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Diagrammatic approach to the effective dielectric response of composites
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We formulate a diagrammatic approach for the calculation of the macroscopic dielectric response
of a collection of spheres at random positions and embedded in a homogeneous medium. Through
infinite summations of specific classes of diagrams, we derive some known results and we also obtain
extensions to a recent theory for the renormalization of the polarizability in the Maxwell Garnett
scheme.

I. INTRODUCTION

The optical properties of a composite depend very
much on its topology. ' Here we deal with homogeneous
cermets in which the inclusions of one material are evenly
distributed and completely surrounded by a uniform host
of the other material. Furthermore, we only consider the
situation in which the size of the inclusions and the sepa-
ration between them is much smaller than the wavelength
of light (long-wavelength limit), so that the electromag-
netic interaction among them can be treated in the quasi-
static approximation. The most simple model with these
characteristics is a collection of small identical spheres
evenly distributed at random positions within a homo-
geneous host.

The optical properties of this system are completely
specified by its effective or macroscopic dielectric
response. Thus the problem is the calculation of this
macroscopic response in terms of the dielectric functions
of a sphere and of the host, as well as the functions which
describe the statistical distribution of the spheres. Al-
though this is an old problem and there have been many
different approaches ' to its solution, there is still no
theory that gives complete quantitative agreement with
the corresponding experimental measurements. '

Some of the difFiculties stem from the many simplifying
assumptions usually made, many of which are not
fulfilled in actual experiments. However, even within the
simple model of identical spheres, the averaging problems
generated by disorder due to the random positions of the
spheres have not been completely resolved. This latter
aspect of the problem is the main issue treated here.

In Sec. II we derive, within the dipolar approximation
and in the long-wavelength limit, an exact expression for
the macroscopic dielectric function of the system of iden-
tical spheres. This expression is given as an infinite series
of terms which can be represented in a diagrammatic
fashion. These terms involve the polarizability and the
density of the spheres as well as integrals over their sta-
tistical distribution functions. Then, in Sec. III, through
suitable approximations for the distribution functions
and infinite summations over selected classes of diagrams,
we recover the well-known Maxwell Garnett theory
(MGT) as well as some other formulas that have ap-
peared recently in the literature. ' ' New expressions are
also obtained and compared with previous theories. Nu-
merical results for these new expressions are presented
and discussed; Sec. IV is devoted to conclusions.

II. FORMALISM

We consider an ensemble of X»1 identical spheres
with a local (wave-vector-independent) dielectric function
e, centered at random positions I R; J and embedded in a
homogeneous host with a local dielectric function eh.
The system is in the presence of a position-dependent
external electric field E'"(r) oscillating with frequency co.
The radius ao of the spheres and their typical separation
is much less than c/w, where c is the speed of light. The
local electric 6eld induces an effective dipole p; on the ith
sphere given by
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where E; is the electric field at R,. within the host in-
duced by the external field in the absence of the spheres,
a(co)=ao[e, (co) —eh(co)]/[e, (co)+2ej, (co)] is the
eftective polarizability of an isolated sphere in the medi-
urn, and

t; =(1—5; )V;Vj.(1/R;j. ) (lb)

ej, (('o) =1 4Tre„(co)—y'"'(q~o, a)), (2a)

where P'"(q, co) is the external susceptibility defined by

is the dipole-dipole interaction tensor in the quasistatic
limit. Here R;j.= ~R; —Rj ~

and 5;j is the Kronecker del-
ta.

By an effective dipole p; we mean not only that due to
the charges within the ith sphere, but also that due to the
screening charges of the host induced at its surface.
Therefore the dipole-dipole interaction t," is given by the
same expression as in vacuum. Similarly, E,. includes the
external Geld and the field generated by all the polariza-
tion processes within the host in the absence of the
spheres.

The macroscopic (or effective) dielectric response eM of
the system is now calculated through the following equa-
tion, ' which properly takes into account the average po-
larization field outside the spheres:

and

T;,(q)=t;, e (4d)

Here 1 is the unit tensor, and we omit now and in what
follows the argument cu.

Taking the longitudinal projection and the ensemble
average of Eq. (4a) and using Eq. (2b) we obtain immedi-
ately

an i j an

h

(5)

where we have also omitted the argument q. Due to the
translational invariance of the ensemble, the average in
Eq. (5) does not depend on i. This equation agrees with
Eq. (22) of Ref. 24, which was derived using a more-
general formalism.

