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We provide a detailed analysis and discussion of the recently developed corrected effective-
medium method (CEM) as applied to calculations of the bulk cohesive energies of the second- and
third-row metals. The results demonstrate that a quantitatively accurate description of these quan-
tities requires a new "covalent" embedding function instead of the self-consistent-field local-density
"ionic'* embedding function of Puska and co-workers. Construction of these covalent embedding
functions from diatomic and bulk electron-density binding potentials is detailed. We present the
formalism within the CEM method for the calculation of the surface energy of infinitely periodic
two-dimensional solid surfaces. Calculations of the surface energies for the perfectly terminated
low-Miller-index faces of Na, Mg, Al, K, Ca, Fe, Ni, and Cu are carried out. These results are com-
pared to experimental measurements and very good agreement is found for almost all of these met-
als. More demanding multilayer surface-relaxation calculations are performed for Al(111), (110),
and (100), Ni(110) and (100), and Fe(100). Very good agreement with experimental observations is
obtained for these systems with the exception of Al(111) and (100). Detailed analysis of these calcu-
lations leads to an explanation of the relaxation process and its driving components.

I. INTRGDUCTION

The experimental and theoretical study of metal sur-
faces has produced a wealth of information concerning
the electronic and structural properties of metal surfaces.
Of particular interest for the present paper are the
geometric deviations of surfaces from that of the truncat-
ed bulk arrangement. Observations of large multilayer
relaxations have been made for a number of systems such
as Al(110) (Refs. 1 and 2) and Ni(110). Smaller relaxa-
tions limited to the top surface layer have also been re-
ported for Al(100), ' Ni(100}, and Fe(100).'

First-principles self-consistent calculations using a
local-density-functional formalism"' have been carried
out for' a small number of systems, obtaining good agree-
ment with experiment. These calculations, though accu-
rate and very informative, are computationally very time
consuming and dificult to carry out. Thus a large variety
of simpler theoretical models' ' have also been
developed in an attempt to predict and explain these
dramatic deviations from that of the ideal surface. Some
of these simplistic models are unable to predict accurate-
ly the magnitude and sometimes even the direction of the
relaxation process. By contrast, the previously developed
embedded-atom-method (EAM) of Daw and Baskes has
recently been applied to surfaces of fcc transition metals
and, though not self-consistent, produced relatively good
agreement with experimental observations and measure-
ments for surface energies and multilayer relaxations. In
addition, the related etfective medium (EM} theory
has been applied to the relaxation of Al surfaces with
some success.

Recently, three articles (referred to as papers
I—III} have been published, detailing the development

and applications of the corrected effective-medium
(CEM) method for the calculation of the interaction ener-
gies of small and large systems, including diatomic mole-
cules, metal clusters, and bulk solids. In the present pa-
per, we apply the CEM method to the calculation of the
surface energy of a variety of metal surfaces. The CEM
method is not entirely self-consistent, but it does, as will
be discussed in Sec. III, have a basic component of self-
consistency. Like the effective-medium theory, the CEM
method begins by replacing the interaction energy of the
multiatom system by the summation of the embedding
energies for each atom in jelliurn having an effective elec-
tron density provided by the rest of the atoms in the sys-
tem. The energy of embedding an atom in jelliurn is
known from the self-consistent-field local-density (SCF-
LD) calculations of Puska et al. as a function of the

homogeneous electron-gas density. In the CEM method
one goes further by introducing and evaluating numeri-
cally the explicit corrections which describe the
Coulombic-kinetic-exchange-correlation energies in the
multiatorn and jellium systems.

It is worthwhile to discuss briefly the relationship be-
tween the EM, CEM, and EAM methods. It is important
to emphasize that the CEM formalism was not developed
as an explicit correction to either of the other theories,
but was derived from a consistent replacement of the fun-
damental relationship between the interaction energy of
an N-body system and the embedding energy of each
atom in jellium. The derivation is completely different
from that of either of the EM or EAM theories. Never-
theless, by suitable approximations to the CEM formula,
one can derive either EM or EAM theory. For EM, one
neglects the correction for the kinetic-exchange-
correlation energy, approximates the Coulombic correc-
tion via an induced-polarization formula, uses the SCF-
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I.D embedding functions, and uses a slightly different
choice for the density of the jellium. For the EAM one
also neglects the correction for the kinetic-exchange-
correlation energy, replaces the Coulombic correction by
an empirical function, uses empirical embedding func-
tions, and uses a particularly simple choice of the jellium
density. More details of these relationships can be found
in papers I and II, with some further remarks in paper II.

One of the important points to come from paper II was
that the embedding curve of Puska et al. rejects a rather
ionic interaction of the atom with jellium. For homonu-
clear systems this is not quite correct and one should in-
troduce another correction to refIect this fact. The form
and implementation of this correction is still under active
investigation, and at present a (semiempirical) covalent
embedding function is used to replace the ionic interac-
tion of Puska et al. in order to be quantitatively accurate
for homonuclear systems. These curves were constructed
from knowledge of the experimental diatomic binding
curves in paper II.

In paper III the K-body formalism was derived for an
infinitely periodic three-dimensional (3D) bulk me-
tal system with one atom per unit cell. Applications
to the binding in Mg& and Cuz clusters with
N =2, 3, . . . , 13, 19 were presented. The covalent embed-
ding functions for these two metals were constructed
from knowledge of both the diatomic and bulk binding
curves. It was suggested that these embedding functions
were not functions of the number of atoms in the system,
but instead were universal for any one type of atom in a
homogeneous system.

The present article is divided into four sections. In
Sec. II we derive the CEM-X relation for infinite systems
with 2D translational symmetry (e.g. , surfaces). In Sec.
III we present calculated bulk cohesive energies for the
metals of the second and third rows. The covalent
exnbedding functions for Al, Na, K, Ca, Fe, and Ni are
constructed. We then present and discuss results for the
calculated surface energies of the perfectly terminated
(111), (100), and (110) faces of these metals. Following
this, the multilayer relaxation of Al(111), (100), (110),
Ni(100) and (110), and Fe(100) is discussed in detail. Fi-
nally, Sec. IV contains a summary and conclusions of the
method as applied to surfaces.

where 6 denotes the sum of kinetic, exchange, and corre-
lation energy functionals of the density, and n; is the den-
sity of the jellium for the ith atom.

