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The diffuse scattering from crystals containing defect clusters with strong displacement
fields has been calculated. The scattering is extremely large and concentrated in small re-

gions near the Bragg reflections.

For small concentrations the diffuse intensity is essentially

determined by a “cluster form factor” depending explicitly on the displacement field. The

scattering is studied in detail for small and large deviations from the Bragg reflection.

Exact

expressions are given for the moments of the scattering, depending sensitively on the displace-

ment field in the core of the cluster.

The diffuse scattering for strong displacement fields

shows a pronounced asymmetry; its center does not coincide with the position of the Bragg
peak, in agreement with recent experimental observations.

I. INTRODUCTION

The diffuse scattering from crystals containing
defects with displacement fields was first con-
sidered by Eckstein' and Huang.? This theory has
been worked out in more detail by Cochran and
Kartha® * and by Borie, ® and has also been the sub-
ject of a recent paper of Keating® which has gen-
erated some controversy.” A number of excellent
papers about diffuse scattering of defects have been
published by Krivoglaz and co-workers, % ° but they
seem to have been widely overlooked.

The diffuse scattering from defect clusters has
also been considered by Krivoglaz and Ryaboshapka, °
who calculated the scattering from dislocation
loops. According to them, the diffuse scattering
from loops is extremely large near the Bragg re-
flections and, under certain conditions, the center
of the diffuse scattering can be displaced from the
position of the Bragg peak.

Recently the diffuse scattering from defect clus-
ters has been observed experimentally. ' ™!® The
present author’s observation of the diffuse scatter-
ing of dislocation loops in neutron-irradiated Cu
crystals has been the reason to consider the scat-
tering from defect clusters in somewhat more
detail.

II. GENERAL FORMULAS FOR THE DIFFUSE SCATTERING

In this section we derive the general formulas
for the elastic scattering from lattices with de-
fects. In the following we are mainly interested
in defects with strong displacement fields. Such
large displacements are typical for defect clus-

ters rather than isolated point defects; e.g., for

a dislocation loop the characteristic displacement
is a Burgers vector or a lattice constant. The
method we use is essentially that of Krivoglaz® ®
except that we consider the image field explicitly.
For simplicity we take only the scattering at the
displaced matrix atoms into account, since this is
the only important contribution near the Bragg re-
flection. The diffuse intensity is given by the scat-
tering function:
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Here K=K - K’ is the scattering vector, R™ the
position of atom m in the ideal lattice, and u™ the
static displacement from this position. The first
term in the bracket gives the total intensity, and
we have subtracted the Bragg intensity (second
term) to obtain the diffuse intensity alone.

The displacement U™ is a superposition of the
displacements t ™" due to defects at the different
positions ». We introduce a random number
s"=1 or 0, if the position » is occupied by a defect
or not (e.g., impurity, vacancy or center of defect
cluster, dislocation loop, etc.),

GM=ES"-{M'n . (2)
n

Further, we assume that the different defects are
not correlated, i.e., the numbers s"and s" are
independently distributed. Then the averages in
(1) can be calculated using the relations (s")2=s"
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and (s")=c, where c is the concentration of defects
per lattice site. For example,

@®T =11, T = I, [1+c(e®T" 1))
=exp2,In(1 +ele® ™" 1)]

~expc 2, (eI -1) . 3)

For the last step we have assumed that ¢ <1, which
is normally the case. However, the following ar-
guments hold as well for the exact expression [with
In(1 + x) instead of x]. Thus we have

- ; m'
SR)= T R @)
m,m’
-m',n

. (fﬂl,"_t

x [expc Y (e'® ’-1)

—expcy (' Emn R ET )] (9)
n

Now t ™" consists of two contributions. The first,
a displacement t ™" due to the “real forces,” is the
exact solution in an infinite crystal. ™" is highly
localized near m =n, depends only on R™-R", and
falls off as | R™ —R"| “2 for large distances. The
second contribution 7™" is due to the “image
forces” being introduced to satisfy the boundary
condition for a finite crystal. Characteristically,
7™ g slowly varying over the crystal dimensions
and very small. The order of magnitude of this
term is ~ AV/RZ,,,, where AV is the volume change
per defect and R, a typical crystal dimension.
Now in Eqs. (3) and (4) the displacements T ™"
are very small for large | R™ - ®"|, and we have in
this case [as well as for the exact “In” in Eq. (3)]

cZn(e‘R'gm'" -1)
~ic Dy R @™ 4T ™) ~ O(c Ropysr/a) > 1. (5)

Here the symbol O(...) means order of magnitude
of ... . Due to the summation over the whole crys-
tal this term can be very large compared with one
even for relatively small ¢, because the average
displacement (u™)=c Z,,-t."'"' depends explicitly on
the crystal dimensions and is macroscopic, i.e.,
much larger than a lattice constant. It diverges
for R ryst~ . Therefore even for small concentra-
tions an expansion of S(K) in the form of Eq. (3) is
not possible. This has been overlooked in Ref. 6,
leading to the conclusion that the diffuse scattering
should be peaked at the unexpanded Bragg reflections
(see also Ref. 7). Therefore we now introduce the
position ( R™) in the expanded “average” lattice and
get from (4)
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s(®)= 2 o IR LR (™)
m,nt
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—expcy +
n

—2—iR- (T =T ]}, (6)

with

(ﬁ"‘):ﬁ"‘«pﬁ"":§m+c2n(_t."""+:r.'"'") .

