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Spontaneous decay of long-wavelength surface acoustic phonons
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The damping constant of long-wavelength acoustic surface phonons due to their spontaneous de-

cay via cubic anharmonicity is calculated. Since the Rayleigh branch is the phonon branch of
lowest frequency in the crystal, collinear- or quasicollinear-decay processes play an important role.
Power laws for the dependence of the damping constant on the frequency are derived for the disper-
sionless and dispersive cases which, in contrast to the high-temperature regime, differ from the Her-
ring scaling. Numerical estimates for the damping constants are also given.

I. INTRODUCTION

(0) (b) (c)
FIG. 1. Self-energy diagrams considered for the damping

constant and/or frequency dispersion of Rayleigh modes.

The anharmonicity of the lattice potential provides an
intrinsic attenuation mechanism for the propagation of
surface phonons on ideal crystal surfaces. For long-
wavelength acoustic surface phonons, several theoreti-
cal' and experimental studies have been performed
on the temperature and frequency dependence of their
damping constants resulting from cubic anharmonicity.
In the collisionless regime, where the frequency co of the
surface acoustic phonon under consideration is larger
than. the inverse lifetimes of the thermal phonons it in-
teracts with via the cubic-anharmonic coupling con-
stants, its damping constant may be calculated in pertur-
bation theory from the so-called bubble-diagram approxi-
mation'o [Fig. 1(a)] for the surface-phonon self-energy.
Within this approximation, Maradudin and Mills found,
in a calculation based on a lattice-dynamical model, that
for A~ &&kz T the damping constant of a Rayleigh mode
is governed by the interaction with thermal phonons of
the lowest bulk branch and is proportional to coT . This
frequency and temperature dependence of the damping
constant of a Rayleigh wave is identical to that of the
damping constant of long-wavelength transverse-acoustic
(TA) bulk phonons from the Landau-Rumer process. " It
has been confirmed experimentally by Salzmann et al.
and Budreau and Carr for quartz, while Daniel and de
Klerk have found the T dependence in a certain tern-
perature interval, but they do not confirm the linear fre-
quency dependence. Measurements of the attenuation of
surface acoustic waves have also been performed by Slo-
bodnik et a/. in LiNb03, and Slobodnik and Budreau in

Bi,2Ge02O, however, largely in regimes where the scatter-
ing processes considered in Ref. 1 do not seem to
represent the dominant attenuation mechanism. There-
fore, they cannot be expected to show the coT" depen-
dence of the damping constant. The results of Maradu-
din and Mills have been rederived and extended in the
framework of nonlinear, elastic, continuum theory by
King and Sheard, and also by Sakuma and Nakayama.
While the earlier calculations did not account for the
presence of the surface in the displacements associated
with the thermal bulk phonons, the latter authors employ
the normal modes of a semi-infinite, isotropic, elastic
rnediurn. Taking only the total reAection' or mixed'
modes into account for the thermal phonons, they find,
with decreasing temperature, strong deviations from the
~T law, which, however, still follow the Herring scal-
ing

where I (T) is the damping constant of the Rayleigh
mode with wave vector q at temperature T. It is, in fact,
easily seen from the general expression for the damping
constant of a Rayleigh mode obtained from the bubble di-
agram with bare propagators in the dispersionless ap-
proxirnation that the Herring scaling applies to it even
for anisotropic crystals. In certain cases, in particular for
collinear processes, this approximation may, however,
break down, as will be shown below. More recently,
Tamura' has performed a calculation of the intrinsic
damping constant of Rayleigh waves for an isotropic,
semi-infinite, elastic continuum in the regime fz~ & k~T,
where he considers the scattering of transverse bulk pho-
nons of shear horizontal polarization as the dominant
damping mechanism. From these processes, he obtains a
lifetime of the order of magnitude of seconds for
Rayleigh-wave frequencies of 100 GHz at 0.4 K. Since
his result is based on the bubble diagram with bare prop-
agators in the dispersionless approximation, it obeys the
Herring scaling.

With the present investigation, we attempt to close a
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gap left open in the series of studies hitherto carried out
on the attenuation of surface acoustic phonons, namely
the regime of zero temperature or temperatures so small
compared to Ace/kz that all thermal processes are negli-
gible. Here, it is only the spontaneous decay that leads to
a damping of phono ns in an ideal crystal. To our
knowledge, even the order of magnitude of the intrinsic
lifetime of Rayleigh modes for a given frequency is un-
known in this regime up to now. It is also not known at
which temperature thermal processes become unimpor-
tant, as the temperature is decreased. In the following, it
will be shown that for strongly anisotropic crystals under
the experimental conditions considered in the calculation
of Ref. 15, namely Rayleigh waves of 100 GHz at 0.4 K,
the spontaneous decay can outweigh the thermal process-
es in certain directions of propagation.