Equation (2) is not solved self-consistently, but instead
utilizes the approximation of superposition of atomic
densities to form the total system density. Minimizing
the effect of this approximation on the non-selfconsistent
EG term in Eq. (2) yields a prescription for the choice of
the jelliurn density for each atom, which for non-spin-
polarized atomic densities is

n; =
—,'g(1 —5;, )(n(r;)~n(r ))/Z, .

J
(4)

The generalization to spin-polarized densities is presented
in paper II, but this is not necessary for the present arti-
cle. Here, n (r; ) is the unpolarized electron-density distri-
bution and Z; is the atomic number of atom i Use o.f the
superposition approximation simplifies the Coulombic
correction 5V, to be the sum of the atom-atom Coulomb
interactions.

Now, we invoke periodicity to simplify the evaluation
of Eq. (2). The formalism for an infinite bulk system hav-
ing 3D translational periodicity with one atom per unit
cell has been presented previously and thus will be
merely outlined here. The cohesive energy is defined to
be E„i,=bE(I A&I )/X in the limit Ã —+~. Using the
fact that all atoms in the system are equivalent in this
limit, we can rewrite Eq. (2) for the cohesive energy as

Ecoh ~EX( Ah~ ~b )+~Gb +
p g ~~jb
j&b

where all summations extend over the number of atoms
in the system. The first term in Eq. (2) is the sum of the
embedding energies in jellium of all the atoms of the sys-
tem; two different types of embedding functions are con-
sidered in this paper and they are denoted the covalent,
b,EC(A;n), and Puska et al. , EEp(A;n), functions, re-
spectively. The second term is the difference in Coulomb
energy between the multiatom system and all the atoms
in jellium. The last term is the difference in kinetic-
exchange-correlation energy between the multiatom sys-
tern and all the atoms in jellium, written as

b, G(I A~I )=G gA, —g[G(A;+n;) —G(n;)], (3)

II. THEORY

The full details of the CEM method, especially CEM-
iV, are contained in papers I—III, to which the reader is
referred. Here, we shall only present the features neces-
sary to understand the extension and application to sur-
faces. The starting point is the interaction energy for a
system of X atoms,

bE(I Ab I)=E gA; gE(A;), —

which within the CEM-Pf formalism is rewritten in the
equivalent form

AE( I A„ I )=QbEJ( A;;n; )+6 V, +bG( I A~ I ),

where 6 V b is the Coulomb interaction between atom j
and the bulk atom b, and

b Gb = Gb(bulk) —[G ( Ab+ nb ) —G(nb )] .

The subscript "b" refers to any one of the bulk atoms.
The evaluation of Gb(bulk) involves an integral over the
Wigner-Seitz cell of the atom Ab (see paper II). The task
of calculating the energy of the infinite X-body system is
now reduced to the calculation of the interaction energy
of a bulk atom ( Ab) in the electron-density environment
due to the rest of the atoms in the metal.

In the case of surfaces, we can also simplify the evalua-
tion of Eq. (2), but are restricted to use of 2D translation-
al periodicity rather than the 3D periodicity in the bulk.
Assuming no in-plane reconstruction, this periodicity im-
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plies that for surfaces we may consider the atoms within
a particular layer as being equivalent (i.e., having the
same electron-density environment). In this case we cal-
culate the cohesive energy of an atom in the ith layer as

bE; =bEJ(A;;n;)+bG;+ —,'gb V;
J+I

(7)

To be more explicit, we pick a "focus" atom in layer i
and calculate its cohesive energy via Eq. (7). The evalua-
tion of AG, entails a generalization to the simple integra-
tion over a Wigner-Seitz cell in the calculation of hG&.
the integration is over all spatial points which are closer
to the focus atom "i" than to any other atom (just as in
the general case for systems without any symmetry de-
scribed in paper II).

For surfaces the fundamental quantity of interest is the
surface energy, defined as cr =[E(bulk system) —E(two
cleaved-surface systems)]/A„„where A„, is the total
surface area. We can obtain this quantity by calculating
hE; for each layer leading into the bulk and by using the
fact that hE; ~E„„asi gets larger. Since only one type
of atom is considered here, there is only one atom per
surface unit cell yielding the total surface area as 2N, A

for 1V', surface atoms and unit cells each with area A.
(Remember that two surfaces are formed from cleavage
of one bulk system. ) Combining this definition with Eq.
(7) yields the final formula within the CEM formalism for
the surface energy

cr =g(b.E; E„h)/A —. (8)

The summation over i extends over the layers and not
over the individual atoms. To determine the extent of
surface layer relaxation, we minimize the surface energy
in Eq. (8) with respect to the displacement of one or more
lattice planes in a direction perpendicular to the surface.

All that remains is to choose the energy-density func-
tionals and the atomic densities. The kinetic-energy den-
sity functional used was a Fade summation of the gra-
dient series in ~Vn~/n The local . Dirac exchange
functional ' and the local Gunnarson-Lundqvist
correlation-energy functional were used. As a representa-
tion of the atomic densities, we have generated ag even-
tempered Gaussian basis from Slater-type atomic
Hartree-Fock densities. This allows convenient analyt-
ic evaluations of the Coulomb integrals and the density
overlaps [i.e., Eq. (4) for the jellium density]. Following
paper II on diatomic molecules and subsequent (unpub-
lished) studies by us of a variety of metals (uncluding
those under study in the present paper), we utilized a
non-spin-polarized atomic density since this yielded the
most accurate energies within the CEM formalism. In
addition, we have forced all the 3d transition metals to
have a (3d",4s ) rather than a (3d"+',4s') config-
uration; it was seen in paper III that the semiempirical
embedding function using two diffuse 4s electrons al-
lowed for a much smoother match of the bulk and dia-
tomic contributions to the curve. We have also restricted
the 3d shell to be spherically symmetric, which has a
negligible effect on the total electron-density distributions
at the atomic separations of interest in this article.