Now we use the series representation

(U '); =l5,"+aT,"+a2+T,„T„
k

+a g Tjk Tki Tj' +
k

which substituted into Eq. (5) yields the diagrammatic
series

n (p)(q, ~)=P'"(q, co) E'"(q,~), (2b)

« (p)(r, m)=—(X p, (m)5(r —R, )),
l

(2c)

respectively, n is the number density of spheres, ( )
means ensemble average, r is the position, and q is the
wave vector. The ensemble average is over the collection
of positions IR;I of the spheres and we assume that the
ensemble is homogeneous, isotropic, and invariant under
inversions.

By exciting the system with a long-wavelength external
longitudinal field of wave vector q, we have

O E ~ lqR ~

qe

and using now Eq. (la) we obtain

and the superscript l denotes the longitudinal projection.
Here E'"(q, co) and n (p )(q, co) are the Fourier transforms
of the external Beld and the average polarization field

—:a lim X q T,, q)q~O J

=na lim f q T,2.qp' '(R,2)d R2,
q~O

~—:ar lim Xq T;u rTu q), ju'-i
q-O

g, k

=n'a'lim f f q Ti2 Tz3.qp (Ri R2 &3)
q~O

(7b)

(7c)

l

+ j QwQ+ CL w~+(I) +' (7a)

after the thermodynamic and later the q~o limits are
taken. Each bracketed term in Eq. (7a) represents the en-
semble average of the sum over j of the longitudinal pro-
jection of a corresponding term on the right-hand side
(rhs) of Eq. (6). Thus,

P;(q) =a g(U ');jE'"/eh,
J

where q=—q/q,

(4a)

Xd R2d R3,
=au lim Xq Tu Tu; q)q~O J

=na lim f q T)2 T2, qp' '(R,2)d R~,
q~O

(7d)

(7e)

P;(q)=p;e (4b)

is the position-dependent polarization after removal of
lq R

the trivial wavelike dependence e ', (U );, is the ijth
element of the inverse of the operator U whose elements
are 3 X 3 tensors given by

U;, (q) =15;,—aT;, (q), (4c)

and so on. Notice that the third term of Eq. (6) yields the
two diagrams (7d) and (7e), which correspond to the
different cases i' and i =j, respectively. Similarly, the
fourth term in Eq. (6) yields five diagrams: the first corre-
sponds to i&l, i', and kWj; the second to i%i, i',
and k =j; the fourth to i =j; and the fifth corresponds to
i =l and k =j.
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Every diagram (see Table I) represents a class of pro-
cesses which contribute to the polarization of a given
sphere (white dot). For example, Eq. (7c) corresponds to
processes in which E polarizes a sphere (black dot)
whose dipolar field (line) directly polarizes the chosen
particle. Equation (7d) is the most simple indirect in-
teraction between two spheres, while Eq. (7e) represents
the self-interaction of a sphere through its effect on a
second sphere.

Notice (a) that the direct self-interaction T =0, a"nd

(b) that all pairs of successive tensors T~~ T„, in Eq. (6)
have q =r Th.erefore the diagrams in Eq. (7a) with r
lines and s black dots are graphs generated by drawing
one white dot and joining it to all s black dots with r lines
but without lifting the pencil from the paper (b) and
without directly joining a dot to itself (a).

To obtain the value corresponding to each graph one
starts by numbering each dot with a distinct index be-
tween 1 and n and traversing the graph in order, starting
from the white dot (index io) and writing aT;; when

the pth line between nodes i~, and i is traversed. Then
the longitudinal projection is taken and a sum over all
possible numbering schemes with a given fixed io is per-
formed. Finally, an ensemble average and the q ~0 limit
yields

Notice that this expression is independent of io and that
after averaging a11 numbering schemes they contribute
the same to the sum. Therefore we can choose io =1 and
any numbering scheme with indices between 2 and s + 1,
and simply multiply this term by %'[1+60(1/X)]=¹.
The ensemble average is then performed with the help
of the (s+1)-particle distribution function p' "(8„
.. . ,R, +, ) defined in Appendix A, and we finally obtain in
the thermodynamic limit

~ qp'+ "(Z „Z„.. . , Z, +, )

xd'R2 d'R. + i

Some examples of the correspondence between the ex-
pression above and particular graphs were already given
in Eq. (7).