The lifetime of longitudinal-acoustic (LA) bulk pho-
nons at zero temperature in a frequency regime where the
dispersion can be largely neglected follows the Herring
scaling, i.e., I -q (Refs. 16 and 17). This also applies
to the transverse-acoustic phonons, ' ' except in certain
cases for the collinear decay. The collinear processes
form an inherent problem of the dispersionless theory
in that they lead to divergences in lowest-order perturba-
tion theory. Recently, it has been shown' ' ' that for
propagation directions for which the principal curvatures
of the corresponding sheet of the slowness surface have
different signs, the bubble diagram does not yield a finite
result in the limits of vanishing dispersion and infinite
lifetime of the decay products. Consequently, the Her-
ring scaling is expected to be no longer valid, if the non-
collinear decay is forbidden by energy and momentum
conservation.

The anomalous behavior found in the case of trans-
verse bulk phonons is expected to be even more pro-
nounced in the case of surface phonons for the following
reason. Since the Rayleigh branch is the lowest branch in
the phonon spectrum, the phase space for the decay
products of a Rayleigh mode is largely restricted to prop-

I

agation directions close to that of the decaying mode in
nearly isotropic crystals. Furthermore, the two-
dimensional character of the surface phonons as decay
products should be reflected in a frequency dependence of
the damping constant significantly different from that of
bulk phonons and in a strong dependence of the damping
constant on the propagation direction. We will find in
the present work that this is indeed the case.

The present paper is organized in the following way.
In Sec. II, we present the basic expressions needed for the
calculation of the damping constant of long-wavelength
acoustic surface phonons from the bubble diagram within
continuum elasticity theory. The continuum approach
has, apart from its easier tractability if compared to a
lattice-dynamical calculation, the advantage that the
knowledge of only a small set of parameters is required,
namely the mass density and the second- and third-order
elastic moduli, which are directly accessible experimen-
tally. In Sec. III, we then derive an expression for the
damping constant of Rayleigh modes from their collinear
decay in the dispersionless approximation. A power law
for its frequency dependence is derived which does not
follow the Herring scaling, and numerical estimates of its
absolute value are given for several substances. After a
general discussion on the dispersion of Rayleigh waves,
its significant influence on the collinear and quasi-
collinear decay is considered in Sec. IV. In Sec. V, we ad-
dress the influence of higher-order phonon processes and
in particular discuss the role of the collinear decay in the
four-phonon processes symbolized by the diagram Fig.
1(c).

II. GENERAL THEORY

The damping constant I"qz for the amplitude of a sur-
face phonon due to the spontaneous decay via cubic
anharmonicity may be calculated on the basis of the fol-
lowing formula:

g f d q'~ V3( —qS, q'J, q —q'J')~2L 2 I
q J+I

7T J J~ ("qs ~q I ~q-q J )'+(1
q J+r q-q z )' (2.1)

where q and q' are two-dimensional wave vectors parallel
to the surface. The indices J and J' denote the phonon
branches of the decay products and 'also, in the case of
bulk phonons, the vertical components of their wave vec-
tors. The surface phonons, the damping of which we are
studying at this stage, are the Rayleigh modes. Since the
Rayleigh modes are the phonons of lowest frequency for
a given q, significant contributions to the integral in (2.1)
result primarily from other Rayleigh modes. We may
therefore drop the indices S, J, and J'.

The derivation of (2.1), which corresponds to the bub-
ble diagram with "solid lines" in interacting-phonon
theory, is entirely analogous to the corresponding formu-
la for bulk phonons given in Ref. 19. To evaluate the
quantities in (2.1) for a semi-infinite crystal, we use con-
tinuum elasticity theory and introduce the displacement

field u(x). On expanding u(x) into normal modes, we
decompose

u( x) =u' '( x ) +u' '(x ), (2.2)

where
1/2T

q COq

Xg[b (qr)e ''i"']A(q)
r

(2.3)

and u' '(x) contains the pure bulk and mixed modes and
other possibly existing surface acoustic modes of higher
frequency, e.g. , the shear horizontal mode discussed in
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Refs. 22 and 23. q=q/q denotes the propagation direc-
tion in the surface which is identified with the x-y plane,
and

A (q) =a~+a (2.4)

where a and aq are the creation and annihilation opera-
tors. Within the x-y plane, we impose periodic boundary
conditions with length of periodicity L. The normaliza-