When compared with Eq. (4) this formula has the
advantage that in the exponents we can neglect the
image field 7™ " (but not in (R™)!). By expanding
the exponents in powers of T ™" the linear term of
T™" alone cancels, and all other terms are ex-
tremely small, e.g., the order of magnitude of
the sum is

E"(eiﬁ-f’"'"_l)ii,;m,n

-

~E"E_'{m-n'ﬁ, Tmen

~O[(V/V)2a/R gryst | <1 . (7

The same result holds for J, ('IZ- "r'""")z, etc. There-
fore, in the exponents inside the bracket {}we can
go over to a very large (infinite) crystal, and only
the “real field” T™" remains. This is the justifica-
tion of Krivoglaz’s treatment, ® which starts with
the lattice homogeneously expanded by the “image”
forces and then takes only the “real” displacements
into account.

For large distances | R" - R™ | the bracket { }
in (6) goes to zero, which is due to the subtraction
of the Bragg scattering in (1). Therefore S(K) con-
tains no 6 functions as the Bragg scattering does.

By introducing the reciprocal lattice vectors h
of the expanded average lattice (e‘® ™ =1) we can
always write K as K=h+q where q lies in the first
Brillouin zone. Further, we restrict ourselves to
defect clusters with a mean radius R, much larger
than the lattice constant. Then the displacement
field T ™"+ T(R™ - R" is slowly varying from atom
to atom and can be calculated using continuum the-
ory. In (6) the summation over » can be replaced
by integration. For the same reason we get ap-
preciable intensities only for small values of
¢~O0(1/Ry), i.e., in the forward direction (i=0)
or near Bragg reflections (i#0). Therefore the
summation over m can also be replaced by an in-

tegration. If N is the number of lattice sites, we
get
SR =5@) =N [ 4R R ® oo, (g
c
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with

¢(ﬁ)=cf ‘é_" {eu&&)-ti(mn-im]_l

c

—iE+ - L@+ -TE)]} (92)

or

¢(R)=- 2Lﬁ~€+¢‘f ar (¢! B R _qy

Ve
« (e-i(ﬁ+3 i@ -1) (9b)
and
dar ~ - -
p(w)= - 2Lg,z= —2cf v [1-costh+q): t(r)] .

(10)

L is the Debye-Waller factor due to the static dis-
placements which reduce the Bragg scattering. ®'"
For the displacements we have assumed inversion
symmetry t (r)=-T(-7).

For large clusters the differential intensity, as
given by Eqs. (8)—(10), is strongly concentrated
near the Bragg reflection. Therefore it is difficult
to measure the differential intensity directly. How-
ever, it is relatively easy to take rocking curves
of the diffuse scattering with the use of a double
crystal spectrometer as done in Ref. 15. The con-
nection of these curves with the differential inten-
sity is discussed in the Appendix.

III. SMALL CONCENTRATIONS

For small concentrations, i.e., 2L <1, S(ED can
be expanded linearly in ¢ [Eq. (8)]. In this case the
result simplifies because of ¢(R) being a convolu-
tion, the Fourier transform of which is a product:

Si(@) =cN| Gg(q) |2, (11)
with
Gﬁ(a):f iVI_'_ e‘a~f[ea<&a>-€<a)_11 . (19
c

Here we want also to give the general result for
small ¢, when the direct scattering at the defects
is taken into account, too. For example, we may
have interstitials forming interstitial clusters.

Let R’ be the interstitial position in the unit cell,
p(R) the interstitial density within a cluster, and

¢ as above the concentration of clusters per lattice
site. Then we have instead of (11)

Si@) =cN|e TR 5(@) +65(@)] 2, (13)
with

. dr gz -
p(q)=f 7 et eE) .
c

This result permits a simple interpretation: The
diffuse scattering is equal to the number of clusters
cN times the absolute square of a cluster form‘
factor, consisting of two parts. The first, 5(q),
describes the “direct” scattering at the interstitials
in the cluster; the second one, Gﬁ(a ), describes the
“indirect” scattering at the displaced “cloud” of
lattice atoms in or near the cluster.