III. RKSUI.TS

A. Bulk metal cohesive energies

We have calculated the CEM bulk cohesive energies
using the SCF-LD embedding functions of Puska et al.
for the second- and third-row metals by minimizing Eq.
(S) with respect to the lattice constant of the metal sys-
tem. In the case of the hcp lattice, calculations were car-
ried out by constraining the ratio c/a to that which is ob-
served experimentally. The atomic density around each
atom was cut off at a radial distance such that R p
(where p is the atom density) (10 a.u. and all atoms
within 2R of the focus atom were used to represent the
infinite lattice. Inclusion of atoms outside this range and
use of a larger cutoff radius resulted in negligible change
in the calculated energies.

In Fig. 1(a) we show both the minimized CEM and ex-
perimental cohesive energies versus atomic number. A
similar plot for the equilibrium nearest-neighbor dis-
tances (NND's) is shown in Fig. 1(b). For the second-row
metals the CEM predictions are nearly quantitative for
both the cohesive energies and NND's. However, for the
third-row metals the situation is less satisfactory with
predictions of the cohesive energy being accurate for
K —+ V only and with predictions of the NND's all being
contracted considerably, with the exception of K, where
an expansion is predicted. Clearly there is some aspect of
the interaction that is not described adequately using the
embedding function of Puska et al. for the third-row
metals.

We have further investigated the above problem by
considering some relevant properties of atoms and jelli-
um. First, we have also plotted the Pauling electrone-
gativity for the free metal atoms in Fig. 1(a), indicated as
asterisks. An interesting correlation appears between the
variation of the CEM calculated energies and the elec-
tronegativity as a function of the atomic number in each
row. But this is not the sole reason for the inaccuracy of
the functional of Puska et al. for the 3d elements, since
even for A1 and Si having relatively large electronegativi-
ties the predictions are still good. A second important
point involves the variation of the work function for jelli-
um, which is basically an increasing function from densi-
ties of 0 to 0.0018 a.u. with a peak of 2.4 eV, and then a
linearly decreasing function of density thereafter, becom-
ing negative after 0.0163 a.u. Figure 1(c) is a plot of the
bulk jellium sampling densities for both the CEM and ex-
perimental NN distances as a function of the atomic
number. One immediately notes that, in general, the den-
sity sampling increases as one proceeds across the
second-row metals for both cases. For the transition met-
als we note that the density peaks at about V to Co and
then decreases as the 3d shell is continually filled. From
these considerations, the predicted results seen in Figs.
1(a) and l(b) can be understood in terms of the overem-
phasis on an ionic interaction inherent in the SCF-LD
embedding curve of Puska et al. for an electronegative
atom in a high-density jellium system.

Let us consider the above points in more detail. For
the second-row metals the density sampled by the atoms
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FIG. 1. Calculated bulk metal cohesive energies and nearest-neighbor distances along with the experimental values (Ref. 36) are
shown. Also, Pauling s free-atom electronegativity (Ref. 37) is plotted for a comparison of ionic characteristics of the embedding
functions. (a) CEM and experimental cohesive energies. Electronegativities are symbolized by asterisks. (b) GEM and experimental
nearest-neighbor distances. (c) Sampled jellium densities at the CEM and experimental equilibrium distances.

in the bulk is relatively low and thus the work function of
jelliurn is high, ensuring that the degree of ionic interac-
tion is small. This results in the general agreement found
with experiment for both the cohesive energy and the NN
distance. In the case of the third-row metals for Ti to Cu
the sampling density is considerably larger, resulting in a
lowering of the work function of jellium. Therefore one
would expect the ionic interaction with jellium to be
significant and that the use of the functional of Puska
et a/. will predict a substantial ionic component to the
bonding, especially for the right-half transition metals.
Since the experimental trend in binding energy does not
follow the CEM predictions, we must conclude that a
substantial ionic bonding component is not correct.
These results support our initial argument in the theoreti-
cal section that in order to obtain quantitative binding
energies an alternative embedding function must be used.
The use of a corrected embedding function will allow us
to adequately describe the correct type of interaction
occurring on clean metal surfaces.

B. Covalent embedding functions

Paper II presented semiempirical covalent embedding
functions which were constructed solely by inverting the
experimental binding potential curves for homonuclear
diatomics. These covalent embedding functions are
determined by solving Eq. (2) (with J=C) for b,Ec(A;n),

bEc( A;n) =[DE(A2) —b G( A2) —AV, ( A2) j/2 . (9)

bEc( A;n)=E„h KGb ——
—,
' g6V b .
j&b

(10)

In this analysis the bulk experimental binding potential is
obtained from a harmonic expansion about the equilibri-
urn lattice constant with the bulk modulus providing the
second derivative of the cohesive potential. Table I con-
tains the experimental data used to construct the bulk
portion of the embedding functions for the atoms con-
sidered in this paper. Included in this table is the bulk
data for other metals for which we have constructed co-
valent embedding functions but which are not discussed
in this paper. Once the two portions of the embedding
curves are constructed they are combined to form one co-
valent embedding function that we propose will be
universal with respect to the number (N) of atoms in the
system of a particular element as applied with the CEM
approach.

This universality implies that the eAects of all other
variations with number of atoms in the system are incor-
porated into the Coulombic and correction terms. The
latter is particularly important to discuss since the reader
may question the requirement of a correction term

For gE( g z ) a gorse-potential representation of the ex-
perimental data was used. Following paper III, we also
utilize the bulk cohesive energy to determine the covalent

embedding function via Eq. (5):
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TABLE I. Cohesive energies and lattice constants calculated from Eq. (5) using the embedding func-
tions of Puska et al. (Ref. 29).

