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the low-wave-number electron-phonon interaction,
especially in metals where the Fermi surface is
well known. Second, nothing is found to indicate
that the general theory of ultrasonic attenuation is
not completely valid within its stated limitations.
Finally, it appears that, as calculations of ultra-
sonic attenuation become more sophisticated,

greater consideration must be given to the pos-
sibility of an anisotropic electron mean free path.
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A general method for the calculation of electronic states in solids and molecules is pro-
posed. As in the augmented-plane-wave scheme, we use the variational principle for the
Hamiltonian in an energy-dependent basis. The basis functions, so-called muffin-tin orbitals,
are generalizations of Heine s resonant orbitals. For a muffin-tin potential, the secular
matrix has form (1+AU)A, where A is the matrix of the Korringa-Kohn-Rostoker (KKH) meth-
od and U is a simple matrix element of the potential. In contrast to the KKr scheme, the pres-
ent method easily includes perturbations to the muffin-tin Hamiltonian.

I. INTRODUCTION

The scattered-wave-or Korringa, Kohn, Ros-
toker (KKR)—method has proved very useful for
the calculation of electronic energy levels in so)-
ids' and molecules, whenever the muffin-tin (MT)
model is appropriate; that is, whenever the one-
electron potential is spherically symmetrical in-
side nonintersecting atomic spheres and zero out-

side. For low energies and short-range potentials,
the secular matrix is very small, since only partial
waves g, (E, r) of nonzero phase shift and of one
energy contribute. Thus the radial quantum number
n of the linear-combination-of-atomic-orbitals
(LCAO) matrix does not appear, instead the KKR
matrix depends implicitly on energy. Although the
MT model describes the potential in close-packed
metals fairly well, it is not satisfactory in more
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open structures, in particular not when covalency
is involved. Moreover, if the range of the potential
is increased, more terms in the partial-wave ex-
pansion are needed. In a recent attempt to extend
the KKR method to the treatment of intersecting
MT potentials, reasonable convergence was ob-
tained for silicon only after including all partial
waves up to / =4. Nevertheless, the. Si wave func-
tions would probably be fairly well described by
Bloch sums of overlapping s and p functions only,
so, in this case of two atoms per unit cell, 8
rather than 50 basis functions seem appropriate.
For the treatment of crystals with more atoms per
cell or molecules, a small basis per atom becomes
imper ative.

Another limitation of the KKR formalism stems
from the application of the variational principle to
a functional A, which is not the expectation value
of the Hamiltonian. Therefore, there is no simple
prescription for including perturbations in the
first step of a KKR calculation.

In the present paper we suggest how these in-
conveniences may be removed by generalizing
Heine's idea on the use of resonant orbitals in an
LCAO-like approach. We are not particularly in-
terested in resonance, and the "muffin-tin orbit-
als" (MTO's), as previously introduced, 4 are es-
sentially the wave functions at energy E of a single
MT potential. The cores behave like atomic or-
bitals and —for positive energies —the tails are
like plane waves. Thus, an MTO possesses both
itinerant and localized behavior in proportions
governed by the energy derivative of the corre-
sponding phase shift. We shall make no attempt
to separate these two properties. It was previous-
ly shown that the KKR wave function may be in-
terpreted as a linear combination of MTO's
(LCMTO), and in the present paper we emphasize
that the more familiar spherical-wave representa-
tion is just the one-center expansion of the LCMTQ.
Therefore, away from the nuclei, the LCMTO has
far better l convergence than the spherical-wave
expansion.

In the MTO representation, we find the MT
Hamiltonian minus the energy (H„r E) to be of-
the form (A+ AUA), where A is the KKR matrix,
and the second term is the tail-tail of three-cen-
ter contribution. Heine anticipated the latter to
be negligible for a narrow resonance, but —as we
show by application to Cu and diamond —for wide
bands it improves the convergence over that of the
KKR method. Since A is a factor of the MTO ma-
trix, the fully converged energies and wave func-
tions are identical for the two methods. Although
only complete for a MT model we feel that the
MTO basis is sufficiently realistic for treating a
variety of perturbations. As an example, we for-
mulate the MTO matrix for a non-MT potential

and expect to publish applications hereof to semi-
conductors and molecules in the near future. Final-
ly, we mention that the use of an energy-dependent
basis may cause "false zeros" of the secular de-
terminant, and we show how they may be identified.
In the MT model, false zeros can arise from the
factor (l + UA).