For h=0 we get the well-known results for small-
angle scattering. 18 pue to the small value of
g~ 1/R, we get for practically all concentrations

50(@) =¢eN|5(q) +Gola) | ? (19)

with
- dr
Golq) =
0 q) f Vc

dr  ar. =
=—f v e o, T(r) .

c

et iq-T(r)

The first term in (14) is due to the local density
increase produced by the interstitials. The sec-
ond term, being the Fourier transform of the dila-
tion — 8z +t(T), is due tothe local density decrease
of the dilated lattice near the cluster. (Because
this term partly cancels the first one, the small-
angle scattering for clusters with strong displace-
ment fields is typically an order of magnitude
smaller than for “normal” clusters. '?)

Near the Bragg reflections, for h#0, the situa-
tion is quite different. First we can replace
'ty ot pecause g~1/R,<<h. Therefore
G,‘.(El. ) now explicitly contains the displacements
R-T(r), in contrast to Go(a) which contains only the
dilatation 8;’?(?), Because 8,-1’(;) varies ap-
preciably only over a distance R, G;(a) is larger
than G4(q) and j5(q) by a factor of about hR,. {As-
suming for Cu'® a radius of Ry=30 A and h=[111],
the intensities near the Bragg reflection are larger
by a factor (kR,)?~10* than the small-angle inten-
sities.} Equation (11) is therefore justified so that
near the Bragg reflections we “see” essentially the
displaced lattice region near the cluster and not the
defects themselves as in small-angle scattering.
For example, for dislocation loops with radius Ry,
the displaced region is essentially a sphere with the
volume 4 7RJ being much larger than the volume
bnRE of the loop plane.

It is interesting that near the Bragg reflection
Sz(q) and also Gg(q) can be split up into a part
Sf(a ) symmetrical \Xi_t.h respect to 51' and an anti-
symmetrical part S;(q). From (11) we get

S3@)=S3(-q)=cN{|GF@)| %+ | GA@)|?},

A, - S - A~ (15)
S;(q)=-SE(-q)=cN2G3(q) GE@) ,
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with

- dr -
Grf(q)= —f Vo cos(q
c

GE(q)= —fgi sin(q -
c

r)[1 -cosh-T(F)],
(16)
r)sinh-T(r) .

S5+# and G5'* are not only even or odd with respect
to EI, but also with respect to the displacement
field T (and the reflection vector h). Therefore,

for instance, the asymmetry changes if we go over
from an interstitial cluster to a vacancy cluster.
The asymmetry itself is important only for relative-
ly large displacements (or high-order reflections),
for which cosh.{ and sinh-T are comparable, but
disappears for h-T«<1. Moreover, this asymmetry
should not be confused with the size effect® rep-
resenting [in (13)] the interference between Gi(q)
and (q) and being neglected in (12).

In order to get a qualitative survey of Sh(q) we note
that in (12) (e™ T _1) can be reglaced by ih-H(T)
for >R whereas forv<Rg e ¥ pscillates more
or less rapidly, if h-Tis large as we assume. For
a rough approximation, we set therefore for a spher-
ical cluster of n,, point defects with displacement
fields At/ (cluster model of Ref. 17):

i EE _ { iAng B+T/7® for » >R,
0 for v <R, 1)

and get

- singR
Gi(q)= - T ng —EEL ——“g
qitg

3 1rR a3 singR - quacoqu ol
Vc (chl)

(18)

For ¢ <1/R.,, Si(q) is proportional to 1/¢2 (Huang
scattering), whereas for ¢ >1/R,;, Si(q) decreases
more rapidly, proportional to 1/4*. Moreover, the
scattering is symmetric for small ¢, as long as the
first term in (18) dominates, and becomes unsym-
metric for larger g~ 1/R,. For A >0 (interstitials,
etc.), we have more intensity for h - §>0, i.e., for
larger Bragg angles.

IV. BEHAVIOR FGR SMALL ¢ VALUES

For very small ¢ values g <1/R, the diffuse in-
tensity can be evaluated exactly for arbitrary con-
centrations. From Eq. (8) it follows that the be-
havior of Sﬁ(q) for small g is determined by the be-
havior of ¢(R) for large R. According to (9b),
¢(R) approaches — 2L; for R~ ». For large R the
deviation of ¢(R) from — — 2Lj can therefore be ex-
panded. It depends only on the asymptotic displace-
ment field T (r) for large » > Ry. Therefore we get
for Sp(q)=SS +54:

P. H. DEDERICHS 4
Si (@) =cWV/V¥) e ®E |R-T(q)|*~1/¢%, (19)
SE@)=(N/V,) 2Lze iR T(d)~1/q . (20)

Here -t'(a ) is the Fourier transform of the asymptotic
displacement field and is proportional to 1/q. The
symmetric part S° diverging as 1/¢42, therefore,
dominates in the small-q region (Huang scattering),
whereas the antisymmetric part diverges only as
1/q.

For larger concentrations both terms are re-
duced by the Debye-Waller factor ¢~% just as is the
Bragg scattering. Therefore the Huang scattering
is unimportant for large concentrations.