I

tion condition requires

2

f dz g g b (qr)e~"i"' = I/q . (2.5)

On inserting the expansion (2.3) for u' '(x) into the non-
linear part of the potential energy of a semi-infinite, elas-
tic medium

M =6 g S p gg f d x u (x)a

a, p, p, v, g, g Xp
u„'~'(x)

Bx
u ~(~'(x)

Bxg

= —.g V3( —q, q', q —q')A (
—q)A(q')A (q —q'),

q, q'

the following general expression for the nonlinear coupling constants in (2.1) is obtained:

V, ( —q, q', q —q') =
Sp L ~q&q'&q —q'

S &„&& g b (
—qr)b„(q'r')b&(q —q'r")C&(q'r )C,(q'r')C&(q —q'r" )

CX» p» p» V» g» g

X [qa (qr}+q'a(q'r')+ ~q
—q'~a (q —q'r")]

(2.6)

(2.7)

where

iq if a&z

when q' approaches q. Explicitly,

d q'=Jdx dP, (3.4)
C (qr)= '

qa(qr) if a=z .
(2.8)

where

The connection between the expansion coefFicients
S &„&& of the potential-energy density with respect to the
infinitesimal strain parameters and the second- and
third-order elastic constants can be found in Ref. 24.

III. THE COLLINEAR DECAY

%'ithin elasticity theory, Rayleigh waves are non-
dispersive, i.e.,

Sq=V g

If (3.1) is used in (2.1), the approximation (3.2),

r, , +r, ,
(cu —co .—co .) +(I +I" . )

(3.1)

=7r5(co& ci)& co& & ), (3.2)

X =
COq COq» COq q» (3.3)

the integrand has to vary slowly within the width
rq+I . This condition cannot be fulfilled in our
case, since the Jacobian of such a transformation diverges

which would lead to Fermi's golden rule expression and
correspond to the bubble diagram with bare propagators,
is not app1icable, independent of how small the damping
constants of the decay products are. As pointed out in
Refs. 19 and 21 for the case of bulk phonons, a necessary
condition for the validity of this approximation is that
after transforming to a set of integration variables which
contains the variable,

(3.5)

co —co —co ~
=—, Q(q)P +O(P ) (3.6)

2

for q'(q. Here, P is the angle between q and q'. We
therefore have to deal with the full expression. on the
right-hand side of (2.1). In order to evaluate this expres-
sion, we first expand (3.6). The coefficient Q(q) is given
by

Q(q) = 1+ u
a2

ay'
(3.7)

and is connected with the curvature»r(q) of the slowness
curve of the Rayleigh waves via

2 —3/2

»~(q) = —Q(q) 1+ u
'

u
~ ay ~

(3.8)

2

I = f dq'q'~ V3( —q, q'q, (q —q')q)~
8m2

where

) -,(q q')
X dP

f'-, (q q')4" +r-', (q q')
(3.9)

Inserting (3.6) into (2.1) and confining the integration
over the angle P to a small interval, which yields the
dominant contributions, leads to the approximate equa-
tion
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y-(q, q')=I, +I
(

.
)q qq q

—
q q

f-(q, q')=—,II(q) .1 qq
2 q

—q'

(3.10)

(3.11)

come clear that this approximation is, in fact, valid apart
from special directions, where the curvature of the slow-
ness curve is very small. We may then write

To estimate (3.9), we note that the main contributions to
the double integral do not result from the small-q' region
but rather from q'= —,'q, because V3 varies as q' and so
the numerator is proportional to q' . We will now as-
sume that y If is so small that we may replace the boun-
daries of the (t integration by +~. Later on it will be-

I

( )1/2

y 2y4+ 2
(3.12)

Assuming, furthermore, that the collinear decay is the
dominant damping process, which is always the case for a
nearly isotropic elastic medium, we obtain the following
self-consistency equation for I (q):= I ~:q

L 2 11/2
I (q)= I dk[I (kq)+I ((1 k)q)—] ' k'/ (1—k)'/

~ V3( —q, ktI, (1—k)tI)~
8~~Q(q)~ /2 0

(3.13)

Here, we have made use of the form (2.7) of the cubic coupling coeKcients. Equation (3.13) can be solved with the
power-law ansatz:

I (q)=q "I" (1) (3.14)

and

L 2 k(/2 1 t (/2

8n Q(q)~' o [k "/ +(1—k)"/ ]'/

(3.15)

(3.16)

