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The conduction-electron g factor has been calculated at points on the Fermi surfaces of copper,
silver, and gold by a relativistic linearized muffin-tin orbital method in the atomic-sphere approxi-
mation. The orbital g factors for principal extremal orbits on the Fermi surface of each metal have
been deduced. A comparison with experimental g-factor «fata makes it possible to estimate the
exchange-correlation enhancement factor for electrons on the Fermi surface of copper. The Fermi-
surface average of the enhancement factor is in agreement with the predictions of a first-principles
calculation, and the data suggest a weak anisotropy. Experimental data for silver and gold prove to
be insufFiciently accurate to yield reliable values of the exchange-correlation enhancement factor. A
g-factor anomaly on the neck orbit in gold is discussed.

I. INTRODUCTION

The splitting of otherwise-degenerate electronic states
at a point on the Fermi surface of a metal in an applied
magnetic field is conveniently expressed in terms of the g
factor. The extent to which the experimental value of the
g factor differs from the free-electron value (go =2.0023)
is governed by the spin-orbit interaction, and is modified
by many-body effects. The possibility of extracting in-
forrnation about many-body interactions on the Fermi
surface accounts for the current interest in measuring
and analyzing the g factors of conduction electrons in
metals.

The g factors of conduction electrons at the Fermi sur-
face can be measured by studying either conduction-
electron spin resonance (CESR) or de Haas —van Alphen
(dHvA) quantum oscillations. The g factors deduced
from CESR experiments are local g factors averaged over
the Fermi surface, and are unaff'ected by quasiparticle in-
teractions, ' whereas those derived fram dHvA experi-
ments are local g factors averaged over extremal orbits '

and are renormalized by quasiparticle interactions. Early
first-principles calculations focused on the variation from
metal to metal in the Fermi-surface average that is ob-
served in CESR experiments. ' Recent advances in ex-
perimental techniques for studying the dHvA eff'ect,
which for the first time have made it possible to obtain
reliable values of orbital g factors, ' have stimulated
theoretical calculations of orbital g factors for metals of
the platinum group' '" and a preliminary calculation for
gold. "

Each extremal orbit on each sheet of the Fermi surface
gives rise to a component of magnetization that is oscilla-
tory when plotted as a function of the reciprocal of the
magnetic field. The theory of Lifshitz and Kosevich, ' in
which quasiparticle interactions are neglected, shows that
the amplitude of the rth harmonic of the oscillatory mag-
netization of a nonferromagnetic metal includes a spin-

splitting factor R„ first proposed by Dingle, '

R„=cos( m.rS) .

Physically, S represents the ratio of spin splitting to
Landau-level splitting in a plot of the density of states at
the Fermi level as a function of the reciprocal of the mag-
netic field. S is related to the orbital g factor g, by

m
S=g,

mp
(2)

where m, is the cyclotron mass and mp is the free-
electron mass. S can be determined by measuring either
the absolute amplitudes of dHvA oscillations or the ra-
tios of the amplitudes of different harmonics, as discussed
in recent reviews. " Samples used for such measure-
ments must be free of magnetic impurities, small amounts
of which can shift S significantly.

There is an ambiguity in the value of S deduced by in-
verting (1). The dHvA data are usually interpreted to
yield the smallest positive value So in (1), but the periodi-
city of the trigonometric function allows additional
values S =m+Sp for integer values of m. It is sometimes
possible to establish whether m is an odd or an even in-
teger by measuring the infinite field phase of the oscilla-
tion, but this is not always feasible. In view of this uncer-
tainty, the experimental data must be supplemented by
theoretical arguments to establish the correct value of the
orbital g factor.

When many-body eff'ects are taken into account, the
quantity that is directly comparable to the experimental
orbital g factor is g,*=S„,g, '" /(1+1,;~), where g, '" is
the orbital average of the calculated g factor, S„, is the
orbital average of the exchange-correlation enhancement
factor, and (1+1,;~) is the electron-phonon enhancement
of the cyclotron mass. The Fermi-surface average of the
exchange-correlation enhancement factor, which deter-
mines the spin susceptibility, is frequently termed the
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Stoner factor. Assuming that the electron-phonon
enhancement factor is known from other experiments, it
is in principle possible to determine the orbital average
of the exchange-correlation enhancement factor for non-
ferromagnetic metals by comparing the experimental and
calculated values of the orbital g factor.

The combined CESR and NMR method of Schumach-
er and Slichter, ' and studies of spin-wave propagation in
association with CESR, ' yield Fermi-surface averages of
the exchange-correlation enhancement factor, but are
applicable only to those few metals in which CESR has
been observed. It is in principle possible to check the
band calculation of the g factor by comparing an ap-
propriate Fermi-surface average with the g factor de-
duced from CESR data, because the spin-resonance value
is known to be unafFected by many-body efFects. The
analysis of experimental orbital g-factor data is the only
way known to us to determine the anisotropy of the
exchange-correlation enhancement factor for real metals.