We now classify the graphs according to their numbers
of lines and dots, and we write

g G(r, s),
r =Os =0

where G (r, s) is the sum over all possible graphs with r
lines and s black dots (all graphs have one white dot and
r s). Each term in G (r, s) is of order r in the polarizabil-
ity and order s in density, that is, they contain the factor
a'n'. This factor may play the role of an expansion pa-
rameter.

In order to estimate the relative importance of the
di6'erent diagrams, we construct dimensionless quantities

TABLE I. The lowest-order diagrams. Here r is the number
of lines and s is the number of black dots.

by introducing the radius ao of the spheres as the natural
length. We define a=a/ao and the volume fraction of
the spheres f =4mnao/3. Thus measuring all lengths in
units of ao one can see that each diagram is proportional
to a "f'. Thus for a given polarizability a a low-f expan-
sion will involve the graphs with the smallest number of
black dots for a given number of lines. On the other
hand, for a given volume fraction of spheres a low-
polarizability expansion will involve the graphs with the
smallest number of lines for a given number of black dots.

In Table I we have grouped the first graphs in powers
of a and f; all the graphs in the same column have the
same number of lines and those in the same row have the
same number of dots. In order to resolve ambiguities in
the order of traversal, some graphs, such as Q, require
that some of its lines be labeled by their ordinal number.

III. APPLICATIONS

In this section we perform several infinite-order sum-
mations of selected classes of diagrams. The main prob-
lem for the calculation of the di6'erent types of graphs is
the knowledge of the m-particle distribution functions.
Even for the case of a Quid made of hard spheres in
thermal equilibrium the calculation of the three-particle
distribution function is already very complicated. In
the case of composites an experimental determination of
these functions is preferable because the statistical distri-
bution of the particles depends on the sample prepara-
tion.

In each diagram the most important effect of correla-
tions is the avoidance of overlap between directly con-
nected particles i and j because of the strong pole of T;~
when R; ~0. Since this is a two-particle property, in or-
der to keep the analysis as simple-as possible and at the
same time maintain the most important correlation, we
approximate the m-particle distribution function for a
given graph with m ) 1 dots as the product

p' '(R„R2, . . . , R )=+p' '(8, )
(i,j )

taken over all pairs of dots (i,j ) directly connected by at
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least one line.
Using these approximations we are now able to per-

form the following summations.

P o + ~ + ~ + ~ + ~ + ~ ~ ~

=1+g G(r, l) .
r=1

(15a)

(15b)

A. The Clausius-Mossotti relation

F—o + o—o + ~ + ~ + (10a)

Here we perform a low-polarizability expansion, which
means that for given number of black dots we choose the
graphs with the smallest number of lines, that is

r —1

G(r, 1)=—', (fa) [(—,
')" ' —( —

—,
')" '] (16)

G(r, 1) is a loop with only one (s =1) black dot and r
lines. Assuming no correlation beyond the hole correc-
tion (HC) p' '(R)=e(R —2ao), where e is the unit-step
function, we show in Appendix C that

G(r, r) .
r=0

for r ~2, which, substituted together with Eq. (13) into
Eq. (15), yields

G (r, r) is an open graph in which the number of lines is
equal to the number of black dots and G (0,0)= 1. In Ap-
pendix B we show that, within the approximation (9),

G(r, r) = 6 "(1,1)= (~)
and thus the rhs of Eq. (10) is a simple geometric series
which sums to

F =1+2fa —1+—,'ln

Now we use Eqs. (5) and (2a) in order to obtain

8+o.=1—3fa —6(fa) —1+—,'ln
8 —2'

(17)

(18)

1

1 —G(1, 1)

Equation (7c) yields

(12) This expression has not been reported in the literature.
However, if not only f«1, but also fa «1, it can be
written as

8m.
G(1, 1)=— na= —2fa

3
(13) =1+3fa+(fa) 3+21n

8 —2a
(19)

independently of the two-particle distribution function.
Combining Eqs. (13), (12), (5), and (2a) we get

1+8~an l3 1+2fa
1 4nan—/3 I fa—

which is the well-known Clausius-Mossotti (CM) rela-
tion, equivalent to the Maxwell Garnett theory when n
is substituted by (E E'g ) l(e, +2EI, ).