CEM
a (a.u. ) E„h (eV) Structure a {a.u. )

Experiment'
Eoph (eV) Bulk modulus"

(10" N/m )

Na
Mg
Al
K
Ca
Fe
Ni
CU

7.94
5.76
7.35

10.65
9.49
4.75
6.32
6.72

1.38
1.62
4.05
0.88
1.71
7.52
7.00
4.26

bcc
hcp'
fcc
bcc
fcc
bcc
fcc
fcc

7.98
6.07
7.65
9.87

10.54
5.42
6.65
6.82

1.113
1.53
3.39
0.934
1.84
4.28
4 44
3.50

0.68
3.54
7.22
0.32
1.52

16.83
18.6
13.7

Si
Sc
T1
V
Cr
Co

10.88
5.63
4.68
4.98
4.79
4.27

4.76
3.66
5.62
5.52
7.71
8.80

dia'
hcp
hcp
bcc
bcc
hcp

10.25
6.25
5.74
5.73
5 44
4.74

4.63
3.90
4.85
5.31
4.71
4.39

9.88
4.35

10.51
16.19
19.01
19.14

'All experimental values obtained from Ref. 36.
The bulk modulus provides the second derivative for the harmonic expansion of the cohesive energy in

construction of covalent-embedding function.
'The ratio e/a was held constant for hcp structures.
The surface energies or relaxation of the metals below the space are not studied. Thus a covalent

embedding function is not constructed in this paper for these metals. The Mg and Cu functions were
constructed in paper III.
'The diamond lattice structure was used for Si.

(which is time consuming to compute) when the embed-
ding functions are determined semiempirically. First,
note that the correction term is determined by the spatial
variation of the electron density, becoming small as a sys-
tern becomes more homogeneous. In particular, the
correction is most important for diatomics and becomes
rather small for bulk systems (both assumed to be near
the equilibrium distance). In contrast, the embedding en-
ergy (per atom) is smallest for diatomics and becomes
rather large for bulk systems due to the increasing num-
ber of neighbors. Thus, the correction term cannot be in-
corporated into a semi-empirical embedding function.
To test this argument, we have determined new embed-
ding functions in exactly the same manner as described
above but without the correction term; the results for the
surface energies and relaxations were considerably poorer
than those in which the correction term is retained (and
which will be presented in Sec. IIC). For transition-
metal surface energies, including relaxation, typical er-
rors are on the order of 5% with the correction energy
and 20% without the correction energy. These quantities
are rather sensitive to &he difFerence in inhomogeneity of
the electron density between bulk and surface atoms. For
quantities which may not be so sensitive to such inhomo-
geneity (e.g. , composition of bimetallic systems or even
the desorption energy of.a surface metal atom), it may be
possible to eliminate the correction term.

We illustrate the construction of semiempirical embed-
ding function by providing a step-by-step analysis for the
construction of the covalent embedding function for Al.

The embedding curves for the rest of the metals will sim-
ply be presented and discussed since the construction
procedure is the same for all atoms.

In Fig. 2(a) we have plotted the harmonic binding po-
tential for bulk Al as a function of both the lattice con-
stant and the sampled jellium density. Figure 2(b) is an
analogous plot for the binding potential of Alz. The five
points shown in Fig. 2(a) correspond to lattice constants
of 90%, 95%, 100%, 105%, and 110% of the experimen-
tal equilibrium lattice constant. In Fig. 3, we have plot-
ted the covalent embedding function resulting from the
application of Eqs. (9) and (10) to this data. The embed-
ding function of Puska et al. for Al is also shown. Only
the high-density (90%~ 105%) bulk points were retained
since the true binding curves are expected to be softer
than harmonic for the very expanded low-density
geometries. These points correspond to the four points
labeled to the left of and including the point indicated by
an arrow in Fig. 2(a) and with the corresponding embed-
ded energies labeled X= ~ in Fig. 3. The diatomic
points for bond lengths less than the point indicated by
the solid square in Fig. 2(b) were not retained since the
Morse potential is not expected to be accurate in this re-
gion. The two vertical arrows in the low- and high-
density regions of Fig. 3 indicate the location of the dia-
tomic and bulk densities on the embedding curves corre-
sponding to the experimental equilibrium bond distance
and lattice constant, respectively.

Examination of these figures demonstrates that the dia-
tomic and bulk systems correspond to separate regions of
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for the uniuersality of the covalent embedding curve.
One should also note the excellent qualitative agreement
between the two embedding curves in Fig. 3. The two
differ by a constant for almost all densities with the curve
of Puska et a/. lying below the covalent curve. This is
characteristic, as seen in paper II, of a partial ionic in-
teraction for the (partially negative) charged atom in jelli-
um. The fact that the slopes are almost the same is
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between the two embedding curves is that the embedding
function of Puska et al. is drawn to the negative of the
electron affinity of the free atom in the zero-embedding-
density limit, while the covalent embedding function is
drawn to zero. This will be the case for al1 atoms with a

positive electron aSnity.
Carrying out the same procedure for Na, we show in

Fig. 4 both the Puska et al. and the covalent embedding
functions. In this case only the three highest bulk-
electron-density points were used in order to obtain a
smooth fit and, as can be seen, even this leaves a some-
what nonsmooth curve. This will be seen later to lead to
difhculties in accurately calculating the energies of Na
surfaces. In comparison to Al, we find that the Na
embedding function of Puska et al. is closer to the co-
valent curve throughout the whole density range, indicat-
ing that Na is slightly less negative in jellium. This is ex-
pected since not only is the electronegativity of Na lower,
but the sampled electron density is also much lower,
yielding a higher jelliurn work function. Also note that
there is only one calculated Puska et al. embedding ener-

gy point in this lower-density region.
For K we show in Fig. S both the Puska et al. and re-

sulting covalent embedding curves. The bulk points in
this case were also truncated at the 100% lattice value.
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um density. The vertical arrows in the low- and high-density re-
gions indicate the location of the equilibrium diatomic and bulk
points, respectively.
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function of Puska et a/. in this region is an extrapolation
from a calculated high-density point to the negative of
the electron affinity, and is thus quite uncertain. With no
real data points this region of the embedding curve is un-
known self-consistently and thus the covalent embedding
function not only provides the correct type of interaction,
but it also fills in the gap in the calculations of Puska
et a/. This also indicates that the calculated bulk
cohesive energy and NN distance shown in Figs. 1(a) and
1(b) for K should not be taken very seriously.

In the case of Ca, we see in Fig. 6 a smooth curve again
with truncation at the 100% bulk lattice point. Like K,
the embedding curve of Puska et a/. for Ca is very slight-
ly above the covalent curve and is mainly an extrapola-
tion in the zero density limit. As in the case of K, the co-
valent embedding function fills in the gap in the embed-
ding function of Puska et a/.