Numerical estimates of the quantity I (1) for various
substances are given in Table I. In obtaining these num-
bers, we have used the isotropic approximation for the
velocities and the displacement field of the Rayleigh
modes by using

C~'= C44 ~p

(3.17a)

(3.17b)

in the corresponding formulas for these quantities. The
elements of the tensor S are chosen to correspond to the
situation of a Rayleigh wave propagating in the [100]
direction on a (001) surface. The isotropic approximation
for the Rayleigh waves should be valid in the case of
BaF2. For the other substances, it can only yield a rough
estimate. It should be noticed that the contribution of

the collinear spontaneous decay to the damping constant
for Rayleigh waves of 100 GHz in silicon obtained in the
dispersionless approximation is about 3 orders of magni-
tude larger than the corresponding value obtained by
Tamura' from the three-phonon scattering processes at
0.4 K. For a comparison, we quote approximate values
for the damping constants of acoustic bulk phonons in
BaF2 at the same frequency from the results of Ref. 19:

I (v=100 GHz) & 18 s

I T~(v=100 GHz) &8 s

(3.18a)

(3.18b)

Furthermore, from Table I, it can be seen that I
q

is
indeed so small compared to f (q, q'), which usually is of

q
the order of magnitude of the Rayleigh wave frequency,
that our assumption leading to the approximation (3.12)

TABLE I. Damping constants of Rayleigh modes due to their spontaneous decay, neglecting disper-
sion. The data correspond to the [100] direction of a (001) surface; isotropic approximation for the
Rayleigh-mode velocities and displacement fields. The input parameters are the same as in Ref. 19 ex-
cept for Cu. Here, the averaged values of Ref. 35 are used for the second- and third-order elastic con-
stants and 8920 kg m for the density.

Substance

BaF2
NaF
CaF2
SrF2
KCl
Si (4 K)
Ge (77 K)
CU

11/3

(10—28 m11/3 s
—

1)

3.9
6.3
1.5
0.75
4.6

14.3
16.4
26.8

r„(~=0.1 THz)
(10' ')

4.5
2.1

0.45
0.44

12.6
0.63
4.8

14.7

(10 m s ')

2.112
2.967
3.063
2.548
1.677
5.176
3.095
2.596



9916 A. P. MAYER AND V. BORTOLANI 39

is justified a posteriori. It might not be fulfilled in certain
special directions, where the curvature of the slowness
curve is very small. In these cases, higher-order terms in
the expansion (3.6) have to be taken into account, and the
exponent g is changed.

A further assumption required for the results
(3.14)—(3.16) to be valid was that the collinear decay is
the dominant damping process. We have, however, to be
aware of the fact that in the case of strong anisotropy
also noncollinear decay comes into play. To calculate its
contribution to the damping constant, the approximation
(3.2) may be used for sufficiently large angles between q
and the propagation directions of the decay products. It
can then be seen from a Herring construction' that the
momentum and strict energy conservation conditions can
only be fulfilled simultaneously, if the slowness curve is
partly concave. In very anisotropic crystals, the Rayleigh
branch can approach the continuum of the transverse
bulk modes very closely and can have a phase velocity
higher than that of transverse-acoustic bulk phonons in
other propagation directions. In such cases, the decay
products of a Rayleigh mode may partly consist of bulk
phonons without contradicting the general theorem of
Lax, Hu, and Narayanamurti. Furthermore, it has been
demonstrated for the (001) surface of nickel by Farnell
that the Rayleigh mode can, as a function of propagation
direction, continuously transform into a bulk mode. At
the special direction, where the penetration depth of the
surface mode becomes infinite, a localized mode appears
in the phonon spectrum with a frequency considerably
higher than the lowest bulk transverse phonon with the
same wave-vector component in the surface. The damp-
ing of this mode at zero temperature may be dominated
by the decay into two bulk modes because of the large
phase space oftered to the bulk modes as decay products,
since the momentum-conservation condition does not
refer to the vertical components of the wave vectors.

Independent of whether bulk phonons are involved as
decay products or not, the contribution of the non-
collinear decay of Rayleigh modes (among which we here
also count the special localized mode mentioned above)
obeys the Herring scaling in the dispersionless approxi-
mation, if (3.2) is valid, i.e., 5I z-q .