As an example we calculate '{(q) for a cluster of
ne; point defects characterized by three equal

crossed dipole moments of strength P,;. We have
for a cubic crystal
o Py ki, isotropy
- - c
ta)= q Cun 1
Py K ( Cay+Cy g> -
—= 1+ ——ﬂ—-—i— K ’
et q Cyq+dKy Z;: Cyy+dk; /
anisotropy (21)
with
Ki=qi/q, d=Cy =C13— 24 .

In Fig. 1(a) we have for this case plotted the curves
of equal intensity of the symmetrical part SS for a
h00-type reflection using the elastic constants of
Cu. The dashed lines represent the curves for
elastic isotropy. The full lines are for anisotropy.
The intensity vanishes for 5 1h. Also in more gen-
eral cases, we always have such a “nodal plane,”
because this is cc_mnectec_l= with the assumed inver-
sion symmetry [T(q)=-t(-q)]. However, the in-
clination of this nodal plane will depend on the type
of the defects considered. Therefore, if we have
several types of defects, we have to sum in (19)
over the different contributions. Due to the fact
that the different nodal planes will in general not
coincide, we get intensity everywhere around the
reciprocal lattice point. As an example we consider
the scattering from dislocation loops. 7 For a loop
with radius R, and with Burgers vector b=bb° per-
pendicular to the loop plane 7RZ we have in the
isotropic case:

= - bTTR 0 =0 14
[@)= 22 (267659 + 12

- 1 =, 2..>
K==, (0% K)2K
(22)

Assuming, for example, that we have loops statis-
tically distributed on all {111) directions, we get for
SS the curve plotted in Fig. 1(b) [h°=#00, v=1].

for ¢ <1/R, .
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FIG. 1. Curves of equal intensity for the symmetrical

part Sﬁ(q) for a 100 reflection in Cu. (a) Cluster of
point defects with three equal crossed dipoles; dashed
line, isotropy; solid line, anisotropy. (b) Dislocation
loops on all {111} planes (isotropy).

For both models (21) and (22)!” the asymptotic field
T(r) is proportional to the number ne; of point de-
fects in the cluster (zy =b7RE/V, for loops). There-
fore, S°(q) [Eq. (19)] is proportional to cN#2 for
small g, a result which is due to the “coherent”
action of all the defects in the same cluster and
which is well known in small-angle scattering
(h=0).

The antisymmetric part S* (20) changes sign at
the nodal plane - (q)=0. For a cluster of inter-
stitials (21) we have plotted the curves of constant
intensity of S* in Fig. 2. The = signs indicate the
regions for which S* 2 0, dashed lines again for the
isotropic case, full lines for anisotropy. We have
more intensity for h- El. >0, i.e., apparently larger
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Bragg angles, which would be reversed for vacan-
cy-type defects. This is just opposite to the change
of the Bragg angles of the Bragg intensities due to
the lattice expansion.

We get qualitatively the same result for disloca-
tion loops, e.g., randomly distributed on all {1 11}
planes. As a rule, for interstitial-type clusters
we always have more intensity for larger Bragg
angles, whereas vacancy-type clusters give more
intensity for lower Bragg angles (see also Sec. VII).

V. BEHAVIOR FOR LARGE ¢

Whereas the scattering for small ¢, i.e., the
Huang scattering and the Bragg scattering, is de-
termined by the behavior of ¢(R) [Eq. (9)] for large
ﬁ-w, the scattering for large g values should be
determined by the behavior of ¢(R) for small R
values. For this case we have

¢(ﬁ>=cf3—r{e“f'“‘""“-w,~[ﬁ-?<F>]ﬁ-1} :

(23)

For large g, small P, respectively, we may ex-
pand e *® linearly in ¢. Whereas the term
(1-¢e°‘), as well as the second terms in (23),
give no contribution for very large g values, the
first term in (23) gives

S§(@)=cN[(2n)’/ V] [ dF 6(3- 6h(T)), (24)
with
6h(T)=-0:(n- T(¥)).
[oho)
[hhO]
[hOO]
FIG. 2. Curves of equal intensity for the antisymmet-

rical part S3 (q) cluster of interstitials with three equal
crossed dlpoles in Cu, h= hhO0; dashed line, isotropy;
solid line, anisotropy.
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The quantity 65(?), representing the changes of the
atomic displacements normal to the diffracting
planes, can be interpreted as the “‘local” change
of the reciprocal lattice vector h. The “macro-
scopic” change of h due to the real field alone is
given by c¢/V, times the volume integral of 5h(T).
Equation (24) is equivalent to the approximation
of Stokes and Wilson, '°2° being widely used for
the scattering from dislocations, 2!+2?

