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Optical properties of a suspension of metal spheres
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The Mie theory is used to find the in situ electric dipole polarizability of a sphere of arbitrary size
and material. This size-dependent polarizability, together with the Clausius-Mossotti equation,
yields an effective dipole generalization of the Maxwell Garnett equation for spheres of nonzero
size. Calculated effective optical constants are used to find the reAectance from a suspension of Ag
spheres. The results are in good agreement with the recent reflectance measurements of Lee et al.
[Phys. Rev. B 37, 2918 (1988)]on porous glass media containing Ag particles.

I. INTRODUCTION tions, given by'

The optical properties of a suspension of small metal
particles in a transparent host medium can differ striking-
ly from those of the same metal in bulk form. Calcula-
tion of effective optical constants of such a suspension is
extremely dificult, since they intimateIy involve the
wavelength of the radiation, the complex dielectric con-
stant of the meta1 and the index of refraction of the host
medium, the structure, size, and shape of the embedded
particles, and the density, orientation, and spatial distri-
bution of the particles. Fortunately, it is often possible to
produce suspensions of homogeneous spherical particles
with a narrow range of particle size and known spatial
distribution. Effective optical constants for the suspen-
sion may then be calculated from the known electro-
dynamic response of a metal sphere. '

The effective permittivity may be computed exactly for
a regular array of identical spheres. When one or more
of the parameters exhibit random variances, however, the
problem is less tractable and recourse is usually had to ei-
ther the Maxwell Garnett or the Bruggemann formula.
Although these two formulas agree in the limit of zero
particle size and low volume-filling factor, the Maxwell
Garnett viewpoint is the appropriate one for this "cer-
met" topology and is more readily generalized to parti-
cles of nonzero size. In this paper we shall use the Mie
theory to find an effective dipole generalization of the
Maxwell Czarnett approach for spherical metal particles
of finite size and volume-filling factor. The method is
used to calculate the optical properties of rnonodisperse
and log-normal size distributions of small silver particles.
Reflectance calculations are compared with the results of
recent optical studies of porous glass media containing
silver particles.

II. MIE THEORY

A. Exact solution

The orthogonality of the spherical harmonics and the
independence of the electric and magnetic partial waves
of an isolated sphere permit a separation of the extinction
cross section C,„, into independent multipole contribu-

C,„,= g (2n+1)Re(a„+b„),
k

with

and

m P„(mx )g'„(x ) f„(x)g—'„(mx )

m f„(mx )g'„(x)—g„(x)g'„(mx)
(2)

g„(mx)g„'(x) mg„(x)f—'„(mx )b„=
g„(mx )g'„(x)—m g„(x)g'„(mx)

(3)

where g„and g„are the Riccati-Bessel functions. The
relative refractive index m is the ratio of the complex in-
dex of refraction of the metal n to the real index of re-
fraction no of the host medium. The size parameter x is
2~noa/A, , where a is the radius of the particle and A, is
the vacuum wavelength.

Although mathematically elegant, the inscrutably con-
cise form of Eqs. (2) and (3) defies physical interpretation.
Mie also presented the scattering coefficients a„and b„ in
the alternative form'

i(n+1) x "+'
a„= unn(2n+1) 1 3 . (2n —2)~ m +[(n+1)/n]w„

and

i(n+1) 2n +1 1 —v„b„= "nn(2n+1) 1 3 (2n —2) " 1+[(n+1)/n]w„

where each of the functions u„, U„, and w„can be ex-
pressed in terms of polynomials and rapidly convergent
infinite series in x and mx for which Mie gives explicit ex-
pressions. All of the u„, U„, and w„approach unity with
vanishing particle radius.

Although Eqs. (2) and (3) are more useful for numerical
computations, the alternative forms (4) and (5) exhibit the
essential multipole character of the solution, while
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displaying the functional dependences of the problem in a
physically intuitive way. As a result, they are helpful in
providing physical insight and as a guide to physically
motivated approximations.