The purpose of the present paper is to describe our ap-
proach to the calculation of orbital g factors, to discuss
the inhuence of quasiparticle interactions, and to inter-
pret experimental data on the noble metals copper, silver,
and gold. Section II describes the theoretical calculation
of the orbital g factor. In Sec. III, the results of the cal-
culation are compared with the experimental CESR and
dHvA data, and the Fermi-surface average of the
exchange-correlation enhancement factor for copper is
estimated. Finally, in Sec. IV, the conclusions of the
present work are summarized.

II. THEORY

E„+(k)—E„(k)=g„(k)p~H . (3)

The energy-level splitting at the point k depends on the
direction of H, and therefore g„(k) is a tensor. It follows
that there is no simple way to invert experimental g fac-
tors measured on several different orbits to yield the an-
isotropy of the local g factor.

In a real metal in the absence of spin-orbit interaction,
two degenerate electronic states, each an eigenstate of
spin, are associated with every element of volume in the
Brillouin zone. The effect of an applied magnetic field H
is to remove the degeneracy. As in the free-electron met-
al, the energy splitting is given by gop&H. When the
spin-orbit interaction is taken into account, the energy
levels remain doubly degenerate (Kramers degeneracy) if
the crystal structure has an inversion center, but the en-
ergy eigenstates are no longer pure spin states.

Even though the electronic states in a uniform magnet-
ic field are Landau levels rather than states of well-
defined k, it is possible to define a local g factor in terms
of the difference between the expectation values of the en-
ergy operator for wave packets narrowly localized in
momentum space. ' ' By analogy with the free-electron
case„ the local g factor for an electron in the nth band at
the point k in the Brillouin zone may be defined ' in
terms of the energy-level splitting of the otherwise-
degenerate eigenstates in an applied magnetic field H
along a direction a,

A'V +V I (E V)2+
A' BV 3

2m 2mc 2m Br Br

(4a)

For simplicity, the crystal potential V(r) was taken to be
spherically symmetric within overlapping atomic spheres,
and correction structure constants were included. The
spin-orbit Hamiltonian is written in the form appropriate
to a spherical potential

1 BVSL- 2, ~ a. ' (4b)

where for a single electron S=o /2, and the o; are Pauli
matrices. L is the angular momentum operator. The
external field H is introduced to first order through the
Zeeman Hamiltonian

(L+cr ).H,eA

2mc

where e is the magnitude of the electronic charge.
In deriving the Hamiltonian (4), a term of the form

e A'

3
rr V VX(HXr)

8m c

(4c)

was neglected. This term is similar in form to the Zee-
man term, and numerical estimates show that it is smaller
than the Zeeman term by at least 2 orders of magnitude.
In addition a diamagnetic term of the form

eH(x+y )

8mc

was neglected. This term is quadratic in H, and is there-
fore expected to shift both of the eigenvalues in (4) to
higher energy, giving no contribution to the g factor.

The first step in the calculation of the local g factor is
to find the potential self-consistently by solving the
Schrodinger equation iteratively in the semirelativistic
approximation. The calculations were done for a mesh of

A. The local g factor

The relativistic linearized mufBn-tin orbital (LMTO)
method in the atomic-sphere approximation has been
used to calculate the energy eigenvalues needed in Eq. (3).
This approach is expected to yield reliable eigenvalues
within approximately 0.5 Ry above and below the Fermi
energy. The relativistic problem was solved by the Pauli
method, rather than by the Dirac method, in order to
reduce the size of the secular matrix. A direct compar-
ison between energy eigenvalues for conduction-band
states of gold determined by the two techniques' gave
agreement within 1 mRy.

The nonrelativistic Hamiltonian for an electron gas in
external electric and magnetic fields has been discussed
by White. ' In the LMTO approximation, introducing
relativistic corrections and retaining only the magnetic
field terms, the Hamiltonian can be expressed in the form

&LMTo +&so +&z
The semirelativistic LMTO Hamiltonian is
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505 points in the irreducible part of the Brillouin zone; s,
p, d, and f orbitals were included. Exchange and correla-
tion effects were taken into account in the approximation
of von Barth and Hedin. ' A substantial economy of
computer time was achieved by introducing the spin-
orbit and Zeeman terms only in the last cycle of iteration.
At each k point, the last cycle of iteration yields two en-
ergy eigenvalues for each band, from which the local g
factor is calculated according to Eq. (3).

