, $(1;N „)and

[E(1;N „)]are good approximations to $(1;~) and

[E(T;~)]for all f such that Ir(1)I &Ro. For Ir(1) I

& Ro i ~ e. , where the method of lattice statics be-
comes continuum theory, $(1;~) and E(1;~) are
best calculated by a technique introduced by
Kanzaki' and used by Hardy and Bullough" and

Flocken, ' which converts the summation over q
to a single integration over the azimthual angle
about the direction in q space along r(1). We have
found that increasing the range of the interatomic
forces to include fifth-neighbor interactions in-
creases Rp so much that the symmetry require-
ments of the P method become very marked (Fig.
1).

An alternate approach is that of letting the volume
of periodicity become infinite. Thus,
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where v is the volume per atom and the integration
is over the first B.Z. For most realistic prob-
lems, the integral must be performed numerically.
In face, the above sampling technique may be con-
sidered as a numerical approximation to the inte-
gral.

Another method, the random-sampling technique
used by Bullough and Hardy, ' eliminates the prob-
lem of periodicity but is not very efficient for ob-
taining accurate numerical results. However,
much more efficient numerical methods do exist for
the approximation of single integrals and may be
applied to this multiple integral. We might expect
that this would be a very difficult problem because
of the complex shape of the B.Z. Fortunately,
this is not the case.

Note that

f h(q}dq= —,
' f h(q}d q,

where h(q) is any function with the periodicity of
the reciprocal lattice and C denotes the cube in-
scribing the first B.Z. Thus, in units where a= 1,
the displacements become

&(1;~)= [1/(2z) ] f f' f'p '(x, y, z)F(x, y, z)

& exp[i(i~x+lzy+l, z)] dxdydz, (6)

where x=q, &, y=q&a, and z=q, a. The constant
limits on this integral permit it to be solved easily
by the generalization to multiple integrals of con-
ventional methods for the numerical integration of
single integrals.

One of the most efficient methods is the Gaussian
quadrature method. " If we use the Gaussian quad-
rature with n positive roots, $(1) is approximated
by

$(1;~}=8 Z 5(x(, x), xq)W(WqW~,

I I I I I I I I I I

-0.06—

Continuum value

-0.05—

-0.04'—
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~ P method;
64 000 sample points
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55 296 sample points

FIG. 4. (g (l l, l) x3l jig vs l using
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where i, j, and k are summed from —n to n (exclud-
ing zero), and 5 is the integrand in Eq. (6). The

x, s m times the ith Gaussian abscissa and 8', is
the ith Gaussian weight.

Note that we obtain a much denser sample of
points in our integration volume near the corners
of the cube than we do at the origin. As we also
need a dense sample of points at the origin, because
of the singularity in V ' at the corners and the
origin, we approximate $(1) by

$ (1;~) = ~p Q 5(x(, x~, xp) W( W) Wp
f, j,A

where i, j, and k are now summed from —2n to 2n,
x,'= (pa)(1 —x,} and W,

'= —,
'

W, for lil «n, and
x,'= (p v}(1+x, „) and W,'= —,

'
W, for li I &n.

This numerical integration method will be re-
ferred to as the Q method. For both the P and Q
methods, we can shorten the calculations consider-
ably by accounting for the symmetry of G.

III. SPECIFIC FORMULAS

We wish to apply this method to the case of a
vacancy in aluminum, a crystal which has the face-
centered cubic structure. The aluminum atoms
are positioned at sites: r(1) = (l~, lp, lp)a, where
r(1) is referred to the usual cubic axes with the
origin at a vacancy of the superlattice. The l„
l2, and l, are integers such that l&+l ~+l, is even
and a= 2. 02 A. However, there are only ~«N non-
equivalent r(1) vectors because of the superlattice
assumption and the fact that the cubic point group
contains 48 symmetry operations.

Our model assumes that each atom interacts
with its nth shell of nearest neighbors via a central
potential 4'(r), where 4'(r) is constant for n ~ 6.