B. Effective polarizability

, 3Q
CX1 1

3 al
2x

(6)

This is the exact effective electric dipole polarizability of
an isolated sphere. It holds for spheres of any size and
material, and it includes the contribution of the host
medium. Either of the equivalent expressions (2) or (4)
for the scattering coefficient a, may be used in Eq. (6).

III. EFFECTIVE MEDIA

A. EB'ective optical constants

The propagation of an electromagnetic wave in a sus-
pension may be described by an effective index of refrac-
tion for propagation, even when the particles are not small
relative to the wavelength, and effective optical constants,
as such, do not exist. The applicability of effective-
medium theories to optical problems has been critically
examined by Bohren. We need what Bohren calls an
unrestricted effective-medium theory: one that yields
effective optical constants that may be applied in all ordi-
nary optical calculations.

Stroud and Pan used a self-consistent procedure to
define an effective permittivity, including the electric and
magnetic dipole terms, a

&
and b &. They applied their re-

sult to the problem of the propagation and absorption of
far-infrared radiation in metal composites. The magnetic
dipole term is needed in their application where eddy-
current losses predominate. In our approach the magnet-
ic dipole term could be treated on the same footing as the
electric dipole term, by introducing an effective magnetic
dipole polarizability. We ignore it here, however, since it
makes a negligible contribution relative to the strong
electric dipole resonance and it would needlessly compli-
cate the interpretation of optical experiments by necessi-
tating the introduction of an effective magnetic permea-
bility. When still higher multipoles come into play, it is
not always possible to describe the general optical behav-
ior of a suspension using efFective optical constants.

Equations (l), (4), and (5) show that the electrodynamic,
response of an isolated sphere of arbitrary size and rna-
terial in the electric and magnetic fields of a wave of a
given wavelength is equivalent to that of a coherent en-
semble of ideal point multipoles of appropriately chosen
size-dependent effective multipole polarizabilities. Each
mode is an independent collective response driven by the
electric and magnetic fields of the corresponding mul-
tipole amplitude in the orthogonal expansion of the driv-
ing wave.

The effective multipole polarizabilities may be found
by dividing each term by the corresponding partial-wave
amplitude of the incident wave. For the electric dipole
polarizability n& we find

B. Effective dipole approximation

In seeking a generalization of the Maxwell Garnett
equation for spheres of nonzero size, it is helpful to dis-
tinguish optically good metals with permittivities having
a large Drude free-electron component and small inter-
band absorption from optically poor metals with large in-
terband absorption and a small Drude component. Small
spheres of optically poor metals exhibit only a relatively
low featureless extinction, while optically good metals ex-
hibit a strong electric dipole resonance. Experiments and
calculations based upon the exact Eqs. (l)—(3) typically
show that the electric dipole resonance shifts to longer
wavelength and broadens, with increasing particle
size. ' ' While the interpretation of Eqs. (2) and (3) is ob-
scure, all physical effects accompanying particle growth
enter the equivalent Eqs. (4) and (5) via the complex func-
tions u „v„and w &. These effects include intensity
changes attributable to size-dependent multipole drive
efficiencies and skin-depth-induced nonuniform current
response. Closer inspection of the functions u„v&, and
w& in the small-particle limit reveals that the broadening
of the extinction peak and the shift toward longer wave-
length are produced by the collective nature of the elec-
tron motion. All of these physical features are retained
by treating the electric dipole term exactly, using Eq. (2)
for a& in Eq. (6).

Equation (4) predicts similar resonances in each of the
higher electric multipoles a„when the real part of the
denominator vanishes, but higher multipoles are weight-
ed by increasing powers of the size parameter x and
remain small relative to the dominant electric dipole res-
onance. Moreover, because of the absence of the terms
rn from Eq. (5), the magnetic multipoles do not exhibit a
resonant local-field enhancement. All higher-electric-
multipole terms and all magnetic multipole terms will be
neglected. Our approximation thus consists in treating
the electric dipole term exactly, while setting all other
terms a„and b„equal to zero. Calculations show that for
optically good metals this effective dipole approximation
gives excellent agreement with the complete Mie equa-
tions in the neighborhood of the dipole resonance. Be-
cause the dipole term is treated exactly, this simple ap-
proximation exhibits all of the characteristic changes in.
peak position, intensity, and shape found in the optical
experiments. Because it is unencumbered by terms that
could hinder its use in effective-medium applications, it is
the appropriate generalization of the Maxwell Garnett
static polarizability for small particles of optically good
metals in the vicinity of the dipole surface-plasmon reso-
nance.