Several checks were made to test the calculational pro-
cedure. When the Zeeman term was set to zero, the re-
sulting eigenvalues were found to be in good agreement
with relativistic LMTO and augmented plane-wave
(APW) results. ' In addition, the value of the g factor
was found to be independent of the magnetic field
strength for variations over 8 orders of magnitude. Fi-
nally, the spin-orbit parameter was set equal to, zero, and
the resulting value of the g factor was found to be equal
to the free-electron value for all directions of the magnet-
ic field.

B. The orbital g factor

It is convenient to express the result of a first-principles
g-factor calculation as an orbital g factor that can be
compared directly with experiment. Holtham has
shown that the g factor appropriate to a given orbit on
the Fermi surface is the time-weighted average of the lo-
cal g factor g (k) around that orbit,

g, '"d= f, g (k)u '(k)dk f, u '(k)dk, (7)

where a denotes the direction of the magnetic field H.
Since the orbital g factor is known to be unaffected by the
electron-phonon interaction, consistency requires that,
contrary to the assertion of Holtham, the velocity in Eq.
(7) should not be renormalized when the electron-phonon
interaction is taken into account.

Equations (1) and (2), on which the experimental deter-
mination of the orbital g factors is based, remain valid
when the electron-electron and electron-phonon interac-
tions are taken into account, but the magnitude of the or-
bital g factor in (2) is modified by exchange and correla-
tion effects, which enhance the time-weighted average of
the local g factor by the exchange-correlation enhance-
ment factor S„,. If the Fermi surface is approximately
spherical, the exchange-correlation enhancement factor
can be written

5„,=1/( 1+80'),
where 80 is the Landau parameter that represents the
spin-antisymmetric l =0 component of the quasiparticle
interaction.

Since the electron-phonon interaction does not affect
either the magnitude of the orbital g factor or the ratio S
between the spin splitting and the Landau-level split-
ting, the value of m, that should be substituted in Eq.
(2) is the band cyclotron mass unenhanced by the
electron-phonon interaction. However, it is usual to ex-
tract the experimental value of the orbital g factor from S
by substituting instead the experimental cyclotron mass,
which is enhanced relative to the band mass by a multi-

plicative factor 1+k;~ as a consequence of the electron-
phonon interaction. If this procedure is followed, then
the calculated quantity that is directly comparable with
the experimental value of the orbital g factor is

band
XC C

1+A,
'~

where g, '" is given by Eq. (7).

C. Determination of Fermi-surface parameters

If the electron-phonon enhancement factor is known,
the orbital average exchange-correlation enhancement
factor S„, can be determined by comparing the experi-
mental orbital g factor with the value deduced from the
band calculation. To evaluate the line integral of the or-
bital g factor in Eq. (7), it is essential to know both the
shape of the orbit and the variation of the unrenormal-
ized velocity around the orbit. To determine the
electron-phonon enhancement is is necessary to know the
variation of the quasiparticle and unrenormalized veloci-
ties over the Fermi surface. First-principles calculations
alone yield neither the quasiparticle velocity nor the
electron-phonon enhancement factor. Moreover, for the
noble metals, the shapes of orbits on the Fermi surface
predicted by the self-consistent relativistic LMTO calcu-
lations differ significantly from those observed by experi-
ment. Therefore, the orbital characteristics were ob-
tained by fitting experimental Fermi-surface area data by
means of a phase-shift parametrization based on the
Korringa-Kohn-Rostoker (KKR) method of band-
structure calculation. The anisotropy of the quasiparticle
velocity was determined by interpolating experimental
cyclotron mass data, and the electron-phonon enhance-
ment factor was deduced by comparing the experimental
masses with band masses deduced from a self-consistent
band-structure calculation.

The KKR method of band-structure calculation yields
an implicit equation for the electronic energy eigenvalues
at a point k in the first Brillouin zone, which takes the
form

A(k, E, rl(E) )=0,
where A is an eigenvalue of the KKR secular matrix. In
a first-principles band-structure calculation, the crystal
potential V(r) is constructed, the energy-dependent
phase shifts g(E) are deduced by integrating the radial
Schrodinger or Pauli equation, and the Fermi energy E~
is determined as that energy below which there are just
enough electron states to accommodate all of the valence
electrons in the metal. Finally, the shape of the Fermi
surface is calculated by finding the locus of points in k
space that satisfy Eq. (10) at the Fermi energy. In the
present work, self-consistent LAPW band-structure cal-
culations were used to estimate the magnitude of the Fer-
mi energy and the unrenormalized velocity on the Fermi
surface, to determine the electron-phonon enhancement
of the cyclotron mass, and to estimate the spin-orbit pa-
rameters for gold. The self-consistent band-structure cal-
culations for copper and silver were carried out nonrela-
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tivistically, whereas the calculations for gold were carried
out relativistically. In each case, exchange and correla-
tion was represented by the local effective potential of
Vosko et al.