IV. THK KFFKCT OF DISPERSION

As in the case of bulk modes, the dispersion of the pho-
non frequencies can have important consequences for the
collinear and quasicollinear decay. The dispersion can be
built into our continuum-theoretical approach, if we re-
place (3.1) by

004 ~ y I I e& I ~e

0.03

0.02—

0.0 I

0.00
O —0.0 I

C3

—0.0 2—
O -0.03—
tA
L

—0.04—
Efl

-O.OS—

—0.06—
0.0 I.O0.80.2 0.4 0.6

4$/vr rad
FIG. 2. Dispersion parameter of Rayleigh waves as a func-

tion of propagation direction q=(cosg, sing, 0) calculated from
the model in Refs. 23, 28, and 29 for 4C, /3CI =0.2(1), 0.4(2),
0.6(3), 0.8(4).

b, ~(co~) =b,~q (4.2)

q, calculated for a free (001) surface of a simple cubic
crystal from the model of Gazis, Herman, and Wallis,
using the continuum version of the equations of motion
and boundary conditions to first order in ao given by
Maradudin. ' The parameters are chosen such that the
elastic constants fulfill the condition of isotropy. Figure
2 shows that the dispersion parameter p can, neverthe-
less, strongly vary with the direction of propagation. De-
pending on the ratio of the transverse to longitudinal
sound velocity, it can be positive or negative, and for spe-
cial directions, it may even vanish.

The dispersion of Rayleigh waves discussed so far re-
sults from the harmonic approximation to the crystal po-
tential as a consequence of the discreteness of the crystal
lattice. We have, however, to be aware of the fact that
the anharmonicity can also produce dispersion of the
Rayleigh-wave frequencies via the real part of the self-
energy, b, (co), taken at the Rayleigh-wave frequency. As
has been done by Eckstein and Varga for He, one may
calculate the frequency correction b, (ai ) from the bub-
ble diagram starting with nondispersive bare frequencies
and coupling coefficients to obtain to lowest order in q at
T=O:

p~
coq=qu q

— acq+O(q )

q

(4.1)
with

Q

, I I d'qd'q"
where ao is the lattice constant. In contrast to the case of
long-wavelength acoustic bulk phonons, the lowest-order
correction in aoq to (3.1) is linear in acq for Rayleigh
modes. This has been shown by several authors ' for
simple lattice-dynamical models. A slightly generalized
derivation is given in the Appendix. In Fig. 2, the quan-
tity p /U is shown as a function of propagation direction

q q
and

X 5(q'+q")
Q) IJt+Q) IIJII

x g I v, (q, q'J', q"I")I'

(4.3)
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V3(q, q'J', q"J")= lim q
'

V3( —q, q'J', q —q'J") . (4 4)
q~o

We thus obtain the result that to lowest order the anhar-
monicity does not a6'ect the Rayleigh-wave velocity but it
does a6'ect its dispersion. The new length scale needed
for this is provided by the cutoff Q. The same result (4.2)
is obtained from the loop diagram, Fig. 1(b), the effect of
which is usually assumed to be of the same order of mag-
nitude as that of the bubble diagram. While the bubble
diagram only produces normal dispersion, because of
(4.3), the loop diagram may also give rise to anomalous
dispersion.

In our perturbative calculation of the damping con-
stants, we use the physical, i.e., the measured Rayleigh-
wave frequencies as input parameters. In formulating the
perturbation theory in terms of physical quantities, we
have to assume that the frequency corrections produced
by the anharmonicity are compensated by counterterms
in the Hamiltonian.

The basic eff'ect of the dispersion on the (quasi-) col-
linear decay consists of the introduction of a zeroth-order
term in the expansion (3.6) of the form 2p aoq'(q' —q).

q
If this term is sufficiently large compared to y, the ap-
proximation (3.2) may be used in (2.1), i.e., low-order per-
turbation theory is again applicable. The dispersion also
modifies the coefficient of the P term in (3.6) and may in-
troduce a term linear in P, but these modifications may be
neglected to lowest order in the dispersion. For the
quasicollinear situation, the argument of the 6 function in
(3.2) then is of the following approximate form:

COq COq COq

(4.5)

The angular bracket can become zero only in the follow-
ing two cases.

(1) p )0 and Q(q) &0, i.e., normal dispersion and q
belongs to a concave region of the slowness curve.

(2) p &0 and Q(q) )0, i.e., anomalous dispersion and
q

X f 'dkI V, ( —q, kq, (1—k)q)l'. (4 6)

In the two complementary cases, quasicollinear decay is
forbidden. The damping constant shows a power-law
dependence on q with an exponent slightly higher than
that found for the nondispersive case, but still lower than
five, which would correspond to the Herring scaling. The
expression (4.6) for the damping constant is reciprocally
proportional to the square root of the curvature of the
slowness curve for the respective propagation direction.
If this curvature becomes very small, higher-order terms
in the expansion of the argument of the 5 function in (3.2)
with respect to the angle (t) have to be taken into account,
as in the dispersionless case, and the exponent in the
power-law dependence of I on q will change. For small
dispersion, there is a transitional region, where the ap-
proximation (3.2) is not valid and the dispersion cannot
be neglected. In this regime, a simple expression for the
damping constant like (3.14) and (4.6) in the two bound-
ary cases cannot be obtained.