Moving now to Fe, we see in Fig. 7 that in the covalent
embedding curve smooth interpolation between the dia-
tomic and bulk regions is quite remarkable. We were
able to retain many more diatomic points (e.g. , note the

last diatomic point relative to the first vertical arrow)
without any loss of smoothness. We were even able to re-
tain the 105% lattice value in the bulk region as well.
We also see a dramatic transition in the ionic character of
Fe in jellium indicated by the increasing separation of the
covalent and Puska et a/. embedding curves as the densi-
ty is increased. The increased density results in a lower
work function for jellium, suggesting that Fe is slightly
negative in jellium at such densities. Since there are a
number of Puska et a/. points in the region of interest,
the bulk calculation can be considered reliable.

Finally, we examine the embedding functions of Ni in
Fig. 8. We see that the covalent embedding function is
above that of the embedding function of Puska et a/.
throughout the whole range of densities, in contrast to
that seen in Fe. Even though they both have the same
electronegativities, the Ni atom has a greater tendency to
fill its 3d shell than Fe does. In the case of Ni, we had to
truncate again the high-density diatomic and low-density
( & 100%) bulk contributions to the embedding curve to
obtain a smooth interpolation of the diatomic and bulk
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regions. Again, the bulk calculation can be considered
reliable, as there are plenty of Puska et al. points in this
region.

The covalent-embedding functions of both Cu and Mg
were presented in paper III, where the same procedures
as above were carried out. The characteristics seen for
these two metals are very similar to Ca for Mg and Ni for
Cu. In the case of Cu the Puska et al. and covalent
embedding function were very close, indicating only a
very small ionic interaction of Cu in jellium.

C. Surface energies and relaxation

As described previously, an accurate calculation of the
bulk cohesive energy and lattice constant requires the use
of the covalent embedding functions. With these func-
tions at hand, we can predict a number of properties of
the metal, and in this subsection we have calculated the
surface energies of a number of perfectly terminated low-
Miller-index faces of Na, Mg, Al, K, Ca, Fe, Ni, and Cu
from Eqs. (7) and (8). Later, we will consider the multi-
layer relaxations of a select few of these surfaces, but we
emphasize that the surface energy is only slightly affected
by such relaxation.

As in the calculations for bulk systems, the total num-
ber of atoms must be large enough such that the electron
density sampled by the focus atom in each layer is
unaffected by the addition of more atoms. In addition,
for surfaces, the summation in Eq. (8) over the energy of
each layer must be converged with respect to the number
of layers. For the closely packed surfaces, it was found
that only four layers were needed for convergence of Eq.
(8) to be obtained while, for more open surfaces, five to
six layers were needed. In all cases the total number of
layers in the system was constrained to 2n + 1, where n is
the number of focus layers indicated above. This ensured
that the energy of the nth focus atom was equal to E„h
within numerical accuracy.

Before discussing the results, we feel that a few general
points concerning the various contributions to the surface
energy is in order. First, we expect the embedding-
energy contribution to be negative since the embedding-
energy repulsion is smaller due to the lowered electron
density at the surface relative to the bulk. This also im-
plies that the more open the surface is, the more negative
this contribution will become. Second, we expect that the
Coulombic contribution will be positive and dominant
since the surface atoms have completely lost the longer-
range electrostatic interactions with the atoms above the
plane of the surface. Note also that the more open sur-
faces will have a larger Coulombic energy contribution
than the more closely packed surfaces. The trend of the
correction-energy contribution is difBcult to predict, but
we do expect that it wiH be relatively small for the simple
free-electron-like metals.

In Table II we show the CEM predictions for the sur-
face energies along with its energy components (with ob-
vious notation) for the low-index faces of various metals.
Due to the unavailability of experimental data on isolated
surface planes, direct comparison is only semiquantita-

tive . In general, though, very good agreement with ex-
periment is obtained for almost all of these metals, and if
the experimental data are assumed to be mainly for the
most close-packed surfaces, the predictions are nearly
quantitative. One also notes immediately the difference
in magnitudes for the simple metals as compared to the
transition metals. Also, as expected, the trend of increas-
ing surface energy with increasing openness of the surface
is seen for these cases. During the calculations we also
noted that the contributions to the total surface energy
arose from deeper layers for the more open surfaces.
This trend agrees with the experimental finding that mul-
tilayer relaxations can occur for the open surfaces, while
for the more closely packed surfaces the relaxation is lim-
ited to the top layer and, in some cases, the second layer
as well. We shall have more to say about this aspect of
the surface energy and relaxation.

In comparison to the variational jellium with ion-core
pseudopotential model results of Sahni et a/. , we note
that agreement is not very good for Na, Al, and K, where
CEM consistently underestimates the surface energy.
This is especially true for Na and K. Even then, recall
that their calculations were a variational treatment of the
surface and thus would represent an upper limit on the
surface energy of these simple metals. Comparison to the
embedded-atom-method calculations that included pla-
nar relaxation for Ni and Cu shows that EAM consider-
ably underestimates the surface energy. EAM can be
considered a simpler CEM method without the correc-
tion term and with parametrized forms for the homo-
geneous and Coulombic energy terms. Since o.„,is nega-
tive, its neglect would increase o.«„and thus the errors in
EAM must come from parametrizing the homogeneous
and Coulombic energies.

Of the metals studied in this paper, the cases of Na and
K show calculated surface energies that are in significant
disagreement with both experiment and the work of Sah-
ni et al. To understand why this occurs, we examined
more closely the embedding-energy contributions and
noted that the top-layer atoms of any metal sample a jelli-
um density that is between the last diatomic point and
the first bulk point as seen in Figs. 3—8 of the embedding
functions. As mentioned in Sec. III.B this area of the
embedding curve is the least known due to the unavaila-
bility of experimental data for systems that would have
sampling densities in this region. With this in mind, a
quantitatively accurate calculation of surface energies
would support confidence in the universality of the
embedding function.