In the phase-shift pseudopotential method, the phase
shifts at the Fermi energy rj&(EF ) are adjusted iteratively
to bring the extremal cross-sectional areas of orbits on
the constant energy surface calculated from Eq. (10) into
agreement with those deduced from experimental dHvA
frequency data. For copper and silver, excellent agree-
ment with the experimental data was achieved in a nonre-
lativistic calculation with three phase shifts g&, corre-
sponding to l =0, 1, and 2. The fit to the Fermi-surface
data for gold was carried out relativistically, because rela-
tivistic effects are known to be important in gold. The
relativistic KKR secular equation for l ~ 2 involves a set
of five phase shifts gI .. Excellent agreement with the ex-
perimental Fermi-surface data for gold was achieved by
adjusting the three phase-shift parameters
g ] 3/z + g ] $ /z and gz, s /z +pz 3/z. The remaining two pa-

91,3/2 +1,1/2 and gz, 5/z q2, 3/2
of the strength of the spin-orbit interaction. The spin-
orbit parameters for gold were calculated by integrating
the radial Pauli equation with the self-consistent poten-
tial, because the shape of the constant energy surface in
gold is not sufBciently sensitive to the magnitudes of the
spin-orbit parameters to make it possible to determine
them by fitting Fermi-surface data.

The Fermi energy is also a parameter in a phase-shift
fit to the shape of the Fermi surface. The Fermi energy
for each of the noble metals was estimated from a self-
consistent LAPW band-structure calculation, because the
shapes of orbits on the calculated Fermi surface prove to
be almost independent of EI;, making it impossible to
deduce Ez by fitting Fermi-surface data. Small angular-
momenturn-dependent corrections, constant within the
muf5n-tin sphere, were added to each self-consistent po-
tential. The magnitudes of the corrections were adjusted
to bring the calculated phase shifts at energy E~ into ex-
act agreement with those deduced by fitting the Fermi-
surface data. This procedure ensures that the corrected
potential reproduces the shape of the Fermi surface to
the accuracy with which it is known from experiment, so
that the orbits around which the band velocities are cal-
culated are identical to those to which the experimental
cyclotron masses correspond. It also ensures that the
band velocities calculated from the potential are indepen-
dent of the value of the Fermi energy parameter. This
proves to be essential if the ratio of the experimental
mass to the band mass is to yield a reliable measure of the
electron-phonon mass enhancement.

The most accurate way to evaluate the Fermi velocity
and the cyclotron mass by the KKR method is to calcu-
late the energy derivative of the KKR secular matrix &
analytically and to use the Hellman-Feynman theorem to
deduce the energy and wave-vector derivatives of the ei-
genvalue, using the relations

BA ~ ()

and

V„A=&k~V~~k& . (12)

The Fermi velocity is calculated from
—IV,AI

e(BA/BE) ' (13)

and the cyclotron mass is calculated by evaluating the
line integral

fi B A A'

y
(BA/BE)dl

2' BE 2~ ~VI,A~sin8
(14)

where 0 is the angle between the normal to the Fermi sur-
face and the direction of the magnetic field.

The energy derivatives Wf/BE and BA/BE involve the
energy derivatives of the phase shifts. If the energy
derivatives of the phase shifts are calculated from a self-
consistent potential, then Eq. (14) yields the band cyclo-
tron masses. If the energy derivatives of the phase shifts
are determined by adjusting them to fit experimental cy-
clotron mass data for orbits on the Fermi surface, then
Eq. (14) yields the quasiparticle cyclotron masses. Once
the energy derivatives of the phase shifts have been deter-
mined, the unrenormalized velocity and the quasiparticle
velocity at each point on the Fermi surface can be de-
duced by evaluating Eq. (13). This procedure proves to
be an accurate and reliable way of inverting experimental
cyclotron mass data to determine the quasiparticle veloci-
ty. Just as in fitting the area data, a complication arises
in the relativistic case because the cyclotron mass data
prove to be insensitive to the energy derivatives of the
spin-orbit parameters. Therefore the energy derivatives
of the p and d wave spin-orbit parameters for gold were
calculated from the self-consistent potential, and were
held constant in fitting the experimental cyclotron mass
data.