From the slowness curves of Rayleigh waves shown in
Ref. 31, it can be seen that, in the case of copper, at the
[001] direction on the (110) surface and the [112] direc-
tion on the (111) surface, there are pronounced concave
regions. For these two examples, we have performed
order-of-magnitude estimates for the contribution to the
damping constant resulting from (4.6) and listed them in
Table II(a). To obtain these values, we have estimated
the Rayleigh-wave velocity U and dispersion parameter

q

p from the results of microscopic calculations of surface
q

phonon dispersion curves, Ref. 32 in the first and Ref. 33
in the second case. The quantity Q(q) has been obtained
from the curvatures of the corresponding slowness curves
given in Ref. 31. For the evaluation of the quantity

q belongs to a convex region of the slowness curve.
The contribution to the damping constant for these

two cases is approximately given by

L 2

sr =q'" la,p Q(q)l

TABLE II. Estimates for the contribution to the damping constant of Rayleigh modes due to (a) quasicollinear decay and (b) non-

collinear decay.

Ia
IIb

(10 m s ')

2.1

2.4

P Qo

(10 m s ')

3.2
7.1

(a)
sc(q)

(10' ms ')

2.3
5.6

sr, y~'"
(10 m ~ s ')

1.4
0.25

5I ~(v=0. 1 THz)
(102 —])

2.0
0.2

(b)

Ia

II

&I R~e'
(10 ' m s ')

2.4
0.8

5I z(v=0. 1 THz)
(102

—
1)

6.4
1.5

'I: [001]direction on the (110) surface of Cu.
"II: [112]direction on the (111)surface of Cu.
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I. U

I(q) = f dk~ V3( —q, kq, (l —k)q)~
8m 0

(4.7)
-col )i near

the isotropic approximation has been used for the dis-
placement field of the Rayleigh waves in the same way as
in Sec. III. Although the z dependence of the displace-
ment field, e.g., in the case of the [001] direction in the
(110) surface of Cu is governed by two complex constants
a (qr) with a(ql)=a*(q2) (Ref. 34) instead of two real
a(qr), the isotropic approximation should still yield a
realistic order-of-magnitude estimate.

Since the directions chosen for the two examples are
situated in concave regions of the slowness curves, we
also have to account for noncollinear-decay processes, il-
lustrated in the Herring plot, in Fig. 3. Here, the angles
between the propagation directions of the decaying mode
and the decay products are usually large enough for (3.2)
to be valid, and for an estimate, we also may neglect the
dispersion. The expression for the contribution of these
processes to the damping constant may be cast into the
following form:

calli ea ~/)

FIG. 3. Herring construction to illustrate the noncollinear
decay of Rayleigh modes in the [112] direction on a (111) sur-
face of Cu. The slowness curves have been taken from Ref. 31.

5r =q' f '
d~lV3( —q, k, q —k)l' IV(k)l V

8~ 0 Iq
—k

I

/sing[ (4.8)

5I =q 2u "I(q)( ~sing~ ') . (4.9)

The data of Table II(b) are obtained from (4.9) with 2 in-
serted for ( ~sing~ '). From the values for the partial
damping constants in Table II, we may conclude that
both types of processes have to be taken into account for
frequencies around 100 GHz. For decreasing frequencies
the quasicollinear decay should become more and more
important.

V. HIGHER-ORDER PROCESSES

In the presence of dispersion, there are always propa-
gation directions where the spontaneous decay via cubic
anharmonicity should be absent or its contribution to the
damping constant extremely small. To assess the damp-
ing of the Rayleigh modes due to anharmonicity in these

where ro=ku&, V(k) is the group velocity, and f is the
angle between V(k) and V((q —k)/~q —k~). The angle P
between q and k as a function of co may be found by a
Herring construction. For a rough order-of-magnitude
estimate, we proceed in the following way: The group ve-
locities are approximated by u-, V3( —q, k, q —k) is re-

placed by the collinear matrix element and for ~sing~
an average value is inserted to yield