Lattice points
(l), lg, l3)

Displacement components

~,/a ~,/a gs/a

Interac tiog
energies E(1)

eV

(1, 1, 0)
(2, 0, 0)
(2, 1, 1)
(2, 2, o)
(2, 2, 2)
(3, 1, o)
(3, 2, 1)
(3, 3, o)
(3, 3. 2)
(4, o, o)
(4, 1, 1)
(4, 2, o)
{4, 2, 2)
(4, 3, 1)
(4, 3, 3)
(4, 4, o)
(4, 4, 2)
(4, 4, 4)
(s, 1, o)
{s, 2, 1)
(5, 3, 0)
(5, 3, 2)
(5, 4, 1)
(s, 4, 3)
(s, s, o)
(s, s, 2)
(6, o, o)
(6, 1, 1)
(6, 2, o)
(6, 2, 2)
(6, 3, 1)
(6, 3, 3)
(6, 4, o)
(7, 1, o)

—0.01950
—0.02106
—0.00361

0.01162
0.00179

—0.02480
0.00051
0.00422
0.00060

—0.01333
—0.00927
—0.00600
—0.00030

0.00032
0.00008
0.00128
O. 00010

—O. 00007
—O. 00571
—0.00367
—0.00199
—O. 00041

O. 00000
—0.00010

0.00024
—O. 00010
—0.00368
—0.00322
—0.00278
—0.00194
—0.00160
—0.00047
—0.00082
—0.00227

—0.01950
0.0
0.00375
0.01162
0.00179

—0.00468
0.00096
0.00422
0.00060
0.0

—0.00333
—0.00382
—0.00033

0.00019
O. 00001
0.00128
0. 00010

—O. 00007
—0.00161
—0.00194
—0.00151
—0.00043
—0.00011
—0.00015

0.00024
—0.00010

0.0
—0.00071
—0.00123
—0.00089
—0.00108
—O. 00036
—0.00074
—0.00039

0.0
0.0
0.00375
0.0
0.00179
0.0
0.00118
0.0
0.00045
0.0

—0.00333
0.0

—0.00033
0.00014
O. 00001
0.0
0.00011

—0.00007
0.0

—0.00010
0.0

—0.00028
0.00002

—0.00010
0.0

—0.00002
0.0

—0.00071
0.0

—0.00089
—0.00039
—O. 00036

0.0
0.0

—0.07218
—0.04552

O. 03055
—O. 00035
—0.00261

0.00261
—0.01304
—0.01968
—0.00170

0.03280
0.01504
0.00601

—0.00269
0.00082

—O. 00200
0.01209
0.00046

—0.00133
0.00069

—0.01006
—0.00919
—0.00117

0.00258
—0.00053

0.00584
0.00094
0.02056
0. 00878
0.00201

—O. 00437
—0.00464
—0.00088
—O. 00285

O. 00584

The elements of the dynamical matrix for this
model are

TABLE IV. Displacements about vacancy for lattice
points with l& +l2 +l3 ~54 together with corresponding
interaction energies between pairs of vacancies at same
separation (computed using the Q method with 55 296
sample points).

Vis(qs qp qp) = 2ns+ 4np+ np+ 2n4+ 4np+ 6np+ 2nq+ 4np+ 4np+ 6nqp —(nq+ np) cosqq a(cosq pa+ cosqpa)

—2n, cosq, a cosq, a —n, cos2q& a —n4(cos2qpa+ cos2q, a) —(-', n, + p n, ) cosqq a(cosqpa cos2q, a

+ cos2qpa cosqpa) —(znp + p n, ) cos2q, a cosqpa cosqpa —(n, + n, ) cos2q, a(cos2qpa + cos2q a)

2n 8 cos Rg pa cos 2q 3 a —( p' np + & 9n») cosq& a (cos3q, + cos 3q, a)

(p 9np + p nyp} cos3qq a (cosq, a + cosq, a) —2n„(cosq, a cos3qpa + cos3q, a cosq, a)

Vj p(qg q pp q3) = (nq —n p} sinq, a sinqpa + (—',) (n, —np)(sinqq a sinqpa cos2qp a + 2sinq, a sinq pa cosq pa

+2sin2qqa sinqpa cosqpa)+(n7 —np) sin2qqasin2qpa+(Y)(np —nqp)(sinqqa sin3qpa+sin3q, a sinqpa);
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V»»2(q1 q2 q3) = V11(q2 q3 q1)

V33(q1» q& q3) Vll(q3» q1» 'q2)

V18(qi, q~ qs) V12(q3 q1 qd

n(qi, q~ q3) V12(q2 'q3 ql)

~23 ~3 2y ~l 2 ~21 & ~13 V31

where

O'0 r 184m

(10)

and v 2a is the first-nearest-neighbor separation.
The subscripts on the derivatives indicate the value
of r which at the derivatives are evaluated.

The numerical values for the 's were obtained
by solving a set of 10 linear equations:

10

P A;, n;= P~; j=1,2, . . . , 10 .

The coefficient matrix A is determined from the
dynamical matrix by inserting particular values
for q. Three equations can be obtained in the q-0
limit, where the corresponding P& are functions of
the elastic constants, determined by comparing
V(q) with the dynamical matrix of elastic theory.
Any number of equations can be obtained for q &0
with the corresponding p, being eigenvalues of V(q)
taken from experimental phonon dispersion curves.