We have shown here that the CM relation can be ob-
tained as a low-polarizability expansion by neglecting all
diagrams with loops and replacing the many-particle dis-
tribution functions by products of two-particle distribu-
tion functions. On the other hand, the CM relation can
be obtained as a self-consistent mean-field approximation
in which the contributions of the dipole-moment Auctua-
tions to the local field are neglected. Both points of view
are equivalent since only the two-particle distribution
function appears in the mean field approximation. '

Furthermore, the loops are responsible for the correlation
between the dipole moments and relative positions; by
neglecting the loops we ignore this correlation and there-
fore we eliminate the e6'ects of the dipolar fluctuations.

Although the series in Eq. (10) converges only for
a «1/f, we assume that E is an analytic function of a,
yielding Eq. (12) for all a. Similar analytic continuations
will be repeatedly used in what follows.

8. The formula of Felderhof, Ford, and Cohen

Now we perform a low-f expansion, which means that
for a given number of lines we select in Eq. (8) the graphs
with the lowest number (one) of black dots, that is,

which is Eq. (5.7) of Ref. 10. This result was derived by
Felderhof, Ford, and Cohen (FFC) and corresponds to
the contribution of the two-particle cluster integral in the
cluster expansion of the eC'ective dielectric constant.
The merits and shortcomings of this equation were later
discussed by Felderhof and Jones. ~

C. Renormalized yolarizability in MGT

In Sec. III A above we performed a low-polarizability
expansion in which the dipolar fluctuations were com-
pletely disregarded, yielding the well-known MGT. Here
we extend MGT to higher polarizabilities and we incorp-
orate some of the e6'ects of the dipolar fluctuations by
taking into account an infinite class of diagrams with
loops, and therefore with more lines for a given number
of dots than in MGr T. By introducing the concept of a re-
normalized polarizability in MGT we are able to sum all
simple-connected graphs. By simple connected we mean
that any dot i can be separated from any other dot j by
cutting no more than two lines meeting at i. These
graphs yield

0
j=Oo + ~e+ o ~ + +- (20a)

G~(r, r),
r=0

(20b)

Qo = o + + +' - + (20c)

which is very similar to MGT [Eq. (10)] but with its dots
replaced by renormalized dots ( ~ o = , defined as the
sum of all simple-connected graphs that start in a dot and
come back to the same dot in all possible ways; that is,
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Gz (r, r) stands for an open graph with r lines and one
white and r black renormali. zed dots. Notice that by
translational invariance g will be independent of position.
Here we use the same convention as before in order to
distinguish black from white dots, even if renormalized.

In Eq. (20) we neglect multiple-connected diagrams
like

which we combine with Eq. (25b) in order to obtain

E' ( —F„+)=o
where we used (see Appendix D)

(27)

(28)

(29)

which ought to become important for still-larger polari-
zabilities. The assessment of the relative importance of
single- and multiple-connected diagrams for a given sys-
tem is a dificult problem which we do not attempt to
solve here. However, it may be asserted that the renor-
malized MGT goes beyond the usual MGT, it is useful
for larger polarizabilities, it accounts for the dipolar fluc-
tuations, it can be readily interpreted, and, as shown
below, it yields a solvable set of equations whose results
are in reasonable agreement with experiment. Therefore,
we pursue it further.

In Appendix D we show that

G~(r, r) =P+'G "(1,1) (21)

for r ~ 1; thus substituting Eq. (21) into Eq. (20) we obtain

1 —(G(1,1)
(22)

1+8ma*n /3'

1 4ma—*n /3.

but with a renormalized polarizability

(23a)

(23b)

instead of the bare polarizability a. The presence of
loops enters the macroscopic response through the renor-
malization factor g which is the value of the renormalized
dot.

We now proceed to the calculation of g following the
method used by Matsubara and Toyozawa in their
theory of impurity-band conduction in semiconductors.
First we define il= Q as the sum of all possible simple-
connected graphs which depart from a dot and come
back to this same dot exactly once, that is

+-0+.Q+ (24)

which combined with Eqs. (13), (5), and (2a) yields an
equation of the CM type

Performing the angular integration in Eq. (7e) we ob-
tain

(30a)

where

"' 2a x
(30b)

is an effective filling fraction. ' Equations (23b), (28), and
(30) yield a simple algebraic equation for a',

=1+—,'f, (a *) (31)

T

4m'
3

m
1

(2m )