If we replace {(T) in (24) by the asymptotic dis-
placement field of the cluster, i.e., t(T)~n,A/r®
(or ~b7mRE/7? for loops), then we get

- A h 2 h
55(Q)~0Nﬂz—”cz—; (or cNé—Tr—I;-o—j for loops).
Ve T4 Ve q

(25)

Thus, Si(q) decreases as 1/¢* and is, contrary to
the scattering for small ¢ [(14), (19), (21)] only
proportional to n;.

For the isotropic field {(T)=c /7, Trinkhaus®
has evaluated S;(q) for large ¢ starting from Eq.
(11) and using the saddle-point method. He gets
the same result as obtained in the Stokes-Wilson
approximation (24) except for a factor with an os-
cillating g dependence.

For larger ¢ values ¢ > 1/Ry Eq. (25) is no longer
valid because f(f') does not increase as 1/72 in the
core of the cluster, but more or less levels off.
Therefore Sﬁ(a) decreases more rapidly than 1/¢*.
For example, for a dislocation loop the only im-
portant contribution for ¢ > 1/R, comes from the
region near the dislocation line. Treating the dif-
ferential line segment as straight, we get in analogy
to Ref. 21:

Sa(@)~c v/ Vi [0hP/a° R, . (26)

For other cluster models, for which {(r) and 6h(r)
are bounded, we expect an even faster decrease.
However, approximation (24), giving zero for such
cases, is obviously no longer valid.

VI. MOMENTS OF DIFFUSE SCATTERING

By summing S;(q) over all ¢ values, we get the
total integrated intensity of the diffuse scattering
in the vicinity of the Bragg reflection h. From
Eq. (8) we obtain for this, using the Fourier pre-
sentation of the 8 function and ¢(I-2.=0) =0,

[Ve/@n)] [ ddSs(q)=N (1 - e 2ty , 27)

The second term Ne 2% is the total integrated in-
tensity of the Bragg scattering. Therefore, where-
as for L <1 the Bragg scattering dominates and

the diffuse scattering is proportional to ¢, for
larger L values the Bragg scattering disappears
and the diffuse scattering contains the whole inten-
sity. However, while the diffuse scattering can

P. H. DEDERICHS

>

adequately be described by kinematical theory,
Bragg scattering has to be calculated from dynami-
cal theory. This yields for the total integrated
reflection R:

R=Rprage+ Rattruse= Rye b+ Ryy(1-e2%).  (28)

Here R, is the integrated reflection for the “perfect”
crystal, i.e., calculated by dynamical theory (ne-
glecting absorption), and R;;,> R, is the value for
the “imperfect” crystal (kinematical theory). There-
fore R increases from R, for L <1 to Ry, for L > 1.
The relation (28) can be used to determine the De-
bye-Waller factor. '*

Similarly to the total diffuse scattering, we can
also calculate certain moments of the diffuse scat-
tering, generalizing a method of Wilson?® for line-
width studies. For example, the first moment, the
average of the j th component of q, defined by

@;)= [ dda;Sx(@)/ [ dasy(@) , (29)
can be calculated from (8) by replacing first ¢; by
a derivation with respect to R; and then pe_fforming
the q integration yielding the 6 function 6(R). Thus
we get

O(E)ia_qb@> =0 .
R=0

(a;)= mrearg o2+ 228 (30)

In the same way we get expressions for higher mo-
ments, e.g., the second and third ones,

1 dr - -
@)= pary o [ k@0, 6D

(as0,00)= pmgmre | G Oh(F) oy (B ()
c

32)
Again 6h(T) [Eq. (24)] is the local change of the
reciprocal-lattice vector h. For small concentra-
tion L <1, all moments are independent of the con-
centration, being consistent with the cluster form
factor G¢(q) [Eq. (12)). However, for larger con-
centrations (e ?* <<1) the moments increase with the
concentration. For example, (q%) is proportional
to ¢, resulting in a half-width proportional to Vc .
The third moment should reflect the asymmetry of
the diffuse scattering. However, the sign of the
third moment, being determined by the sign of
6h(T), is opposite to the asymmetry observed in
Eqs. (18) and (20) (see Sec. VII).

As an example, we may calculate these moments
explicitly for a cluster of »n.; point defects distrib-
uted homogeneously within a sphere of radius R,,
the displacement field of which is

S’nc,A T/R} for v <R,
i(r)= -

(nc,A T/v® for v >R, . 33)
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For the moments in a certain direction K (k2=1)
one gets

- - 1 4anA%n®, [ 2
<(K‘Q)a>=1_e-aL v R'%cx ['I?'(h K)? +—h2]
c
(34)
’+3—§ (H-E)hz].