and

K ij, (xr) —n, (xr) for E & 0
—n, (xr) for 0& E (4)

written in terms of spherical Bessel and Neumann
functions. According to whether the energy is
negative or positive x equals i( E) or E-~a.
Continuity of logarithmic derivatives at the MT
sphere r =S requires

s=S J—
and c follows from continuity at the sphere. In
terms of phase shifts, c/s equals & "(cot'0 —i)
and z ' coty for negative and positive energies,
respectively. Since MTO's at different centers
are not orthogonal, and since we shall make no
explicit use of the overlap matrix, the normaliza-
tion has been specified by P(S) rather than by
f ly I'dv Heine's normalization' has not been
adopted, as it is only appropriate near resonance.
At eigenvalues or at resonances, c is zero, and the
MTO equals the bound or resonant state ft). When
s is zero, the MTO is confined to within the MT

II. MUFFIN-TIN ORBITALS

Let Q, (E, r) be that solution of Schrodinger's
equation for a single MT potential which is regular
at the origin and has energy E relative to the MT
zero. For positive energies, Q is unbound but
6 function normalizable; for negative energies
ft) can only be normalized at the eigenvalues. We
define the MTO in such a way that it may be nor-
malized also at negative energies outside the ei-
genvalues, so the formation of LCMTO's or Bloch
sums causes no overlap catastrophe in general.
Therefore,

(E, r) =pi (E, r)+ci(E)ZrAE r)

which, outside the MT, equals

—s, (E)K, (E, r) .
Here, J and K are wave-equation solutions, regular
at the origin and at infinity, respectively, and
both are regular at zero energy. They are products
of the spherical harmonic i' F, (r) and the real
radial functions

&, =& j', (&r)
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sphere. According to the scattered-wave terminol-
ogy of Johnson, cJ is the incoming and —s~ the
outgoing wave. The definition of the MTO is ar-
bitrary within terms of J for positive energies,
and here we might have defined X equal to ft} as was
done by Heine. ' For crystals this is illustrated
by the fact that Bloch sums' ge

'
Z, (&, r —R)

of y's and f3'}'s are equal —except at the free-elec-
tron parabola, where an overlap catastrophe oc-
curs-because the Fourier transform of J is pro-
portional to 5(k —E).

For MT's centered at points Q an LCMTO is

g(E, r) =+ rAr(E) Xr(&, r —Q), (6)

In order to express the LCMTO of Eq. (6) as a
partial-wave expansion, we make use of an addition
theorem for the tails:

which holds for «Q. ' Here C is the Gaunt coef-
ficient fYzYr*, .Yr, d, r, and we have written (L) for
(fm ) and have suppressed the energy dependence
in all functions. The addition theorem may be de-
rived from the well-known special case for the
monopole field Eo by expressing multipoles as
superpositions of monopoles on a surrounding
sphere. Further, Eq. (f) is a special case of
Lowdin's o expansion, and also a similar —but
less explicit —expansion has been used by Eyges
in a related paper. "

The transfer matrix, giving the coefficient to
Jr.(r —Q'} in the expansion of yor, (r —Q), is

Trrrr ~ pz = cor 5qo 5rr ~ s or (1 —5oo~)

x Q 4wCrr r lr
+

Kr, (Q Q ) (8a)

and for a crystal with lattice translations R and
atoms at points q in the unit cell, summation over
MTO' s related by translation symmetry yields

l+l'-l"
qtgttqg =egg 5++t5ggt —spy M 4wCL, L, tL, u K

x Q(1 —5,. ,R)e "'"Kr,.(q —q +R). (6b)

writing (1) for (Qfm). The self-consistency condi-
tion for multiple scattering between nonintersecting
MT's, i.e. , the KKR condition, is, then, that inside
the MT at Q the term c,Jl of the corresponding
MTO must be canceled by the tails from all other
MT's. For positive energies and in terms of ft}'s,
the condition is just that inside each MT the tails
from all other MT's interfere destructively.