C. Extended Maxwell Garnett theory

The Maxwell Garnett theory involves the dipole ap-
proximation in two distinct ways: the individual polariz-
able entities are treated as dipoles, and only dipole-dipole
interactions between the particles are considered. In our
approximation, too, a suspension of particles is
equivalent to an array of efFective point dipoles, so only
dipole-dipole interactions can occur. Unless the dipoles
are regularly arrayed, even dipole interactions must be
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treated approximately. For convenience, and because we
want it as a benchmark, we follow the Maxwell Garnett
approach and assume that the effective dielectric function
of a suspension is related to the dipole polarizability, a &,

by the Clausius-Mossotti equation

E —1 4

K+2
where K =(N/no) is the ratio of the effective perrnittivi-
ty of the suspension to the permittivity of the host, N is
the effective index of refraction of the suspension, and n 0
is the real index of refraction of the host medium.

If we insert the effective polarizability from (6) into (9),
we have the effective dipole form of the Maxwell Garnett
theory for spheres of nonzero size,
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IV. CALCULATED OPTICAL PROPERTIES

where the particle number density, N0, is related in the
usual way to the volume-fi11ing factor f=4mNoa /3.
The scattering coefficient a, is given by either (2) or (4).
In the limit of zero particle size, (8) reduces to the
Maxwell Garnett equation.
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A, Particle optical constants

For the permittivity of the metal particles, e =n, we
use the experimental values of Johnson and Christy for
the bulk metal permittivity of Ag, e&, modified to include
the additional damping mechanism in the particles intro-
duced by collisions of the conduction electrons with the
particle surface. Thus, we set

COp

&m =&6+
co(a)+i /r)

COp

a)(co+i /r+i /r, )
(9)

where eb, co~, and 1/r are the experimental bulk metal
values of the permittivity, plasma frequency, and damp-
ing constant, respectively. The quantity 1/r, =uo/a is
the surface-collision-damping term, u0 is the Fermi ve-
locity, and a is the particle radius. In the Maxwell Gar-
nett theory the particle size enters only indirectly
through this surface-collision term. This surface-
damping term is dominant in very small particles. In
larger particles it is overshadowed by the larger explicit
size dependences contained in the exact solution.

B. Effective polarixability

Figure 1 shows the real and imaginary parts of the
complex effective polarizability of Ag spheres as a func-
tion of particle radius. In a11 of the figures the parame-
ters listed appear in the same order as the peak maxima.
The curves for 100-A-radius particles are almost indistin-
guishable from the Maxwell Garnett results. For parti-
cles smaller than these, there is a progressive broadening
of the peaks with decreasing radius and little change in
peak position. These size-dependent changes in peak po-
sition and width are- primarily field-coherence effects.

FREQUENCY (103 cm ~
)

FIG. 1. Calculated frequency dependence of the real and
imaginary parts of the complex effective dipole polarizability of
Ag particles in porous glass. The host dielectric constant is 2.2

0
and the particle radius R is in A. In all of the figures the param-
eters listed appear in the same order as the peak maxima. The
peaks shift to lower frequency with increasing mean radius R
and standard deviation 0..

Enhanced radiation damping is the result of collective
enhancement of the electric and magnetic fields in the ra-
diation zone of the particle, whereas the peak shift is
caused by collective enhancement of the magnetic fields
in the near zone of the particle. These purely electro-
dynamic collectiue dipole effects can be modeled by treat-
ing the particle as a giant Thomson atom. They are con-
tained implicity, if obscurely, in the exact Mie solution.