(35)

- > -1 471A 6 > -
(k- 8)= ygemme 7,—,;’3&[7@«)

The moments of S;( 4) can give us also some infor-
mation about the asymptotic behavior for large ¢
values. For instance, for loops S; (q) goes for
large g as 1/g° (26), and therefore the second mo-
ment diverges logarithmically. This can also be
seen in Eq. (31) where the integral diverges loga-
rithmically at the loop line. Similarly the second
moment diverges for the asymptotic field t(T)
~1/r 2, but stronger than logarithmically, in agree-
ment with the slower 1/¢* decreases of (25). On
the other hand, the second and third moments for
the field (33) exist but the fourth one diverges due
to the discontinuity of 5h(r) for » =R,. Therefore
S;3(q) will decrease as 1/¢%. Thus the asymptotic
behavior of S;(a) is determined by the singularities,
discontinuities, etc., of the displacement field in
the core of the cluster.

VII. CENTER OF DIFFUSE SCATTERING

There is an apparent contradiction for the asym-
metry following from the equations (18), (20), and
(32), (35). Whereas according to (18), (20) the
asymmetry for small g is opposite to the change of
the Bragg reflection due to lattice expansion, the
third moment (32) is directly proportional to the
local change of h. The first moment (30), on the
other hand, vanishes. This discrepancy arises
from the fact that the behavior of S; @) for large ¢
enters into the moments with a much higher weight
than the behavior for small or medium ¢’s. Or in
real space, the moments are essentially deter-
mined by the behavior of t(r) in the core of the
cluster and not by the asymptotic field determining
the Huang scattering. Therefore the moments do
not necessarily give a fair picture of the major part
of the diffuse scattering. To see this more clearly,
we consider in the following the scattering from
clusters with an “infinitesimal core, ” i.e., we
assume that the displacement field is exactly given
by the asymptotic formula (7)~1/72

Going back to (1) we identify, analogously to
Krivoglaz, R™ as the positions in the lattice ex-
panded homogeneously by the image forces alone.
Further, we put K=h?+4° with h° being the recipro-
cal-lattice vector of this lattice. h° and q° are
connected with h and q (being related to the “aver-
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age” lattice expanded by both real and image forces)
by

h=h%+6h andq=q°-o6h, (36)
with

dr - dr
5E=C —‘Z—éﬁ(r)——c/ Vc

For the total intensity (diffuse and Bragg) we get

8: [R-t(H)].

from (1), replacing all sums by integrations as in
Sec. II,
o dR . 0.1 5 (B)-a
Sﬁo(q°)=NfV—€'w ):4 (em L3 (R) (0)])
c
=N[d_Re«a-neum @7
A ’
with

- P

(e ihe[ F(ReD)-T(®N) -1).

w(ﬁ)=cfd

Similarly to (30), the first moment of the total in-
tensity is given by

(@orar=- ({83 [R-T@)] o) ={i 95 ¥@)g0 -
(38)

Therefore the average g value is essentially given
by the ensemble average of the strain.

In order to get q° we have to calculate zp(R) ex-
plicitly for small R. For the first derivative at
R=0 we need only the antisymmetric part $*,
which for small R is given by

-

P B ~ic 5’V1 sin{R- 0z [R-I®]}. (39

Now if £(T) and its derivative are finite everywhere,
we can replace the sine function by the argument
and get, with (36),

YA (R)~—ioh R
or

<ao>total = GB = (ao )Brug:: (Elo >duluso ’ (40)

which means that the total intensity and therefore
also the diffuse intensity is centered at the Bragg
reflection, in agreement with (30). However, for
the infinitesimal cluster t(T) is singular at =0,
leading, e.g., for

t(t)=A /»3
to
9:[B-T(F)]=4146(T)+ A[h/r®-3(h-T)T/7°].
41)
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For this case the replacement of the sine in (39)
by the argument is not possible. But by introducing
(41) into (39), the first term in (41) gives no con-
tribution at all to the integral [because [sinad(T)|
<1 and=0 for all T #0]. It is just this term which
gives the only contribution to & h according to Egs.
(36) and (46). However, the integral with the sec-
ond term of (41) vanishes for all R because its
average over all directions is zero. This can be
seen by substituting the whole second term as in-
tegration variable instead of *. Then we get, by
introducing the averages of the Bragg and diffuse
scattering with the corresponding weight factors
e?’ and 1-e72L,

<a0)toul =0= Ghe""l’ + <ao)dlﬂuse(1 - e-ZL)

or (42)

<6° Deittuse=— 5E€'2L/ (1- e-zL) .

Whereas the center of the total intensity lies at the
Bragg positions of the lattice expanded by the image
forces alone, the center of the diffuse scattering is
shifted from this position opposite to the change

6h of the Bragg position due to the real forces.

For small concentrations, (4°)asttuse iS much larger
than 6h and is equal to (%)= (q)= - 6h/2Lj inde-
pendent of the concentration, which is in agreement
with the asymmetry of (18) and (20). For L >1

the Bragg intensities are negligible and (q°)aqssuse =0
whereas for medium L values {q°)assuse may be
located by chance at the Bragg positions of the
ideal unexpanded lattice, which seems to have

been observed in Ref. 6.