III. TRANSFER OR KKR MATRIX

Apart from factors which we have included to re-
duce the energy dependence, the KKR matrix
A&., 2 of Ref. '7 equals T&.,&s2 ', and apart from a
factor S„S,z, the KKR matrix A&. p of Ref. 12,
Eq. (2. 12), equals sr Tr. a. This equality may be
seen by comparison with Eq. (A2. 12) of Ref. 13
and by using the above-mentioned property of
Bloch sums of J functions. In the following we
use the latter definition of A —also for molecules;
it may be remarked that A is Hermitian whereas

't -1
Tg. 2 = sg Tj.use

The partial-wave expansion of an LCMTO around

Qr is

where

L(
(9)

4r(rr) =Ar 4'r(rr)+ [&2Tr;2&2]~r(rr)

Pr(rr) = [&a Tr;2&2]~r(rr) .

Exactly the same result would have been obtained
from the cancellation condition by requiring TA
to vanish also for l, &l(MTO).

We therefore prefer the basis of MTO's over the

Here rr=r-g„and this one-center expansion is
valid inside the MT at Qr and in the interstitial
region inside a sphere passing through the nearest-
neighbor center. 4 In Eq. (9) we have omitted the
energy and for crystals the Bloch vector.

The cancellation —or KKR—condition now states
that for a solution of Schrodinger's equationfor a
MT potential, the vector in the square bracket of
Eq. (10) must vanish. As is evident from the
above-mentioned equivalence between T and A, this
condition yields the KKR eigenvalues E and eigen-
vectors A in the standard way, and we have thus
established that the KKR eigenvector is the coeffi-
cient of both partial-wave and MTO representa-
tions, as given by Eqs. (9) and (6), respectively.

There is, however, a difference in convergence.
The MTO expansion is converged when, for
l &l(MTO), P(r) is proportional to J(r), since then
all phase shifts and M IQ's vanish. At this point
also the KKR energies are converged since T is
diagonal for l &l(MTO). But the partial-wave ex-
pansion is not necessarily converged, especially
in the outer parts of the atomic cell. If in Eq.
(7), max(L') =l(MTO}, a radius of reasonable con-
vergence is [l(MTO) —2)/z, and at larger distances
terms in the partial-wave expansion (9) with
I r & l(MTO) contribute. Since the first term on the
right-hand side of Eq. (10) together with the
diagonal contribution of the second term is just the
MTO at Qr, which vanishes for l, &(MTO), the
higher partial waves are
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partial waves for the representation of more gen-
eral Hamiltonians.

IV. MTO MATRIX

A. Muffin-Tin Hamiltonian

For the MT potential gQ VQ(lr —Q I ) we find by
definitions of the MTO and the transfer matrix that

(HMT E) X2(r2) +1 VQ1(T1)~1(rl) Tli2 (12)

Since the one-center integral (QQz, I VQ I J2, ) equals
s+L,

' the KKR matrix is

Al;2 f 41 (»)(HMT E) X2(r2)d'Tl (13)

The integrals only extend over the MT at Q„and A

therefore only includes one- and two-center terms.
Equation (13) is equivalent to the original definition
of A in Eq. (2. 24) of Ref. 13. The full MTO ma-
trix is, however,

&xl(rl) IffMT E Ixa(r2) &

23[81;3a3+Tli3(J,
I VQ I JT, )) T... , (14a)

where as above (1) is short for (Qlflml). For
Bloch sums the result is

& '
&Xl(rl) IHMT- E

I X2(T2) &

Z 3 [812323 + Tli3 (&23 I Ve3 I&23)] T3;2 i (14b)

where 1 is short for (q, l,m, ) and N is the number of
unit cells.

Thus, the MTO matrix for a MT Hamiltonian is
the KKR matrix A plus a product AUA, and these
may, in terms of f functions, be interpreted as
two- and three- center contributions, respectively. '
Since A is a factor of the MTO matrix, the latter
yields the same energies as the KKR method, pro-
vided that the determinant factorizes also, i. e. ,
that T of Eq. (14) is square rather tha. n rectangular.