C. Kft'ective optical constants

We can use effective optical constants, X=N'+iN",
obtained from the permittivity ratio in Eq. (8),
K =(N/no), in ordinary optical calculations for suspen-
sions, provided the particle densities are large enough to
give reliable suspension averages and provided higher-
multipole effects can be neglected. Thus the reQectance,
R, of a thick sample at normal incidence is given by

(N' 1) +(N")—
(N'+1) +(N")
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D. Reflectance of monodisperse suspensions

Using Eqs. (2) and (8)—(10), we have calculated the
reAectance of a suspension of identical Ag spheres for the
conditions used in the experiments of Lee et al. : host
perrnittivity en=2. 2 and volume-filling factor f=0.036.
Figure 2 shows the calculated reflectance versus frequen-
cy for monodisperse spheres for radii ranging from 100 to
500 A. As expected, on the basis of the effective polariza-
bilities in Fig. 1, and in qualitative agreement with the ex-
perimental results, the refIectance resonance shifts to
longer wavelength and broadens with increasing particle
size. We should not expect quantitative agreement using
a monodisperse size distribution. In contrast with the
Maxwell Garnett approximation, the polarizability is
now an explicit function of particle radius, and a distribu-
tion of particle radii can profoundly inAuence the calcu-
lated optical properties of a suspension. In this approxi-
mation the volume-filling factor and average particle ra-
dius no longer suffice to determine the optical properties
of a suspension. A more complete sample characteriza-
tion is required.

E. log-normal size distributions

Particles produced by many processes under a wide
variety of conditions exhibit size distribution functions
that are Gaussian in the logarithm of the particle diame-
ter: the log-normal distribution. ' '" For spherical parti-
cles, the log-normal distribution function, fLN(y), takes
the form

g n, 1 ny,

lnyg = (12)

and

lno.

1/2
gn, (lny; —lny )

(13)

where n; is the fractional number of particles in the ith
equal logarithmic interval d ln(y) about y;. In a given
suspension the standard deviation in particle size depends
on the growth mechanism and on the details of sample
preparation. Values of o. =1.4—1.6 are commonly en-
countered io

The log-riormal particle-number distribution has the
property that all powers of the radius, e.g. , the surface
and volume distributions, are also distributed log-
normally with same standard deviations but with
different means. " The number average diameter, yNL, is
related to the geometric mean diameter, y, and the stan-
dard deviation, o., by

lnyNI =lny~+ —,
' (14)

In our application we are chiefly concerned with
volume-weighted distributions, since the quantity of in-
terest, the polarizability, is approximately proportional to
the particle volume.

1 (Iny —lnyg )
~LN(y) =, e"p

(2ir)'~ lno 21n 0

where y is the particle diameter. The geometrical mean
diameter, y, and the standard deviation, o., respectively,
are defined by

F. Reflectance of heterodisperse suspensions

dy;
f; =Cy fLN(y;), (15)

Reflectance spectra for heterodisperse suspensions
were calculated by introducing an assumed mean particle
diameter, yNL, and standard deviation, o, into Eqs. (11)
and (14). Then a volume-weighted histogram,
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FICr. 2. Calculated frequency dependence of the retlectance
of monodisperse suspensions of Ag particles of radius R (in A)
in porous glass media. The host dielectric constant is 2.2 and
the volume-filling factor f is 0.036.

of partial volume-filling factors, f; =4, mNo, a;, was con. -.
structed and normalized to the total volume-filling factor,
f, using the normalization constant C. The factor
dy;/y;=d ln(y;) in (15) is needed with equal diameter-
interval sampling cells centered on y, . In each case the
size and number of the sampling cells was chosen to give
stable suspension average effective polarizabilities in Eq.
(8). The reflectance was calculated using the effective in-
dex of refraction, N =n&&&K, in Eq. (10).

Figure 3 shows the reflectance spectra at normal in-
cidence of suspensions with log-normal particle-size dis-
tributions for a wide range of mean particle radii
R =yNL/2 and standard deviations o.. The reflectance
curves for o. =1.0 correspond to those for the mono-
disperse distributions shown in Fig. 2. Comparing one
panel with another in Fig. 3, we see that all spectra shift
toward longer wavelength as the mean particle radius is
increased and the standard deviation is held constant.
The trend appears clearly in Fig. 2 for o.= 1. Conversely,
the individual panels in Fig. 3 show that the refIectance
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FIG. 3. Calculated frequency dependence of the reflectance of log-normal heterodisperse suspensions of Ag particles in porous
0

glass media. The average radii and the standard deviations of the suspensions are denoted by R (in A) and o, respectively.

peaks remain approximately fixed in position, but
broaden and decrease in intensity as the standard devia-
tion of the distribution increases and the mean particle
radius is held constant.