For Na we find that the jellium density for the top-
layer atoms correspond to a point just below the upward
hump of the embedding curve, thereby causing the
embedding energy for these atoms to be artificially
lowered relative to the bulk. This lowered embedding en-
ergy would result in a more negative surface-energy con-
tribution and thus tend to lower the total surface energy
for sodium. Because of this, we feel that in order to accu-
rately describe the Na surfaces, we need to have a much
smoother embedding function in this region of the sur-
face density. This nonsmoothness, we believe, may be a
result of the restriction to nonpolarized atom densities,
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TABLE II. Calculated surface energies and energy components in J/m of the low-index-surface

faces.

Na (100)
(110)
(111)

Mg(looo)

Al (100)
{110)
(111)

K (100)
(110)
(111)

Ca (1OO)

(110)
(111)

Fe (100)
(110)
(111)

Ni (1oo)
(110)
(111)

Cu(1OO)
(110)
(111)

OE
horn

—0.484
—0.407
—0.437

—1.403

—4.061
—4.275
—3.732

—0.306
—0.270
—0.304

—0.866
—0.920

-0.795

—14.970
—12.651
—15.106

—13.106
—13.935
—11.899

—9.731
—10.350
—8.756

CEM

0.570
0.484
0.583

1.999

5.456
5.812
4.938

0.383
0.322
0.386

1.461
1.563
1.307

17.537
15.245
17.978

15.935
17.073
14.S96

11.775
12.551
10.640

~cor

0.053
0.069
0.048

0.048

—0.160
—0.183
—0.110

0.013
0.029
0.013

—0.017
—0.020

0.010
—0.135
—0.105
—0.181

—0.207
- —0.259
—0.135

—0.321
—0.388
—0.259

O tot

0.139
0.147
0.158

0.643

1.230
1.353
1.096

0.090
0.081
0.095

0.578
0.622
0.523

2.429
2.489
2.690

2.622
2.878
2.561

1.722
1.813
1.625

Other
theory

0.270
0.248
0.305

0.629

1.7O1b

2.964
0.852

0.161b
0.147
O. 176b

O.615b
0 737
0.472

1.580'
1.730'
1.450'

1.280'
1.400'
1.170'

Expt. '

0.261

0.785

1.143

0.145

0.578

2.417

2.380

1.790

'Average of a polycrystalline surface, Ref. 39.
Variational jellium calculations with weak ion pseudopotentials for nuclear core roles from Ref. 40.

'Embedded-atom-method results from Ref. 23.
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which will be more severe for low-atomic-number atoms.
By contrast, for K such nonsmoothness for the embed-
ding function does not occur. But we do note that the
correction-energy contribution is significantly less for K
than it is for Na, and the magnitude of the difference be-
tween the experimental and CEM results is not very
large.

For the rest of the metals there are no dramatic devia-
tions from experiment. We see that the Coulombic con-
tribution to the surface energy is indeed dominant and
that the correction-energy contribution is nonnegligible
( = 10—20 % of o „,) and negative for the more inhomo-
geneous transition metals, and also surprisingly for Al as
well.

Now we examine in detail the multilayer relaxations of
some of the surfaces studied above. The more closely
packed surfaces will be studied first leading into more
open surfaces where large relaxations are expected to
take place and to extend deep into the subsurface layers.

The Al(111) surface has been studied experimentally a
number of times with nearly all results indicating an ex-
pansion of only the top layer, with values rariging from
51~2=3+2% (Ref. 41) to bd&2=0. 5+0.5%. There is
one instance where a very large contraction,
Ad~2 = —7.7+2%%uo, has been observed. A recent theoret-
ical study' has reported a slight contraction,
Ad~2= —0.4%%uo, while we have found a larger top-layer
contraction, bd, 2

= —3.0+1%. To see if an expansion is
possible for this surface, we allowed small expansions of
the first interlayer spacing, but this always yielded a
larger surface energy compared to the ideal surface.

In Figs. 9(a)—9(d) we show a plot of the CEM energy
components [DEC(A1;n), 2 X~K V;, bG;, and the sum] for
each layer atom from Eq. (9) for the ideal and contracted
surface of Al(111). Examining these plots, one notes im-
mediately that the largest changes as a result of the con-
traction are in the embedding and Coulomb energies.
The embedding energy becomes more repulsive due to
the increased electron density during contraction, but at
the same time the Coulombic attraction between these
layers increases due to the decreasing separation. Also,
note that the correction energy in Fig. 9(c) ends up being
slightly more repulsive for this surface indicating that the

electron-gas density is more inhomogeneous after con-
traction has occurred. The potential per layer atom
shown in Fig. 9(d) indicates that even though the indivi-
dual energy components change significantly during re-
laxation, these changes tend to cancel. Indeed, the mini-
mized surface energy for the contracted geometry is
1.076 J/m compared to 1.096 J/m for the ideal surface.
This change in surface energy is so small that it pushes
the limits of precision of our calculations. In view of this
difficulty, a smaller contraction certainly could be possi-
ble. For larger changes in the surface energy, this will
not be a problem, and it will be seen next that the slightly
more open (100) surface falls into this category.

We show in Table III the results of the multilayer re-
laxation of Al(100) in comparison to experimental values.
The correct direction of relaxation is predicted, but again
the magnitude is much larger than is observed experi-
mentally. Also, note that we find that the second inter-
layer distance has significantly expanded, where the ex-
perimental study seemed to have not taken into account
or observed a possible relaxation of this spacing. To see
if this expansion effects the top-layer contraction, we al-
lowed only the top layer to relax with the result being the
same, b.d, 2

= —5.0% contraction, indicating that for this
surface the magnitude in relaxation of the top layer is in-
dependent of the relaxation of the second or deeper inter-
layer distances.

In Fig. 10 we show the components of the energy con-
tribution to the cohesive energy for each layer atom. For
the top two layers, the embedding energy has increased,
but the expansion of the second interlayer spacing leads
to a significantly lower electron density for the third-layer
atoms, which results in a lowering of their embedding en-
ergy. The analogous behavior is also apparent for the
Coulomb and correction energies. Note that the magni-
tude for these changes in the first and third layers are al-
most the same, but opposite in direction. Inspection of
Fig. 10(c) shows that the correction energy has increased
with relaxation for the top two layers and then has de-
creased dramatically for the third layer. The increased
repulsion seen in the correction for the first two layers
seems to be a characteristic of Al surfaces and will be
seen later to reAect the lack of 3d electrons.