Now, it is implied that the internal I.3 summation
is carried to convergence, and therefore only ful-
ly converged KKR energies equal fully converged
MTO energies; but, the rate of convergence is
expected to be faster for the latter, since in the
MTO method the stationary functional is the ener-
gy. This is illustrated by application to C (dia-
mond)' and Cu ' in Table I. For C, where the
l = 2 phase shift nearly vanishes, the energies are
reasonably converged with max(l)= 1 and 2, cor-
responding to matrix sizes for general Bloch vec-
tors of (8x 8) and (18&18) for MTO and KKR,
respectively. For Cu the d phase shift resonates
and the convergence of the two methods is the
same. At energies above the Cu d band, the
situation is as for C. For crystals with only a
few atoms per unit cell, the advantage of the im-
proved convergence may be reduced by the fact
that the structure constants of Eq. (8b), which in-
volve the elaborate lattice summations, must be
calculated for all L"(max(L, ) + max(L, ), which
may exceed the KKR value of 2 max(Ll). For C
we used max(L, ) = 4, and therefore max(L") = 8 and
4 for MTO and KKR, respectively. However, for
solids with more atoms per cell and for molecules,
where large secular matrices rather than lattice
summations are time consuming, the faster con-
vergence of the MTO energies may prove useful.

B. Non-Muffin-Tin Hamiltonian

The major virtue of the MTO method is in its
treatment of perturbations. The prescription is
simple, and the basis functions behave reasonably
throughout real space. As a simple example, we
treat the one-electron potential $QVQ(r —Q), where
the individual V's may be nonspherical and over-
lapping, but they must vanish inside all other MT's
and outside a sphere through the center of the
nearest neighbor. A nonoverlapping potential of
this type may for instance be constructed from
superposed atomic potentials by expanding in spher-

TABLE I. Comparison between KKR and MTO eigenvalues for copper and diamond with Chodorow's (Ref. 17) and
Keown's (Ref. 16) MT potentials, respectively.

r)
r~s

X)

X3

Xp

Xs

X'„

X)

KKR
max(l) =- 2

—0. 100
0. 293
0. 354
0. 156
0. 192
0. 396
0. 412
0. 718
1.104

MTO
max(l) =2

—0. 100
0. 293
0. 354
0. 156
0. 192
0.396
0. 412
0. 708
1.103

r,
I"2s

res
rp
Xt

X4

X)

max(l) = 1

—0. 921
0. 557
0. 968
1.353

—0. 318
0. 136
1.082

KKR
max(l) =2

—0. 921
0. 512
0. 907
1.353

—0.331
0. 131
0. 945

maxQ) = 1

—0. 923
0.522
0. 917
1.325

—0.330
0 ~ 129
l. 016

MTO
max(l) = 2

—0. 923
0. 510
0. 901
1.325

—0.333
0. 127
0. 941
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ical harmonics around each nucleus, using the
Lowdin expansion or Eq. (I}. Subsequently the
expansion must be projected on the interior of the
atomic Wigner-Seitz cell. '

Defining 4V= V- VMT, i.e. , &V is the non-
spherical term inside the MT and the full potential
outside, we find

( x1 (rl) I
& —E

I xa(ra))

= aZa[5i,.as, + 25o .o (Q, l
&Vo

I Ja)

+~4 T1;4 5Q Q (~41 VQ I+3) ~

~~a;a+a5o, ;ca(&il~Vo, l&a)+H c (15)

With &V(r) expanded in spherical harmonics, and

by use of the Gaunt coefficients, the one-center
integrals reduce to radial integrals. These in-
tegrals depend only weakly on energy, except near
resonance, and for small radii, J is independent of
energy.

We may remark that the MTO's X, may be gen-
eralized to y»& by allowing the defining potential to
be anisotropic inside the MT, and then including a
possible coupling between different m's for the
same / in the radial Schrodinger equation. p and j
indicate for the point group of this potential, the
irreducible representations and rows, respectively,
so now the phase shift is g» rather than g, . Since
"radial excitations" are thus treated exactly, the
"angular excitations, " as caused by the l-l coupling
may be treated as perturbation by means of Eq.
(15), where now V, have been coupled to V,», and
4V only includes the coupling between different
I's of the same (Pj).

zeros of a given resonance coincide exactly with
the divergence of the logarithmic derivative, so
they are not observed. The MTQ method is com-
plementary, the bound or resonant eigenvalues are
flat, and the free-electron-like eigenvalues —which

only occur in solids —are curved. Unfortunately,
the false zero associated with the latter does not
coincide with the asymptote at the free-electron
parabola.