X f s (k)k dk f q [L(k)] qdA&,

m —1I~I

where a *=a"/ao.
This equation has been derived recently by Barrera,

Monsivais, and Mochan' (BMM) making simple assump-
tions about the fluctuations of the local field. The statis-
tics of the spatial distribution of spheres enters the renor-
malized polarizability and the macroscopic response
through the effective filling fraction f, . As discussed in
Ref. 16, Eqs. (23) and (31) yield absorption peaks which
are red shifted and broader than those of plain MGT; the
red shift and broadening are larger in systems with a ten-
dency to form clusters, for which f, )f. These results
are in reasonable agreement with experiment and with
other theories. '

Now we will obtain the solution to Eqs. (25) and (26)
without making the simplifying approximation (27). In
Appendix D we show that the series (26) can be related to
simple ring diagrams through

V~+ C'+" (32)

and in Appendix E we obtain for a ring with m ~ 3 ver-
tices

Then g can be written as

o — q+g+g
or

(25a)
where

(33a)

f= 1+i)+ il'+ i)'+ 1

1 —
7l

(25b) L(k) =3k k —1, (33b)

Since il can also be written in terms of g through

(26)

g is determined by the solution of the coupled Eqs. (25)
and (26). A useful first solution is obtained through the
approximation

J kR dp (g)
kR dR

(33c)

f q. [L(k)] .qdQ&=4nb (34a)

0& is the solid angle in k space and k=k/k. It is easy to
show that
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where

b =
—,'[2 +( —1) 2] .

Now we combine Eqs. (25b) and (30)—(34) to write

(34b)

25

20— f =0.3

h
ll
II
I I

I I

I

00

/=1+ —,'f, (a*) +—f dk g b
2'IT ~ —3

Xg s (k).

10—

Since 0.1 0.2 03 0.4 O.S

2x (1+2x)
(1—2x)(1+x)

we can finally write

—I + 1 f (a 4 )2+f2(a 4 )3I(fa 4
)

(36)

(37a)

FIG. 2. Ima (solid line) and Im5 (dashed) as a function of
co/co~. Here co~~=46 and f=0.3. Ima * is multiplied by a fac-
tor of 4.

where

1 cr (1+2fa*o) zdI fa* = 3' d3'
(1—2fa *o )(1+fa *o )

(37b)

and cr =s (y/2ao)
In this section we focus our attention mainly on the re-

normalized MGT as given by Eqs. (37), since the other
expressions obtained above have already been discussed
in the literature. We have solved Eqs. (37) numerically
for a model of Drude spheres embedded in gelatin
(eb =2.37) and taking for p' '(R) the HC. In this case cr

has the closed-form expression

&0

6-
ALP

E
M 4

0.2

f= 0.1

0.3

I I I

! i

I

j I

I! i
I

I

j I

0.4 0.5

a = —3j,(y)/y, (3&)
QJ/fdp

where j, is the spherical Bessel function of order 1.
In Fig. 1 we show, with a solid line, Rea as a function

of co/~ . Here co is the plasma frequency of the spheres,
co r=46, where r is the relaxation time and f =0.3. We
also show with a dashed line Rem where a is the bare po-
larizability. In Fig. 2 we show with a solid (dashed) line
the results for Ima * (Ima) using the same model and the
same parameters as Fig. 1. We can see that the main
effect of the renormalization procedure is to reduce drast-

FIG. 3. Imt. ~ as a function of co/co~ when one uses the renor-
malized polarizability given by Eq. (37) (solid line) and Eq. (31)
(dashed). The MGT result (dash-dotted line) is also shown.
Here co~~=46 and f =0.1.

1'2 20—
f= 0.3

I

I

I

I

j I

I

I

I

0

-8

Re5

f =0.5
0

0.2 0.3 0.4 0.5

-i2
0.1

I

0.2 0.5 0.$ 0.5
QJ/OJp

FIG. 1. Rea * (solid line) and Reh (dashed) as a function of
co/co~. Here co~v=46 and f =0.3. Ren is multiplied by a fac-
tor of 4.

FIG. 4. Ime~ as a function of co/co~ when one uses the renor-
malized polarizabihty given by Eq. (37) (solid line) and Eq. (31)
(dashed). The MGT result (dash-dotted line) is also shown.
Here cop~=46 and f=0.3.
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ically the size and the sharpness of the resonance peaks.
The absorption peak in Imcz * is also considerably smaller
and broader as compared to Ima. Note that in both
figures we multiplied a * by 4.