Several sets of force constants were determined
by using different sets of 10 equations. The repro-
ducibility of the experimental phonon dispersion
curves was checked for each set of n's. The 10
equations (shown in Table 1 along with the solutions,
a, ) chosen as giving the best over-all fit were:
the three q-0 equations (j=1,2, 3); the two (100)

zone-boundary equations (j= 4, 5); the iwo (111)
zone-boundary equations (j= 6, 7); the longitudinal

(110) zone-boundary equation (j=8); the transverse
(110) zone-boundary equation for modes with polar-
ization along the (1 —10) direction (j = 9); and the
transverse q= (v/2a)(l, 1, 0) mode with polarization
along the (001) direction (j= 10). The experimental
values for q along the (100) and (110) directions are
those of Yarnell, Warren, and Koenig. ' For q
along the (ill) direction, Walker's results' were
used. The elastic constants C», C», and C44 used
were, respectively, 1.08 &10» 0. 62 &10, and

0. 28 &10' dyn/cm .
The ability of the force constants in Table I to

reproduce the experimental dispersion curves is
demonstrated in Table II.

We were also interested in obtaining force con-
stants which would give us elastic isotropy, since
the relation $(r) r/ccr, valid for an isotropic elas-
tic medium, is useful for comparison with the re-
sults of lattice statics. To obtain isotropic force
constants (also shown in Table 1), we merely re-
placed C» with C,z+ 2C« in Eq. (11).

From symmetry considerations alone the forces
on the first-, second-, and fourth-nearest neighbors
due to the vacancy are radial. Since the force con-
stants for third and fifth neighbors are relatively
small, we assume the forces on these neighbors to
be radial also. With this assumption the Fourier
transformed forces become

E,(q) = i{2m 2f, sinq, a(cosqza+ cosq, a)+2fzsin2q, a+ q K6f3[2sin2q, a cosqzacosq, a+sinq, a(cos2qza cosq, a

+cosqqacos2q, a)]+2v'2f4sin2q, a(cos2qza+cos2q~a)+~»»10 f, [3sin3qqa(cosqza+cosq~a)

+ sinq& a(cos3q&a + cos 3q, a)]j;

and

+2(qi, q2 'qs) +1(qS q3 q1)

+3(q1 q2 'q3) +1('q3 q1 q2)

where f„ is the force on the nth neighbor = [A'(r)/

r]r(»»)'
The numerical values of the f„'s for isotropic

aluminum were obtained by the same method as that
used by Bullough and Hardy, ' following Kanzaki,
with the exception that there are five unknown
forces to be determined:

n 1 2 3 4 5

f„/a(dyn/cm) —3156.8 —491.8 625. 4 1568. 3 —1054.9
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where f„ is positive for outward radial forces.

IV. RESULTS

The required summa, tions in Eqs. (1), (3), and

(6) were done for the isotropic aluminum model
discussed in Sec. III using an IBM 360/65 computer.

In Figs. 1-4, we show the displacements for
atoms along each of the three symmetry directions.
These are intended to show the general function
dependence of $ on 1 and N. The symmetry of the
superlattice is exhibited in Fig. 1 where [t(f„l„
l3;64000)(l, +l2 +l3 )]/a is plotted for the three
symmetry directions. Since continuum theory pre-
dicts a I/r dependence for $(r), the continuum
result for such a plot is a horizontal line. The
continuum value —0. 0550 is easily calculated from
the forces f (I) as shown by Hardy. ' A continuum
value of —0. 0542 was obtained by Bullough a.nd
Hardy' with their second-neighbor model. Moving
in the direction of + I (Fig. 1}, we see the results
of the lattice statics tending toward the continuum
value before being forced to zero at (40, 0, 0),
(40, 40, 40), (20, 20, 0), and (20, 20, 20) by the sym-
metry of the superlattice.

In Figs. 2-4, the P and Q methods are compared
for atoms along the (100), (110), and (111)direc-
tions, respectively. The number of sample points
used were 64000 and 55296, respectively, for the
P and Q methods. These plots are magnifications
of the regions in Fig. 1 where the superlattice as-
sumption has drastic effects on the P-method cal-
culations.

From these figures it is clear that, even though
the number of sample points used in the Q calcula-
tions was less than that used in the P calculations,
the Q results maintain accuracy over a much larger
region than do the P results. In fact, we can def-
initely see that the lattice-statics displacements
approach the elastic limit before the results of the
Q calculations abruptly become absurd. This
abruptness with which the Q results obviously be-
come ridiculous aids in determining the region of
validity of these calculations. "

As a further check on the computational accuracy
of these two methods, we have compared $ (I, I, I; ~)
&&3f' using a, variety of sample point densities.