The orbital average of the electron-phonon mass
enhancement A,,~ was evaluated by combining the cyclo-
tron masses deduced from the best fit to experimental
data for a set of orbits on the Fermi surface with those
deduced from the band-structure calculation, using the
relationship

1+A,"+A,'~=m '/m (15)

For a given metal, calculations based on self-consistent
potentials involving different treatments of exchange and
correlation gave generally consistent results for the varia-
tion of A,,'+A, ;~ from orbit to orbit, but the absolute mag-
nitude of A,,'+A, ,~ was found to vary slightly for different
potentials. This is because the extent to which the spin-
symmetric component of the electron-electron interaction
is folded into the crystal potential varies from potential to
potential, resulting in a small variation in A, . Since A,,' is
not accurately known, it was assigned the constant value
necessary to ensure that the value of A, '~ is greater than or
equal to zero at every point on the Fermi surface; the re-
sulting values of A, are —0.032 (Cu), —0.024 (Ag), and
—0.162 (Au). For comparison, the maximum values of

A,;~ were found to be 0.198 (on the neck in copper), 0.264
(on the neck in silver), and 0.512 (on the dog bone in gold
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in the direction of the minimum radius). This arbitrary
procedure underestimates the value of A,P'. The uncer-
tainty in the value of A.;~ that results from the uncertainty
in the extent to which the electron-electron interaction is
folded into the potential is an important factor limiting
the accuracy with which the exchange-correlation
enhancement factor can be deduced from experimental
orbital g-factor data.

III. RESULTS

The noble metals copper, silver, and gold have topolog-
ically similar multiply connected Fermi surfaces. A
Fermi-surface average of the g factor has been calculated
for each metal. Table I compares these and other
theoretical values with experimental values of the CESR
g factor. The Fermi surfaces of the noble metals
support five principal orbits, the belly (B»& ) and neck
(N) for directions of H near ( 111), the belly (B,oo ) and
rosette (R) for H near (100), and the dog bone (D) for
H near (110).' Table II lists the calculated values of the
orbital g factors and the electron-phonon enhancement
factors determined in this work, together with the experi-
mental values of the orbital g factors g,'" ' deduced from
dHvA data, ' and the resulting estimates of the
exchange-correlation enhancement factor S„,.

A. Copper

The experimental CESR g factor for copper has been
determined independently by several groups, and the
value listed in Table I is representative of results of mea-

TABLE I. Experimental values gc of the g factor for the
noble metals derived from CESR experiments, compared with
values g'" derived from a Fermi-surface average of the local g
factor calculated in the present work, and with values g'P" cal-
culated by Schober et al. (Ref. 5) assuming a spherical wave
function.

CU

Ag
Au'

CESR

2.033(1)'
1.983(1)"
2.11(1)'

gav

2.08
2.06
2.26

g sph

1.97
2.02

'Reference 25.
Reference 26.

'Reference 27.
For Au, CESR has not been detected in conventional experi-

mental configurations; the value listed was obtained by plating
thin ferromagnetic films on both sides of foils cut from single
crystals. CESR has also been seen in tiny Au particles; the re-
sults from two different groups are contradictory, 2.26(2) (Ref.
29) and 2.0024(4) (Ref. 30). Size effects are expected (Ref. 27) to
alter the measured CESR g factor in small particles. Plated foil
experiments in Cu (Ref. 31) have shown that g is unchanged
from the value measured in conventional experiments (although
line shape and amplitude are altered), so that the plated Au foil
experiments (Ref. 28) are taken to be reliable.
'Reference 28.

surements under conditions expected to yield an average
of g over all states on the Fermi surface. A simple
Fermi-surface average of the local g factor is significantly
larger (by about 2%) than the experimental value. While
there have been several theoretical treatments of CESR
(see, for example, the works of Lamb or Janossy

TABLE II. Theoretical and experimental values of g and S„, for principal orbits in the noble metals. Error estimates for g take
into account uncertainties in calibrations, curvature factors, and effective masses, as well as experimental scatter. The resulting un-
certainties in S„,do not take into account possible systematic errors in A, Reasonable alternative values allowed by the ambiguity
of inverting cosm.S are given in brackets [ ]. The va1ues listed from Ref. 8 are those based on curvature factors calculated (Ref. 32)
from a KKR model, which we have verified by computing orbital integrals of geometric properties of the Fermi surface up to second
order using our KKR parametrization. Average values of S„, calculated by MacDonald et al. (Ref. 33) are 1.096 (Cu), 1.073 (Ag),
and 1.063 (Au).

Orbit

B(100)
R (100)
D ( 110)
B(111)
N(111)

band
C

2.13
2.05
2.09
2.12
2.04

1.052
1.071
1.091
1.034
1.198

Ref. 3

2.24(5)
2.08(5)
2.11(2)
2.12(2)
1.90(4)

Ref. 6
g expt

Ref. 7 Ref. 8

2.24(3)'

2.14(2)
2.13(2}

1.11(2)
1.09(2)
1.11(1)
1.04(1)
1.12(2)

S„,

B(100)
R (100)
D ( 110)
B(111)
N(111)
B(100)
R (100)
D ( 110)
B(111)
N(111)
8 zero