In Figs. 3 and 4 we show our results for Ime~ using
the same model and the same parameters as in the previ-
ous figures but with f =0. 1 and 0.3, respectively. The
solid line corresponds to Eq. (23) with the renormalized
polarizability a * given by Eq. (37). We also show
(dashed line) the results corresponding to the approxima-
tion for a * given by Eq. (31), which were already report-
ed in Ref. 16. In this way one can see the effects in ImeM
of all the diagrams of the infinite series in Eq. (26) beyond
the first [Eq. (27)]. The MGT results (dash-dotted curve)
are also shown. As can be seen, the inclusion of all the
diagrams in q changes the shape of the absorption peak
in Ime~. For f =0. 1 the result obtained using the full
series (solid line) does not dier considerably from the
one obtained using only the first term (dashed line), but
for f =0.3 the difFerence is appreciable. This can be un-
derstood by comparing Eqs. (26) and (27) and realizing
that for the same number of lines one is adding in Eq. (26)
diagrams with a larger number of black dots. In both
cases there is also a very slight shift of the position of the
peak to higher frequencies.

IV. CONCLUSIONS

In this paper we have developed a diagrammatic ap-
proach for the calculation of the macroscopic dielectric
function e~ of a system of spheres with dielectric func-
tion e„embedded at random positions in a homogeneous
host with dielectric function e&. We have expressed
e& /e~ directly as an infinite sum of terms which involve
integrals over the many-particle distribution functions.
To each of these terms we have associated a specific dia-
gram. The relative importance of each diagram depends
on the polarizability and the filling fraction, and is simply
related to its number of lines and vertices. Approximate
formulas for e~ were obtained in different limiting situa-
tions by choosing appropriate classes of diagrams and
performing the corresponding infinite summations. Thus
we showed that MGT is a low-e expansion involving all
diagrams without loops, while the FFC method is a low-f
expansion involving all diagrams with only two dots. We
also showed how to extend MGT to larger polarizabilities
by adding diagrams with loops. Using techniques bor-
rowed from the electronic theory of disordered systems
we were able to sum all diagrams with no more than two
lines joining adjacent dots. The result resembles MGT
but with a renormalized polarizability o.* which can be
obtained analytically from a simple algebraic equation iff is low and can be obtained numerically for larger f.

We have performed calculations comparing the plain
MGT to its two renormalized extensions. The renormal-
ization of the polarizability generates a substantial red
shift and asymmetric broadening of the absorption peak
predicted by MGT for Drude-like spheres embedded in
gelatin. This modification is sensitive to the two-particle
distribution function. The broadening is larger, but the

red shift slightly smaller, when the full expression for o.*
is used instead of the simpler analytical formula.

In conclusion, the diagrammatic approach developed
here provides a formalism within which several approxi-
mate expressions for the macroscopic response of a corn-
posite can be easily obtained through selective summa-
tions. Several formulas were explored in the present pa-
per, but they are far from exhausting all the infinite sum-
mations that may be carried out; other approximation
schemes as well as a critical comparison between them
and with experiment should be developed in the future.
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APPENDIX A

In our model the spheres are randomly distributed and
described by a probability distribution W(R, , R2,
. .. , R~) such that ( I/V ) 8'(R„R2, . . . ,
Rz)d Ri d R2 . d Rz is the probability of finding a
configuration in which sphere 1 is centered in volume
d R& about R&, . . . , and sphere Vis centered in volume
d R~ about R&. Here V is the volume of the system, and
the distribution is assumed to be symmetric in the labels
1,2, . . . ,N and normalized as

J W(R„. . . , R~)d R, d R~=l .
yN

(A 1)

In the thermodynamics limit the m-particle distribu-
tion function p' ' is defined as

p' '(Ri, , R )= ~ J IF(R„.. . , R~)d R
1

m +W —m

X dR~. (A2)

The ensemble average of a function F(R„R2, . . . , R )

which depends on the positions of m spheres in each
member of the ensemble is then given by

F(R„.. . , R )

ER, . . . R p' 'R . . . R

Xd R& d R (A3)