A convenient technique for identifying false zeros,
which avoids calculation of the overlap matrix,
consists in tracing the eigenvalues X&(E), rather
than the determinant v, X, (E}, of the secular ma-
trix, keeping E equal to E„. The eigenvalues of
the Hamiltonian are determined by X, (E) = 0, and a
necessary —and for practical purposes sufficient—
condition for E (E ) to be stationary is s X& (E }/BE & 0.
This is easily seen from first-order perturbation
theory. Although it is more complicated to cal-
culate the eigenvalues than the determinant, our
experience is that the X technique is not more time
consuming. The eigenvalues &~(E) are more
smooth than their product the determinant, and
they may therefore be more easily interpolated.
Another advantage of the X scheme is that it yields
the eigenvector of tge Hamiltonian as that eigen-
vector of the secular matrix which has zero eigen-
value.

A X-vs-E plot for the Cu calculation is shown in
Fig. 1.

VI. CONCLUSION AND DISCUSSION

We have written the trial wave function for a
one-electron state in a solid or molecule as a
linear combination of muffin-tin orbitals, or

V. FALSE ZEROS

Finally a point of practical interest. Like the
APW formalism, the MTO formalism is much
simpler, if the energy E of the trial wave function
g(E, r) is assumed equal to the eigenvalue E. This
assumption has been made throughout the present
paper, and for this reason, we did not have to
evaluate the overlap matrix explicitly.

If this restriction is released, and E is re-
garded as a further variational degree of freedom,
the best estimate of the true energy is the stationary
value of E(E ), and for properly designed basis
functions this equals E . However, if the station-
ary point is a sharp extremum, there usually
exists also a nonstationary point, where E(E )=E, and this will appear as a "false zero" of the
secular determinant. In the APW method the free-
electron-like eigenvalue is almost independent of
E„, and the resonant eigenvalues exhibit sharp
extrema. ' It so happens that all (2I +1) false

0

.20 .50 .40 .50 .60
e (Ry)

.70

FIG. l. A.-vs-E plot at the X point for Cu.
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LCMTO [Eq. (6)]. This multicenter function has
been expanded in partial waves around any single
site [Eq. (9)], and the transfer matrix T [Eq. (6)],
giving the single-center expansion of MTQ tails,
was found to be essentially the KKR matrix. So
for a solution A, of the KKR equation, we find
TA = 0, the tail contributions vanish, and A not

only forms coefficients of this particular LCMTQ,
but also of its spherical wave expansion [Eq. (10)].
Moreover, this LCMTQ is the wave function of the
MT Hamiltonian correspondent to the MTO's.

The same solution may be obtained from the
MTO equations: (Hvn —E)A =0, where the Hamil-
tonian minus the energy has been written in the
MTO representation [Eq. (14)]. These equations
usually have better convergence than the KKR
equations.

Since the MTQ vanishes when the corresponding
phase shift plus the phase shifts of all higher
angular momenta are zero, the LCMTQ is con-
verged at this point. But the partial-wave ex-
pansion-having a radial part which is essentially
a power expansion in the radius —is only converged
close to the nuclei where the MT potential is strong.
Therefore the basis of MTO's centered at the various
sites is more suitable for the representation of
perturbations to the MT Hamiltonian than is the
single-center partial-wave expansion. In addi-

tion, this provides a general and simple prescrip-
tion for the inclusion of perturbations in a KKR-
like scheme.

We have given an expression [Eq. (15)] for
(H —F. ) when the Hamiltonian contains a general
one-electron potential. Multicenter integrals have

been performed by means of single-center expan-
sions, and therefore rather high angular momenta
(l- 5) may be needed in the internal summations,
especially if the potential is not weak in the inter-
stitial region outside the MT spheres. But other
ways of performing integrations over the inter-
stitial region may be used, for instance Fourier
transforms may be more appropriate for crystals.

We believe that the MTQ scheme will prove con-
venient compared to the few other schemes avail-
able —namely LCAQ AND APW '~ —for treating
general types of bands and potentials. Also, the

MTQ concept may be useful in the theory of im-
purities, surfaces, and alloys.
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