2.09
2.04
2.07
2.10
2.01

2.40
2.13
2.19
2.43
2.20
2.34

1.057
1.109
1.122
1.041
1.264

1.111
1.103
1.167
1.051
1.370
1.114

1.92(5)

1.22(12)

2.04(28)

1.04(3)

2.29(4)
2.26(10)
2.35(10)
2.42(13)
1.15(5)
2.35(5)"

2.14(20)

2.24(10) [1.77]
2.43(15) [1.91]

2.03(4)

2.03(20)
2.21(7)

1.08(10)

1.21(5) [0.96]
1.20(7) [0.95]
1.21(3)

1.06(2) or 0.94(2)
1.17(5}
1.25(5) or 1.08(10)
1.05(6) or 0.96(3)
0.70(5)
1.18(3)

'Extrapolated from 12'.
Recalculated in Ref. 8, using revised mass data, to be 2.49. For consistency, S„,has been calculated from the latter value.
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which provide comprehensive references to earlier work),
they all make important simplifying assumptions, and no
theoretical treatment of transmission CESR has yet fully
taken into account the variation of g with field direction.
Our calculations show that, in the noble metals, the local
g-factor component for magnetic field parallel to the ve-
locity tends to be smaller than the other components.
Assuming that electron states with velocities along the
field direction make the dominant contribution to the
transmitted signal, this would explain why a simple
Fermi-surface average overestimates the g factor ob-
served in CESR. Further theoretical development,
perhaps along the direction of Lamb's work but includ-
ing the experimental geometry and skin effect (the skin
depth is generally less than the electron mean free path
between momentum scattering events), is needed for a
more accurate comparison between theoretical g factors
and experimental CESR data.

The small value of the spin-splitting factor of the fun-
damental and the existence of spin zeros combine to en-
sure that g,'"P' can be determined with an experimental
uncertainty of the order +1%. Thus the experimental
dHvA data for copper yield reliable values of the orbital
g factors. It has been noted that the earlier estimates of
the g factors may be slightly too low, by amounts which
we estimate to be between 1 and 2%, because the cyclo-
tron masses used in the analysis were systematically too
high.

The local g factor calculated in the present work is
lower on the necks than on the belly, leading to corre-
sponding differences between g,"'" for the neck and belly
orbits; the rosette and dog bone orbits, which sample
both regions, have intermediate values of g, '" . The an-
isotropy of the electron-phonon renormalization makes a
significant contribution to the anisotropy of g,'" ', and is
the main reason for the low value on the necks. Combin-
ing the experimental and calculated orbital g factors with
the electron-phonon mass enhancement factor according
to Eq. (9) yields an estimate of the orbital average of the
exchange-correlation enhancement factor. The results
presented in Table II indicate that the anisotropy of the
exchange-correlation enhancement factor over the Fermi
surface is weak. The mean value of 1.094 is in excellent
agreement with the results of a first-principles calculation
by MacDonald et al.

B. Silver

A simple Fermi-surface average of the local g factor
g„(k) was found to be significantly larger than the experi-
mental value of the CESR g factor for silver. In view of
the questions raised above concerning the appropriate
Fermi-surface average, the interpretation of this result
must await further theoretical developments.

For the principal orbits in silver, the cosine factor of
Eq. (1) is close to unity. This introduces a large uncer-
tainty in the determination of g,'"~' from dHvA data. For
the same reason, even a small systematic error in the
measurement of the oscillatory amplitude would intro-
duce a large error in g,'"~'. The fact that the value of the
cosine derived from the (100) belly data exceeds unity

suggests a possible systematic error; in this case the max-
imum value of unity was assigned. The ( ill ) belly and
the dog bone data are consistent with either of two
reasonable alternative values of g,'" '. The value of g,'" '

for the neck is more precisely determined, but is thought
to be slightly too low because of a small error in the value
of the cyclotron mass. Since m, enters the analysis in
other ways besides Eq. (2), it is impossible to correct the
orbital g factor for the mass error without having access
to the complete original data.

The experimental uncertainty in the orbital g factor for
the (100) belly is as large as the calculated variation
among the major orbits. Moreover, for the dog bone and
the ( 111) belly orbits, the uncertainty in the experimen-
tal value of the orbital g factor is so large that the calcu-
lated values offer no guidance in resolving the ambiguity
in inverting the cosine factor. Given the uncertainties in
extracting g,""'from the experimental data and the likeli-
hood of large systematic errors, the exchange-correlation
enhancement factors reported in Table -II for silver must
be regarded with caution.

C. Gold

CESR experiments for gold show that the g factor is
generally higher than in the other noble metals, presum-
ably because the spin-orbit interaction is stronger.
Again, a simple Fermi-surface average of the local g fac-
tor significantly overestimates the experimental value of
the CESR g factor. The interpretation of CESR data is
subject to the same uncertainties as for the other noble
metals, and a quantitative analysis must await further
theoretical developments.