TABLE III. Multilayer percent of bulk relaxation of Al(100), Fe(100), and Ni(100).

4d, 2 (%)
Ad~3 (%)
~d34 (%)

CEM

—5.0
+3.5
+0.5

1.230
1.158

Al
expt.

—2.2'
0.0
0.0

EM'

—3.0
0.0
0.0

0.830

CEM

—1.5
+0.5

0.0

2.461
2.399

Fe
expt.

—1.5'
0.0
0.0

CEM

—3.5
+2.0

0.0

2.621
2.320

Ni
expt.

—3.2d

0.0
0.0

'Reference 25.
This is an upper limit to the contraction as provided in Ref. 8. In Ref. 7 a value of —1.5% is report-

ed.
'Reference 10.
Reference 9.

'Surface energy for the ideal surface, in J/m .
'Surface energy for the relaxed surface, in J/m .
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FIG. 10. Same as Fig. 9, except for Al{100}.

Although the change in the surface energy is riot very
large in total, the variation in the potential per layer is
much larger than for Al(111). From Fig. 10(d) we see
that the potential has been lowered in the top- and third-
layer atoms. The contraction between the first two layers
results in a lower first-layer potential, while the second-
layer potential is raised, and the latter is lowered again by
expanding the distance between the second and third lay-
ers. This decrease in interaction does not, however, raise
the potential of the third layer over that of the ideal sur-
face, but on the contrary is more stable after relaxation.
Closer inspection shows that while the expansion between
the third and second layers has decreased the attractive
Coulomb interaction, it has also decreased the embedding
energy by a slightly larger amount. This feature along
with the decrease in the correction energy for this layer
accounts for most of the lowering in the layer potential.
Through these plots we are able to see a simple picture of
the oscillatory behavior of the relaxation process begin-
ning to appear.

Next, we show in Table III the results of the multilayer
relaxation of Fe(100). We find very good agreement with

experiment but, as can be seen, the change in the surface
energy is small enough that the accuracy of the calcula-
tions might be in question. Indeed, during the analysis
the surface energy oscillated a considerable amount
within this range and it was found that an expanded first
interlayer distance was more favorable than the ideal sur-
face, but not the contracted surface. Examination of Fig.
11 shows that all the energy components remain essen-
tially constant during the contraction, and therefore not

much cgn be said about this surface.
%e also show in Table III the results of the multilayer

relaxation of Ni(100), finding very good agreement with
experimental results. While hd, z

= —3.5% in both stud-
ies, we find a corresponding expansion of 2.0% for the
second interlayer spacing. The experimental study did
not mention this possible expansion, and when only the
top layer was relaxed, we still obtained

cadiz

= —3.5%.
This indicates that, as in Al, the relaxation of the top lay-
er seems to be rather independent of the relaxations of
other layers in the subsurface. The energy of relaxation
for this surface is very large, and thus the results can be
considered very reliable since this energy is well outside
the precision limits of the calculations.

In Fig. 12 we show the energy components for this sur-
face as a function of layer. As a result of the contraction,
we see the expected increase in the embedding energy for
the top two layers, and also the expected corresponding
decrease for the third-layer atoms due to the expansion.
The Coulomb energy shows the same trend as Al(100),
but now the correction energy decreases upon relaxation
for all the layers, in contrast to the oscillatory behavior
that is seen for the same Al face. Despite this difFerence
the potential in Fig. 12(d) again reveals the oscillatory be-
havior of the relaxation process as explained in detail for
the Al(100) surface.

Earlier we mentioned that the increase in EG; with de-
creasing b.d, z for the first two layers in Al(111) and
Al(100) was due to the lack of d electrons. To confirm
this we removed the 3d-shell electrons from Ni by con-
tracting them into the nucleus, thereby reducing the
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atomic number by eight. Using the embedding function
of Puska et al. , we found a =7.3 bohrs and E„h =2.8 eV
resulting in an expanded and weakly bound solid. This
clearly indicates the significant bonding nature of the 3d
electrons. Calculations for the ideal and relaxed surfaces
showed that the correction energy now increases upon re-
laxation and exhibits the oscillatory behavior as observed
in the Al surfaces. This indicated that the 3d electrons
are an important factor in the difference between the re-
laxation process in simple versus transition-metal sur-
faces. A similar finding occurred if we did not use the
embedding function of Puska et al. but instead created a
new covalent-embedding curve using the same experi-
mental diatomic and bulk data as before in Sec. III B.

Returning to computations of surface relaxations, we
consider the more open fcc (110) surface for both Al and
Ni. The ideal surface energy seen in Table II is much
larger than for the fcc (100) face, and thus we expect the
multilayer relaxations to be more pronounced. In Table
IV we present the CEM results for Al(110) in comparison
to experimental data and theoretical EM (Ref. 25) and
SCF-LD (Ref. 12) calculations. We obtain very good
agreement with experiment and relatively good agree-
ment with the self-consistent calculations for all inter-
layer spacings. In comparison to the EM values, we find
that CEM is more sensitive to the relaxation process and
that the surface energy of the relaxed surface is much
more in agreement with that seen by the SCF-I.D calcu-
lations and experiment. The energy of relaxation is small
but, keeping in mind that the surface area of the unit cell
is quite large, is none the less large enough to lie outside
the precision limits in the calculations.

During the analysis we also allowed only the top layer
to relax obtaining a Ad, 2= —10% contraction, again in-
dicating that the top-layer relaxation is relatively in-
dependent of other interlayer relaxations. The situation
is quite different for the remaining layers where large
correlations between the relaxations were observed. The
relaxation of the second interlayer spacing was dificult to
determine without a corresponding contraction of the
third interlayer spacing, which, in turn, was dependent

on the fourth interlayer spacing expansion. Basically,
since the surface is so open, the interactions between lay-
ers becomes more sensitive to changes in the local envi-
ronment of atoms in each layer.