These results (Table III} also indicate that the Q
method is much more efficient than is the P method.

For completeness, we show in Table IV the dis-
placements and interaction energies for lattice
points with )g +$g +$3 & 54, These results are for
isotropic aluminum using the Q method with 55296
sample points.

Finally, this work using the fifth-neighbor model
demonstrates important modifications of earlier re-
sults' obtained for a second-neighbor force-constant
model. Specif ically, the displacements continue
to deviate strongly from the asymptotic values much

farther from the defect than is the case for the sec-
ond-neighbor model. The second-neighbor calcu-
lations indicate that, for isotropic aluminum,

$(L) && (I, +l2 +f3 ) is within about IO/q of the con-
tinuum value for atoms farther than approximately
6a from the defect. For the fifth-neighbor model
the 10% discrepancy is maintained for atoms at
least as far as 20a from the vacancy. It is these
long-range effects that render any semidiscrete
calculations impractical.

Because of the forced elastic isotropy and the
possible inadequacy of the fifth-neighbor central-
force model, the results presented here should not
be expected to describe exactly the distortions about
a vacancy in a real aluminum crystal. Indeed, we
found that the force constants && were rather sen-
sitive to the particular set of experimental values
P, used in Eq. (11}, indicating that the model needs
improvement.

However, these limitations do not affect the main
point of this work; namely, that an extension of the
range of the interatomic forces may corresponding-
ly increase the region in which the predictions of
elastic theory are inadequate. The point is that
our results are exact for the set of force constants
o [cf. Eq. (10)] we have used and the resultant
displacements are directly comparable with those
in an isotropic continuum having the same elastic
constants. Furthermore, the assumption of radial
third- and fifth-neighbor forces is good since re-
laxation changes both f~ and f, by approximately
0. 2% as compared with their zero-order counter-
parts. Since these last forces are purely radial,
it follows that f, and f, are also radial to a very
good approximation.
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Atomic Energy Commission.
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The transverse magnetoresistance has been measured at 4. 2 oK in polycrystalline alloys of
Cu containing Co, Fe, or Mn, three solutes of respectively increasing magnetism. The so]ute
concentrations are in the range 9-4000 at. ppm. Deviations from Kohler's rule in the low-
field condition confirm the relative anisotropies of the solute potential scattering previously ob-
tained from the Hall effect, and incidentally lead to a value of vz/~& of 0. 9 for Co in Cu. The
dependence upon solute concentration of the negative magnetoresistance in the CuMn alloys
(23—271 ppm) shows an unexplained property: It is concentration independent and in agreement
with previous work for the more concentrated samples, but becomes dependent upon concen-
tration below about 70 ppm where no previous measurements exist. The importance of sample
size effects in such measurements upon very dilute alloys is illustrated.

I. INTRODUCTION

According to Kohler' s rule, the galvanomagnetic
effects in a metal are functions of H/p„where H
is the applied field strength and po is the electrical
resistivity when H= 0. The circumstances under
which this rule breaks down as the temperature
or purity is altered have been discussed frequently
in the literature. ' These include eases where an
effective change in the topology of the Fermi sur-
face is produced (as, for example, by magnetic
breakdown or localized interorbital electron scat-
tering) or where the anisotropy of the average
electronic relaxation time (r) is changed (as can
happen when two or more comparable scattering
processes of different anisotropies coexist). A
Kohler diagram can therefore frequently be a
convenient presentation for discussing the contri-
bution of these effects to the field dependence of
a given galvanomagnetic property.

It is the purpose of this paper to discuss the ap-
plication of a Kohler diagram to the isothermal

transverse magnetoresistanee of very dilute alloys
of Cu containing solutes possessing varying degrees
of magnetism. Following some recent work by us2

showing evidence of possible solute clustering ef-
fects in such systems, we are particularly inter-
ested in their behavior as the solute' s concentra-
tion is reduced to zero. The paper therefore
deals with results obtained for very dilute alloys
where the measurements inevitably encompass
the intermediate-field region, i. e. , between the
low-field region (~v.«1), where the dominant
scattering process governs the behavior of the
magnetoresistance, and the high-field region
(&ur»1), where only the topology of the Fermi
surface and the degree of compensation are im-
portant. (~is here the cyclotron frequency cor-
responding to H. )

The work has involved the measurement at
4. 2 K of the transverse magnetoresistanee of
polycrystalline samples of Cu containing Mn, Fe,
or Co with an approximate concentration in the
range 9-4000 at. ppm. The results lead to