APPENDIX B

In this appendix we perform the integrals which ap-
pear in Eqs. (7) by introducing a spherical basis. We
define the spherical basis e„(p= —1,0, 1) as
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e, = —(e„+ie~ ), eo=e„e i
= —(e —ie~ ), Here the asterisk denotes the complex conjugate and

the spherical components of any vector a are given by

(81) a= a e„*= a„* e„.
P PL

(82b)

e„e„=e„e„=6». (82a)

where e (j =x,y, z) are the unit vectors in a Cartesian
basis. The scalar product is defined as Using the definitions above and setting the vector q

along the Z axis we can write the tensor T, (q), defined in
Eq. (4d), as

oo . , A(qR) 24~
T,"(q)= g &4'(2l +1)(—i)'

1=0 5

1/2

g ( —1)"'C(1,1,2; —p„p2, p) Yz (R)Y,*,(R)e„e~ (83)

where R = ~R; —R ~, R:—R/R, ji is the spherical Bessel function of order l, YIm is the spherical harmonic of order
(l, m), C(l„l2l;m„m2, m) is a Clebsch-Gordan coefficient as defined in Ref. 30, and p= —pi+@2.

Since q =eo we can write

q T(R, ) . T(R„) q

(2l, +1)
(4~&6)"

5ll, . . . , 1r

(2l„+1)
X . . X

, Jl, (qRi)
( i) '—

R1

JI (qR„)X. X
R„

X g ( —1) ' "C(1,1,2;O, p2, P, )C(1,1,2; —p2, p3, P~). . . C(1, 1,2; —p„,O, P„)

X Yi*o(Ri ) Y2— (Ri) Yi*o(R2)Y2—(R~) ' ' ' Yl*o(R„)Y2— (Rp) (84a)

where

P1 P2 ~

P2= P2+P3

Pr —1 Pr —1+Pr ~

Pr= Pr .

Assuming now that the m-particle distribution function is given by Eq. (9) we can write

G(r, r)= lim f f q Ti2 T„ i „qp' '(R&z)X . Xp' '(R„ i „)d R2 d R„
q~O

Thus substituting Eq. (84) into Eq. (85) and performing the angular integrations we get

„g~(qR )
G(r, r)=(4vr&6)"( —1)" lim f p' '(R)dR [C(1,1,2;0,0,0)]"

q~o 0 R
L

„j2(qR )=( —8~)' lim f p' '(R)dR
q 0 0 R

=G "(1,1)=( )"

which is Eq. (11).

(84b)

(85)

(86a)

(86b)

(86c)

APPENDIX C

In this appendix we calculated G (r, 1), which is defined as

G(r, 1)= a"nlim f q. (Ti2)" qp' '(R i2)d Rz
q~O

Taking q along the Z axis, using

[t (R)]"=I [(2"—( —1)"]RR+( —1)'l I /R ",

(Cl)
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the definition of T given in Eq. (4d) and p' '(R ) =e(R —2ao) we get for r + 2

lim f q (Ti2)" qp' '(R )d R
q~O

4'�/9 2"+2( —1)"
)3( —I )

0

This equation, together with f =n4vmol3, a=alao, and Eq. (Cl), yields Eq. (16).

APPENDIX D

In this appendix we verify Eqs. (12) and (32). First G~ (r, r) is an infinite sum of diagrams of the type

(D 1)

which contain integrals of the form

g —= l1m eo T12 n, 2 23 r r+1 T,+1, T, r+1 CO

loop 1 line loop 2 line line loop (r+1)

Xp' '(l, mi) p' '(mz, 1)p' '(1,2)p' '(2, ni) p' '(n1, 2)p' '(2, 3)

Xp' '(r, r+1)p' '(r+1,si) . . p' (sL, r+1)dmi dml d2dni dnI d3 d(r+1)dsi . dsL

3 ~ ~where we used Eq. (9) and labeled d R,. as di and R; as i We h. ave also indicated the string of T operators which corre-
spond to loops and lines in the graphs.

Using the definition of T," given in Eq. (4d) and setting the unit operator between each loop and line with the decom-
position

A A++A A ++A A=ele 1 eoe 0 e,e,
we get

A A A g ~ A A g A n
11m ' ' '

0 1
' 1'cp cp 'T12cp cp ' ' cp cp 'T +1'c@ cpq~o

~m ~n . . ~r+I )"s

t, „+i cop' '(l, mi) p' '(mL, 1)p' '(1,2) . p' I(r, r+1)

Xp' '(r + 1,s& ) .p' '(sL, r + 1)dm i dmi d2 . . d (r + 1)dsi dsL (D4)

where p; takes the values 0, +1. Notice that the loops are q independent.
It can be easily shown that for p =+1 and v=+1 we have

f e„* T,2 e~' '(1,2)d2= —
—,'5„„f eo.T,z cop' '(1,2)d2,

where we used the following result for the angular integral:

~

~

e„* T,~ e dAz= 4' 6
3
— ( —1) C(1, 1,2, —p, v, O)6 „+

R12

where A2 is the solid angle.
If we assume that every loop is simple connected, Appendix E shows that

f. . . fe„*t,.