The above correlation can best be seen by examination
of Fig. 13. The embedding energy shows an increase for
the top layers, but a decrease for the third and fourth lay-
ers. In contrast, the Coulomb energy is nearly constant
after the first two layers, while the correction energy de-
creases after the first two layers. The plot of the potential
in Fig. 13(d) again reveals the oscillatory behavior .of the
relaxation process. When the top layer contracts so
much, the second layer responds by increasing dz3 in or-
der to greatly decrease its interaction with the third lay-
er. Now the third- and fourth-layer atoms compensate
for this loss of interaction by contracting the third inter-
layer spacing. This cycle continues in a decreasing
manner as the layers progress inward towards the bulk.

For the relaxation of Ni(110), we present in Table IV a
summary of the results from CEM in comparison to ex-
perimental data. As in the case of Al(110), we obtain ex-
cellent agreement for the top two layers, whereas the re-
laxations for the third and fourth layers were either not
experimentally studied or not detected in the Ref. 4,
while in Ref. 43 a very small contraction of the third in-
terlayer spacing was reported. The calculated relaxation
process showed a similar correlation between the relaxa-
tion of the layers as observed in Al(110). A plot of the
energy components for Ni(110) is shown in Fig. 14, and
comparison to Fig. 13 for Al(110) shows qualitatively
similar features for both the embedding and Coulomb en-
ergies in the top two layers, with differences beginning in
the third layer. The embedding energy for the third layer
in the relaxed geometry is now larger than that of the
ideal surface for Ni(110), whereas the opposite is true for
Al(110). This feature may be a result of a smaller expan-
sion in the third interlayer spacing for Ni(110) than in
Al(110). The most striking difference though lies in the
correction energy, whereas all the layers in Ni(110) lower
their respective correction energies as a result of the re-
laxation. This is equally true for the third and fourth lay-

TABLE IV. Percent of bulk multilayer relaxation of Al(110) and Ni(110).

CEM
Al(110)

SCF-LD' EMb Expt. ' CEM
Ni(110)

Expt.

Adq3 (%)
Ad34 (%)
~d45 (%)

—9.5
+5.5
—1.5
+ 1.0

—6.8
+3.5
—2.0
+ 1.6

—7.0
+ 1.0

—8.6+0.8
+5.0+1.1
—1.6+1.2

—9.5
+4.0
—1.5
+ 1.0

—9.0 +1.0,
+3.5+1.5,

—8.7'
+3.0
—0.5

1.353
1.265

—1.2
—1.09 0.883

2.879
2.592

'Reference 12 indicated relaxation energy of = 10 meV.
"Reference 25.
'Reference 1.
Reference 4.

'Reference 43.
'Surface energy for the ideal surface, in J/m'.
Surface energy for the relaxed surface, in J/m .
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ers. The resulting sum of the energy components yields
the potential in Fig. 14(d). We see that the top-layer po-
tential is lowered while the second layer stays relatively
stable. But surprisingly, the third. and fourth layers give
significant contributions to the relaxation process as
rejected by their respective potentials.

With the above calculations we can now draw some
important conclusions about the multilayer relaxation
process. We have seen that the top-layer contraction is
independent to a significant degree of the relaxation of
the rest of the layers below it. In contrast, the second in-
terlayer spacing expansion (if it is relatively large) is high-
ly dependent upon the relaxation (contraction) of the
third-layer spacing. This feature of the relaxation pro-
cess can most likely be extended to the rest of the simple
and transition metals and studies are underway to deter-
mine if this is indeed true.

IV. SUMMARY AND CONCLUSIONS

Calculated cohesive energies for the second- and
third-row metals were presented using the corrected-
effective-medium (CEM) method with the embedding
functions of Puska et al. for the atoms in jellium. It was
shown. that these embedding functions do not provide an
accurate description of the type of bonding occurring for
such homonuclear systems. In an attempt to describe the
correct type of interaction, we have constructed (sem-
iempirical) covalent embedding functions using both the
experimental diatomic binding potential and bulk
cohesive energies. These two different types of systems
determined different parts of the covalent-embedding
curve, and a smooth interpolation between the two was
obtained. This feature supported the postulated univer-
sality of this embedding energy as a function of the size of
the system. It was also seen that for the electropositive
atom the covalent embedding energy is lower than the
ionic energy of Puska et aI. This is in contrast to charac-
teristics of the electronegative atoms studied in paper II
where the covalent embedding energy is larger than that
of the values of Puska et al.

We have presented the formalism for the calculation of
the surface free energy of an infinitely periodic 2D metal
surface within the CEM method. Within this method, we
used the covalent embedding functions to calculate the

surface energy for a number of second- and third-row
metals. The energies were shown to agree very well with
experimental measurements and to predict the correct
qualitative trend of increasing surface energy with in-
creasing openness of the surface. We then carried out
multilayer relaxation calculations of well-known surfaces
through minimization of the surface energy. Very good
agreement was obtained for most of the surfaces studied.
In our opinion these calculations are, in general, con-
sistently more accurate and complete than those of other
models presented to date in their ability to correctly de-
scribe the stability and structural features of various met-
al surfaces at modest computational expense [e.g. , deter-
mination of an energy for Ni(110) required 125 min of
central-processing-unit time on a RIDGE 3200 comput-
er, which is approximately 3 times faster than a VAX
11/780].

With the ability to accurately describe the metal sur-
face, calculations are currently being carried out to deter-
mine the effect on relaxation of various chemisorbed
atoms as a function of the coverage. These results will be
presented in a future publication. Also, the method is
being extended to include more complicated in-plane
reconstructions of the metal surface. Improvements in
computational methodology are being implemented
which may greatly increase the speed of this method to
the point where simulations of crystal and cluster growth
and roughening may become feasible. If fundamental ex-
tensions can be developed to allow for a nonempirical
correction between covalent and ionic bonding embed-
ding functions, the CEM approach offers the real possi-
bility of a consistent, accurate, and fast computational
scheme for the determination of the interaction energies
of a collection of different types of atoms ranging from
heteronuclear diatomics to large clusters of hundreds of
atoms to bulk solids.
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