Thus we have seen that for a cluster with an “in-
finitesimal core, ” the average {q°)a stuse is drasti-
cally different from the average for a cluster with
a finite core for which {(¥) is finite everywhere.
However, the averages for the latter ones are to
a large extent determined by the scattering for very
large g values, and hence are not representative
for the major part of the scattering. Therefore, if
we can define some modified moments, for which
the scattering for large g is not so decisive, we
expect for them essentially the same result as for
the infinitesimal cluster. This can be done by in-
troducing a function, e.g., €™, which cuts off the
intensity for large g values. However, € has to be
so small that practically all the intensity is con-
tained in the region ¢ =1/€. So we have for the
first moment of the diffuse intensity, starting as
in (29) from the lattice expanded by the real and
image forces,

(i), - 148aSg(@e
= Tdg S(q)e

P. H. DEDERICHS

4
deO R)e®*®ioz ¢(R) (43)
deGe(R) (et(ﬁ) eo(m))
with
6. (R)=7"2 €2/ (R%+ 22~ 6(R) for €~+0 .
For € =0 we have the same result as (3J). Choos-

ing € so that ¢ (e) <1, then the denominator is
equal to 1- €L, stating that the total diffuse inten-
sity is contained in the region ¢ <1/€. Then we
get

L =1 -
(q)e=1—_—eﬁzrde55(R)C

Xf?,—rdﬁ- (B+0){1 - cosh. [f®R+T)-1®)]},
(44)

which shows that q is always opposite to the local
change 6h(T). Furthermore we assume that the
displacements fc in the core of the cluster are very
large: h-t.> 1. Then the cosine function in (44)
may oscillate even for relatively small values of
ﬁ, €, respectively, and in the core of the cluster
only the factor 1 remains. However, outside the
core we get no contribution anyway because the
angle integral of 6h(T) vanishes there. More pre-
cisely, one can show, for instance in loops, that
for hb>1 and L;/(hb)¥2~c R3/V, <1, one gets
-2L3)

<a>s=- GE/(I‘ €

for all € with Ry>> € > Ry/hb . (45)

Considering that q°=8h+q, this is the same result as
as for the infinitesimal cluster. This result is al-
so clear, because if we make a cluster with a given
asymptotic field compact enough (Ro—~0), then the
conditions h-f,> 1 and CR}/V, <1 are always ful-
filled. However, the result (45) shows that the
model of the infinitesimal cluster is reasonable
only if the displacements in the core are very large,
hef,>1. For small displacements, h-f,<1, on
the other hand, we see directly from (44) that
(&)~ (h-f)®. Because L~ (h-f)? in this case, we
have practically no asymmetry.

For completeness we give here the values of 6h
for clusters with n,; point defects assuming isot-
ropy:

8h=—cny,(4m1A/3V,)h , (46)

and for dislocation loops [Burgers vector b =b°
perpendicular to the plane; (b%?=1, b >0 for inter-
stitial loops, b <0 for vacancy loops]:

= bTRE 2(3-7) y-3

_ £0/70, T
oh= v, 30=yp ° " B+ *3a-n 0 @7



4 DIFFUSE SCATTERING FROM DEFECT CLUSTERS...

If we have only one kind of loop, then the reflec-
tions parallel to b® are much more changed than the
perpendicular ones.

For very high concentrations L > 1, Krivoglaz
and Ryaboshapka®!® have given approximate solu-
tions of the diffuse intensity. For loops, the re-
sulting intensity forms for (h»)¥2>L > 1 (essen-
tially a Lorentz distribution) in agreement with
(45), centered at the reciprocal-lattice positions
of the lattice expanded by the image forces alone.
For the opposite limit L > (b)¥?> 1, ¢ R}/V > 1
the distribution is Gaussian, centered at the posi-
tions of the Bragg reflections. However, for the
latter case the concentration has to be so large that
the loop planes are essentially close packed, which
seems to be very unlikely.

VIII. CONCLUSIONS

The diffuse scattering from defect clusters,
characterized by strong displacement fields, has
been calculated. In Sec. I the general formulas
for the diffuse scattering are given. The problems
due to lattice expansion by the real and image forces
are discussed, and it is shown that the procedure
of Krivoglaz® is correct. For small concentrations
the intensity is essentially determined by a “cluster
form factor” describing the distorted lattice re-
gions in the vicinity of the clusters. Due to the
“coherent” action of all the defects in the same
cluster, the intensity is extremely large near the
Bragg reflection. For small ¢ <1/R, the Huang
scattering ~ 1/¢% dominates, giving information
about the symmetry of the defects (Fig. 1). There
is also an important asymmetry of the diffuse scat-
tering, being always opposite to the change of the
reflection vector due to lattice expansion (Fig. 2).
It allows a simple determination whether intersti-
tial-type or vacancy-type clusters are present. For
large g > 1/R, the diffuse scattering decreases
faster than 1/¢* and depends very much on the dis-
placement field in the core of the cluster. In Secs.
VI and VII simple expressions for the moments of
the diffuse scattering are given. It is shown that
for clusters with strong displacement fields the
center of the diffuse scattering (i. e., the first mo-
ment) is systematically different from the position
of the Bragg reflection. This explains the pro-
nounced asymmetry of the diffuse scattering for
relatively small concentrations, which has been
observed recently, 12~'% as well as the shift of the
maximum of the diffuse scattering for higher con-
centrations!® which has been reported in Refs. 11
and 6.
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APPENDIX