The uncertainties in the orbital g factors deduced from
dHvA data for principal orbits on the Fermi surface of
gold are large. Moreover, the results of absolute ampli-
tude measurements at different laboratories are in
convict; it has been suggested that the results reported in
Ref. 7 may be unreliable because the data suffer from
magnetic interaction effects. A spin zero has been ob-
served on the belly of the Fermi surface of gold with H
in the (110) plane 71.6 from [001]; the resulting value of
g,'"P' was originally estimated to be 2.35, but a subsequent
calculation with a revised mass gave 2.49. This result
casts doubt on dHvA data in Ref. 8, which indicate that
g,'" ' on the belly orbits in gold is lower than in copper or
silver, and supports the generally higher values obtained
from dHvA data in Ref. 7. The large positive CESR g
shift adds further support to this conclusion.

The band calculations for gold indicate a strong posi-
tive g shift, with a larger anisotropy than for the other
noble metals. The results of the present calculation are in
excellent agreement with those of an independent calcula-
tion by Ohlsen, the differences are small and random,
with a standard deviation of less than 0.02. Only on the
spin-zero orbit and on the neck are the experimental g
factors determined with sufficient accuracy to make it
possible to estimate the exchange-correlation enhance-
ment factor.

In the vicinity of the neck, the electronic energy band
at the Fermi surface is strongly hybridized with an ener-
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gy band at a slightly higher energy. A simple argument
based on second-order perturbation theory predicts that
such a configuration of bands will induce a negative g
shift. This is believed to account for the generally small
values of the g factors on the necks of the noble metals.
At the symmetry point L (the center of the neck orbit) in
gold the calculation predicts a negative g shift
(g, '" = 1.80), which is consistent with the perturbation
theory argument. However, the g shift on the neck orbit
in gold is large and opposite in sign to that at the I. point.
This surprising result may arise from the strong admix-
ture of d character to the electron states on the neck in
gold. It is also surprising that the calculated g shift on
the neck orbit is larger than on the rosette and dog bone,
whereas in the other noble metals the g shifts on the
rosette and dog bone are intermediate between the belly
and the neck.

The experimental data are no less surprising than the
results of the band calculations. Independent measure-
ments by several groups are consistent in showing that
the g factor on the neck in gold is unusually low, with a
minimum at (111). Interpreting these results on the
basis of Eq. (9) yields an exchange-correlation enhance-
ment factor for the neck orbit that is significantly less
than unity. While correlation is expected to offset the ex-
change enhancement of the g factor, the resulting
exchange-correlation enhancement is expected to be
greater than unity. The applicability of this result to
real metals is borne out by first-principles calculations.
A value less than unity must be considered unphysical.

A possible explanation of the unphysical estimate of
S„,on the neck in gold is that the choice of S =So impli-
cit in the interpretation of neck g-factor measure-
ments ' ' is incorrect. The ambiguity in inverting the
cosine function allows S =m+So, where m is zero or a
positive integer. Infinite field phase measurements rule
out odd integers for the (111) neck orbits in the noble
metals. The next higher possible g factor comes from
choosing S =2—So, which implies an orbital g factor of
13.1 at ( 111),decreasing to 12.4 for orbits that are bare-
ly viable on the neck. The dHvA data show that the g
factor varies smoothly over the necks, while the CESR
results show that g must be generally just over 2 on most
of the Fermi surface. It seems unlikely that the
exchange-correlation enhancement would increase almost
discontinuously by an order of magnitude from the belly
to the adjoining neck regions in gold.

A more likely explanation of the unphysically low
value deduced for S„ for the necks in gold is that the
present calculations seriously underestimate the
electron-phonon mass enhancement in the region of the
neck. The calculated anisotropy of A.'~ over the Fermi
surface is similar in copper and silver, but qualitatively
different in gold, where the maximum value occurs on the
dog bone orbit rather than on the neck. This is con-
sistent with the possibility that the present estimate of A. '~

on the neck in gold is too low. Ultrasonic attenuation
data provide another indication that this may be so.
The attenuation in the limit of long electron mean free
path is proportional to the square of the electron-phonon
enhancement (I+A.'~). ' In gold (but not in copper or