(D5)

(D6)

=5~ f . f e 0 t, t, e&p' '( l, m, ) . . p' '(mL, 1)dm, dml . (D7)

Therefore when one uses in Eq. (D4) the translational invariance of the ensemble together with Eqs. (D5) and (D7), one
obtains that g can be expressed as the product of integrals corresponding to loops and lines in the graphs, that is,

g =lim f . f eo t, .t, ecp' (1,2) p' '(mr, l)dm, dms f eo'T]2'cop' '(1,2)d2
q~o 1 L'

X f f eo V~„.. f eo T„„+,cop' '(r, r+ 1)d(r+1)

f eo t„+i, t, „~i cop' '(r+ 1,si) p' '(si, r+1)dsi . dsL (D8)
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Finally, when one sums all the diagrams of type (Dl) cor-
responding to all different kinds of simple-connected
loops one can immediately show, using Eqs. (DS) and
(11), that

1 /2

X g ( —1) 'C(1, 1,2; p—„p~,P )

„j2(kR)t(k)= 4—~ f " ' p'"(R)dR"0 R 5

6 (r, r)=g"+'G(r, r) =g"+'6 "(1,1), (D9)

which is Eq. (21).
On the other hand, the integrals that appear in the dia-

grams of Eq. (32) have the same form given by Eq. (D4)
but setting R j =R„+

&
and removing the integration over

d(r +1).
Consequently, using the same procedure as above one,

can show that

X Y~ (k)e„e„' (E5)

(E6a)

where

where k =k/k.
The factor after the integral in Eq. (E5) can be

identified with L(k) =3k k —1, thus we can write

t(k) = L(k)s(k),
3

which leads to Eq. (3.2).

APPENDIX K

(D 10) j2(kR )s(k)= —3 f p' '(R)dR
o R

j, (kR) dp~2~
~

~

o kR dR

(E6b)

(E6c)

Here we derive Eqs. (33) and (D7). First we use the
definition of the graphs given in Eq. (7) in order to write
for a ring with r ~ 3

Finally, substituting Eq. (E6) into (E3) yields Eq. (33).
Furthermore, since

I ++2~ n ~ eO t12 t23, 1 0 and

[L(k)]"=[2"—( —1)"]kk+( —1)"1, (E7)

Xp' '(12)p' '(23)

Xp' '(r, l)d2d3 dr,

1/2

g Y",„(k)e„, (ES)

(El)

where we took q along the Z axis and we used Eq. (4d)
and (9). The q ~0 limit is trivial because in a closed loop
the integrand has no q dependence.

We define t(k) as the Fourier transform of
t(r;J)p' '(R;. ), thatis,

t(k)= f e "t(R,, )p"'(R,, )d'R, . (E2)

Then since I„ is a convolution

it is easy to show that for r ~ 3

f e„' [L(k)]"e dQk =5„ f eo [L(k)]"eodQk (E9)

++

[y (R)]2 3RR+1
12 (E10)

by simply performing the angular integrations on both
sides.

The case of a ring with r =2 can be calculated in R
space. Since

d kI„=n" 'a" f eo [t(k)]" eo

In order to evaluate t(k ) we insert Eq. (B3) and

e '"' =4m g g ( —I )j'i(kR) Yt (k) Yt (R)

(E3)
and R is given by an expression similar to Eq. (ES), we
obtain

f e„' [Ti2(R)] e dQz=5„ f equi. [T,z(R)] .e dQz .

(El 1)
1=0 m= —I

into Eq. (E2), we perform the angular integrations, and
we obtain

Therefore using Eqs. (E9) and (E1 1) one can show that
in any simple-connected loop diagram Eq. (D7) holds.
This also means that any simple-connected loop diagram,
no matter how complicated, can be written as the prod-
uct of diagrams corresponding to its internal rings.
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