In Ref. 15, rocking curves of the diffuse inten-
sity have been obtained with the use of a double-
crystal spectrometer. In this experiment one mea-
sures, with a wide-open counter, the total intensity
scattered in the vicinity of a certain Bragg reflec-
tion as a function of the rocking angle 665 of the
crystal, i.e., the angular deviation from the Bragg
angle 0p.

Therefore one has to integrate S;(q) over all ¢
values along the Ewald sphere. Since ¢=~1/R, is
small, the Ewald sphere can be replaced by the
tangential plane at the Bragg position. For a given
rocking angle 66; we obtain a minimal g value of
gqo=h cosfz665, and we have to integrate over all
q’ lying in the tangential plane q’ Lq,, so that the
measured intensity is given by

Iy(@o)~ J dFSg(@o+d") . (A1)
q’1q0
Similar to (15), I;(de) can be split up into a part
If (dp) symmetrical with respect to go and an anti-
symmetrical part I#(q,). Both parts can be calcu-
lated by replacing S by Sf or S, respectively
[Eq. (A1)].

From the behavior of S;(q) for small g, (19) and

(20), we obtain for I3(q,) for qo<<1/Ry:

$ (Qo)~c Nn%1n(qc1/q0);
I§ (Qo)~ ¢ NnZ,1n(qci/90 (A2)

15(60)’“0 Nnit(q(l/qél ) Inlger/q0) -

Here q.,;=1/R_;=q_, is the reciprocal of an average
cluster radius R.;. Therefore Ig(ao) diverges log-
arithmically for small g,, whereas the asymmetry
disappears.

Similarly, the behavior of I;( qo) for large g, is
determined by the asymptotic behavior of Sg(q)
(Sec. V). For instance, if S5(q) decreases 1/¢",
with, e.g., n=4 or 5, then I(q,) decreases 1/g"2.
Moreover, all moments of S;(q) in the direction of
Qg are identical with the moments of I3(d) for the
same direction, since the q’ integration in (Al) re-
fers to the plane normal to Q.
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The normal-state ultrasonic attenuation of longitudinal waves propagating along the princi-
pal symmetry directions in aluminum has been measured over a wide range of ql, where ¢
is the phonon wave number and [ is the electron mean free path. The usual quadratic fre-
quency behavior at low gl and linear frequency behavior at high gl is observed for the elec-
tronic attenuation. At high gl the limiting values of attenuation divided by frequency are found

to be strongly anisotropic and not in agreement with the free-electron prediction.

Calculations

assuming an isotropic deformation parameter with a pseudopotential representation of the
Fermi surface show strong anisotropy, but the agreement with experiment is not good. From
the pseudopotential Fermi surface generalized to include the effects of static strain, the an-
isotropy of the deformation tensor has been calculated. Using this model of the deformation,
good agreement is achieved not only with the ultrasonic data but also with area changes ob-
served from de Haas—van Alphen measurements under hydrostatic pressure.

I. INTRODUCTION

Ultrasonic waves propagating in a high-purity
metal at low temperatures experience a large at-
tenuation owing to the electrons in the metal. A
general theory! expresses the electronic attenua-
tion in terms of several integrals over the Fermi
surface involving the wave number g, the electron
mean free path /, and the deformation properties of
the Fermi surface under static strain. At higher
frequencies, where the product gl becomes much
greater than 1, the attenuation becomes linear in
the frequency and independent of electron mean
free path. For longitudinal waves, the major con-
tribution to the attenuation comes from those areas
of the Fermi surface where the normal to the sur-
face is nearly perpendicular to the direction of the
propagation; these regions are known as effective

zones. Since the longitudinal ultrasonic attenuation
at high gl in a metal depends only upon the shape of
its Fermi surface and upon the deformation prop-
erties along the effective zones, measurements

in several different directions at high ¢l should
provide information about the magnitude and anisot-
ropy of the deformation tensor.

In addition to the availability of high-purity single
crystals, aluminum is a desirable metal for such
an investigation because its Fermi surface can be
accurately expressed in terms of a pseudopotential
model based on de Haas—van Alphen (dHvA) mea-
surements.? Previous measurements®~7 in alumi-
num have generally been over a limited range of
gl and the high-frequency limiting values have not
been in agreement. In this paper, measurements
of longitudinal ultrasonic attenuation in aluminum
over a wide range of gl are reported and the results