silver) the experimentally observed attenuation of ul-
trasonic waves propagating along (111) is more than
twice the free-electron prediction. A simple estimate of
the contribution from the neck can be obtained by sub-
tracting the belly contribution as calculated by MacFar-
lane and Rayne, but corrected by the present value of
the electron-phonon enhancement factor for the (111)
belly. By interpreting the neck contribution on the basis
of an average strain derivative of the Fermi surface de-
duced from area-derivative data and curvatures calcu-
lated from our KKR parametrization, we estimate that
1+A,'~=1.9 for the neck effective zone in gold, which is
essentially identical to the dHvA orbit. If this value is
used as an estimate of the orbital mass enhancement to
interpret the neck g-factor data in gold, the resulting
value of the exchange-correlation enhancement is
S„,=1.0. This result is physically reasonable, and taken
together with the result from the spin-zero orbit on the
belly, yields an average exchange-correlation enhance-
ment that is in reasonable agreement with the result of
the first-principles calculation by MacDonald et al. (see
Table II). However, as the estimate of the electron-
phonon enhancement on which the present result is based
involves several approximations, further studies are need-
ed to establish a reliable value for S„,on the neck in gold.
With this in mind, work is in progress to evaluate the
strain derivatives of the Fermi surface and hence to
determine the various contributions to the ultrasonic at-
tenuation with greater precision.

IV. DISCUSSION AND CONCLUSIONS

In this paper, a novel approach to the theoretical cal-
culation of the g factors of conduction electrons is de-
scribed, and results of calculations in the noble metals are
presented. The role of quasiparticle interactions in exper-
imental orbital g-factor data is discussed, and experimen-
tal data for the noble metals are interpreted. An ambi-
guity in the value of the electron-phonon enhancement
A,;~ arises from the uncertainty in the extent to which the
electron-electron interaction is folded into the self-
consistent crystal potential. This ambiguity was resolved
by arbitrarily setting the minimum value of the electron-
phonon enhancement over the Fermi surface equal to
zero. This procedure is expected to underestimate the
value of X'~ and hence S„,. The uncertainty in the
electron-phonon enhancement is an important factor lim-
iting the accuracy with which the exchange-correlation
enhancement factor can be deduced from experimental
orbital g-factor data.

The most reliable and complete experimental data are
those for copper. It is probable that the present calcula-
tions for copper do not underestimate the values of A,,~
and S„,by more than 0.05. The good agreement between
the average value of S„, over the various orbits and the
theoretical estimate of MacDonald et al. gives confidence
in the validity of the present approach. The results indi-
cate little anisotropy in the exchange-correlation
enhancement in copper. The g factors for the large orbits
in silver and gold are generally not well established by the
experimental data; the exception is that the spin-zero or-
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bit on the belly in gold yields a reliable value of the g fac-
tor.

The g factor deduced from dHvA measurements on the
(111)neck orbit in gold is unexpectedly low. This is be-
cause the experimental cyclotron mass has been used in-
stead of the unrenormalized mass in deducing g from the
experimentally determined value of S. Ultrasonic at-
tenuation data indicate that the electron-pho non
enhancement factor for this orbit is approximately 1.9,
and hence that the true value of the g factor for the
(111)neck orbit is comparable to values of g on the rest
of the Fermi surface. A comparison between the experi-
mental cyclotron mass and the calculated band mass
significantly underestimates the electron-phonon
enhancement on the ( 111) neck orbit in gold. The
failure of the band calculation to yield an accurate esti-
mate of the unrenormalized mass on the ( 111) neck or-
bit in gold will be the subject of further work. The
present work suggests that in such cases A,

'~ can be deter-
mined from an analysis of ultrasonic attenuation data.

An important motivation for this work is the hope that
it will prove possible to determine the exchange-
correlation enhancement factors in metals by analyzing
experimental quantum oscillation data. Because the de
Haas —van Alphen effect is observable in almost every
metallic element, the present method is more widely appl-
icable than methods based on CESR, and in addition it
may make it possible to determine the anisotropy of the
exchange-correlation enhancement. Even if the inversion
of dHvA amplitude data for principal orbits on the Fermi
surface proves to be unreliable, the exchange-correlation
enhancement can be determined on those orbits and at
those orientations where the dHvA amplitude shows a
spin zero. High-purity samples are essential for such
work, since magnetic impurities present even in minute

concentrations can alter the relative amplitudes of the
harmonic components of the quantum oscillations, and
can induce field-dependent shifts in the orientations at
which the spin zeros are observed. In conditions of
significant magnetic interaction, magnetic impurities can
also induce spurious field-dependent zeros in all but the
fundamental component of the quantum oscillations.
Only by demonstrating their field dependence can the
spurious zeros be distinguished from true spin zeros.

The accuracy with which the exchange-correlation
enhancement can be determined is limited by the accura-
cy of the estimate of electron-phonon enhancement. If,
as in the noble metals, the uncertainty in k,~ is compara-
ble to S„,—1 it is impossible to extract the exchange-
correlation enhancement with great accuracy. However,
there is every reason to hope that the analysis of quantum
oscillation data will prove to be a practical technique for
determining the exchange-correlation enhancement for
conduction electrons on the Fermi surfaces of those met-
als in which the enhancement is strong.
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