51 qq(A, T)=A, 51 (T) (5.1)

in the dispersionless approximation. A simple power
counting in the general expression for 5I q(T) shows that
this is also valid for the damping constant of Rayleigh
modes. Although the existence of a second q integration
causes the energy and momentum conservation condition
to be less restrictive if compared to the bubble diagram,
at T=O, the spontaneous decay into three phonons of
lower frequency can only take place via collinear process-
es for phonons of the lowest phonon branch in isotropic
or almost isotropic crystals. We will therefore discuss
this process in more detail. The expression we have to
analyze is of the following form:

l

directions, the analysis of higher-order processes is re-
quired, which is, in general, a difficult task. We focus
here on the four phonon processes symbolized by the
self-energy diagram Fig. 1(c), being aware of the fact that
there are further diagrams involving the third-order cou-
pling constants, which yield contributions to the damping
constants of the same order of magnitude as the one we
consider here.

It has been shown that the contribution from the
noncollinear processes of the diagram Fig. 1(c) to the
damping constant of bulk phonons follows a scaling law
of the form

L2D r, , +r,„+r. ., .„5I ~= f d q' f d q" ~V4( —q, q', q",q —q' —q")~ 2 22(2m. ) (ro —ro .—cu —ru ) +(I .+I ~ +I -)
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Here, D =3 for bulk phonons and D =2 for Rayleigh modes, and q, q' and q" are three- or two-dimensional wave vec-
tors, respectively. By expanding cog coq coq 6)q q q

with respect to the angles between q' and q, and q" and q in
the same way as for the bubble diagram, ' it can be shown that for bulk phonons, the collinear, three-phonon decay
yields a vanishing contribution.

For Rayleigh modes, we expand

coq
—coq. —coq. —

coq q
-=—„, [q'(q q"—)P' +q "(q —q')P" +2q'q "P'P"]+O(P ),1 Q(q) (5.3)

where q'+q" &q and P' is the angle between q and q' and P" the angle between q and q". Furthermore, we approxi-
mate

=:f';(qq'q") .

After the transformation

(5.4)

P'=r cosP, P"=r sing,

we may integrate over r in (5.2) and then perform the limit y ~0 to obtain

L 2D

5l,=q', , f dP J dk J dk'kk'i V, ( —q, kq, k'q, (1—k —k')q)i'g '(P, k, k')
26 3 0 0

(5.5)

(5.6)

with

g (P, k, k')=, [kk'[sin(2P) —1]Q(q)

+k(l —sin P)+k'sin PJ .

(5.7)

The integrals in (5.6) are well behaved, so that we have
obtained the following result: The collinear, three-
phonon decay of Rayleigh modes in the dispersionless ap-
proximation yields a finite contribution to the damping
constant, which scales with the same power of the fre-
quency as the noncollinear, three-phonon decay of bulk
phonons.

The inhuence of the frequency dispersion can be as-
sessed in the same way as for the two-phonon decay. It
introduces a zero-order term of the form

—2p ao[q'(q —q' —q")+q"(q —q")J (5.8)

in the expansion (5.3). Proceeding in the same way as for
the bubble diagram and realizing that the curly brackets
in (5.7) and (5.8) are always positive, we are led to the fol-
lowing conclusion: For propagation directions with
anomalous dispersion in a convex region of the slowness
curve or with normal dispersion in a concave region of
the slowness curve, the spontaneous, quasicollinear,
three-phonon decay yields a contribution to the damping
constant, which is to lowest-order independent of p and
twice the right-hand side of (5.6). In the complementary
cases, it is forbidden. This means, in particular, that if
the quasicolhnear two-phonon decay is forbidden, the
analogous processes involving three decay products are
also not present. The same nonanalytic behavior of the
damping constant as a function of the dispersion parame-
ters is also known in the case of two-phonon-decay pro-
cesses for bulk modes.

VI. CONCLUSIONS

The goal of this investigation has been to derive the
frequency dependence and to give estimates for the order
of magnitude of the intrinsic damping constants of sur-
face acoustic phonons of long wavelength at zero temper-
ature, which has been unknown so far. It has been shown
that because of the restricted phase space for the prod-
ucts of the spontaneous-decay processes, the damping
constant depends sensitively on the shape of the slowness
curve and the frequency dispersion. Within continuum
elasticity theory, neglecting the dispersion, a finite result
for the damping constant from collinear processes was
obtained, which is proportional to q" and gives rise to
lifetimes of the order of milliseconds for 100-GHz Ray-
leigh modes in various substances. Normal dispersion, if
large enough, strongly modifies this result causing the de-
cay via both three- and the analogous four-phonon pro-
cesses to be forbidden in convex regions of the slowness
curve. This implies that for nearly isotropic crystals un-
der normal circumstances the intrinsic damping constant
of Rayleigh modes will be governed by thermal processes
of the kind considered by Tamura' down to very low
temperatures. For propagation directions in concave re-
gions of the slowness curve, however, quasicollinear as
well as truly noncollinear processes occur. Their contri-
butions to the damping constant depend on the frequency
via power laws with slightly di8'ering exponents. For two
geometries in the case of copper, these contributions have
been estimated to be both of the order of 10 s for 100-
GHz modes. In convex regions of the slowness curve,
quasicollipear decay can only occur if the dispersion is
anomalous.

The results summarized above only refer to the gen-
eralized Rayleigh modes. It; is, however, well known that
in certain geometries further acoustic surface branches of
higher frequencies exist, e.g. , the shear horizontal branch
in the [110]direction on a (001) surface of certain cubic
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crystals. ' ' The damping constants of these surface
acoustic phonons are expected to be dominated by the
spontaneous decay into surface phonons of lower
branches, in particular Rayleigh modes. For the above-
mentioned shear horizontal modes at long wavelengths,
these processes yield a damping constant proportional to
q . To obtain this q dependence, one has to take account
of the fact that the penetration depth of these shear hor-
izontal modes is proportional to q

An experimenta verification of our theoretical predic-
tions on the frequency dependence of the damping con-
stants at zero temperature will require special methods,
since because of their smallness and strong decrease with
frequency, they are not accessible to the current tech-
niques used to investigate surface phonons. Further-
more, the damping due to other mechanisms like surface
roughness and imperfections has to be controlled in such
a way that the intrinsic damping can be distinguished
from it. It is hoped that techniques similar to those used
to detect the spontaneous decay of bulk phonons can, in
modified form, also be applied to the surface.
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APPENDIX: DISPERSION OF RAYLEIGH WAVES

The derivation of the dispersion of the Rayleigh wave
frequencies to lowest order in aoq given here is based on
an equation of motion and boundary conditions for the
displacement field of the following form:

~ap a ~ ~ appv u pt pv ' 0 ~ +appvg' p~ pvgg
p, p, v

Qo0=+ Cazpvu p v+
2 g Daze, vu p

p, v '
p

(Al)

(A2)

where ao is the lattice constant. That this system of
equations for the displacement field will yield the correct
expression for the dispersion in the frequencies of 1ong-
wavelength acoustic phonons has been proven only for
the (001) surface of a simple cubic crystal with interac-
tions that couple adjacent layers only. In this case, the
nonvanishing elements of the tensor D can be expressed
by the elastic constants:

xzxxx 12 r Dxzxzz C44 ~ Dxzzxz xzzzx 2 12 + 44 ) i

Dyzyyy C12 & Dyzyzz 44 ~ yzzyz Dyzzzy 2 ( 12 + C44 )

Dzzxxz zzxzx 2 ( C12 C44 ) & zzyyz zzyzy 2 ( C12 + 44 )

Dzzzxx Dzzzyy C44 ~ zzzzz C11

(A3)

a,p, p, v

C „p f d x u' '*(x)upI„1 (x) . (A4)

We now integrate the right-hand side of (A4) twice by
I

It will be seen that the correction to the frequencies is
of first order in aoq. Therefore, the tensor A does not
enter the expression for the frequency to lowest order.

Let u"' be a solution for Eqs. (Al) and (A2) corre-
sponding to a surface wave with two-dimensional wave
vector q, to first order in aoq and u' ' the corresponding
solution in the absence of the tensor D, i.e., an ordinary
Rayleigh wave. Insertion of u"' into (Al) multiplying by
u ' '*, summing over a and integrating over I with
periodic boundary conditions in the x -y plane yields

—pco2y f d'x u'""(x)u'."(x)

parts using the boundary condition (A2), and make use of
the fact that u' ' is a solution of the zeroth-order equa-
tion with frequency mo satisfying the zeroth-order bound-
ary conditions. Retaining only terms to first order in aoq,
we arrive at

p(co —co )g f d x u' '*(x)u' '(x)

ao

2
D,p„ f dx dy u' ' (z =0)

a, p, p, v

Xup1|„' (z =0) . (A5)

Equation (A5) no longer contains u'". Since u' ' has the
form (2.3) and is assumed to be normalized, expression
(4.1) is obtained for the Rayleigh-wave frequency with

p = g D,p„g b*(qr')bp(qr)[iq„(l —5„,)+a (qr)5„, ][iq (1—5„)+a(qr)5, ] .
4DV

q a, p, p, v r, r'
(A6)
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