As the particle distributions widen, the reflection
spectra assume a flattened asymmetric shape, much
broadened on the low-frequency side and with a sharper
characteristic "dip" in reflectance on the high-frequency
side of the resonance. This peculiar shape is a conse-
quence of a quadratic dependence of peak position, and a
cubic dependence of peak width, on particle radius.
Even in very wide distributions the peak position and
shape are primarily determined by a smaller range of par-
ticles of intermediate size. Contributions from very small
particles are suppressed by surface-collision damping,
while contributions from very large particles are
suppressed by enhanced radiation damping. Since both
small and large particles are effectively removed from
participation in the peak, the resonance appears severely
attenuated in suspensions with a broad size distribution.

V. COMPARISON WITH EXPERIMENT

The recent optical studies of porous glass media con-
taining Ag particles by Lee, Noh, Gaines, Ko, and
Kreidler provide a good test of the size dependence pre-
dicted by the effective dipole approximation. Silver is an
optically good metal and exhibits a sharp dipole reso-
nance. The experimental particle densities studied were

large enough to provide reliable suspension averages and
the range of particle sizes studied was large enough to
cause large changes in the effective optical constants.

In their experiments Lee et aI. found a strong size
dependence of the reflectance spectrum in the neighbor-
hood of the dipole resonance. They found that the
Maxwell Garnett theory gave poor agreement with the
position, width, size, and shape of the measured peak in
the reflectance spectra. Better agreement with the peak
width was obtained using the Persson-Liebsch theory' to
include random dipole-dipole contributions to the local
field. Neither the Maxwell Garnett nor the Persson-
Liebsch theory accounted for the peculiar spectral shape
observed or for the size-dependent position of the
reflectance peak. This is not surprising. Aside from the
small effect due to the surface-collision correction to the
bulk metal optical constants, there is nothing in either
theory that could lead to an explicit size dependence.
Moreover, the transmission electron micrographs show
that these unique media consist of very-well-separated
spherical particles, a distribution consistent with a puta-
tive depletion growth mechanism. Such nonrandom dis-
tributions would tend to suppress dipole-dipole interac-
tion effects of the type considered in the Persson-Liebsch
theory. Random dipole-dipole interactions would be
much more difficult to include in a size-dependent theory.
Fortunately, they are not needed. The effective dipole
approximation, alone, adequately describes the observed
reflectance spectra.
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A. Reflectance spectra
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FIG. 4. Comparison of calculated and experimental
reflectance spectra for Ag particles in porous glass media. The
dotted, dashed, and dotted-dashed lines show the experimental
results of Lee et al. (see Ref. 2) for suspensions with average
particle radii, 8, of 450, 270, and 110 A, respectively. The cal-
culated refiectance spectra are shown as solid lines. In the cal-
culations, the radii, E., were set equal to the experimental
values. The (unmeasured) standard deviations, o., were chosen
to match the heights of the experimental peaks.

Experimental reflectance spectra taken from the mea-
surements of Lee et al. are sketched in Fig. 4. 'fhe ex-
perimental curves for suspensions of spheres with average
radii of 110, 270, and 450 A are shown as dotted-dashed,
dashed, and dotted lines, respectively. The peaks shift to
lower frequency with increasing mean radius R and stan-
dard deviation o.. In order to compare these measured
reflectance spectra with the effective dipole theory, it is
necessary to consider the width of the particle-size distri-
bution. Although the standard deviations of the experi-
mental distributions are not known, the transmission-
electron-microscope pictures for these samples show that
they contain well-separated spheres with a wide distribu-
tion of particle sizes. Assuming that the distributions are
log-normal, we set the average radii, E., equal to the
known experimental values and adjust the standard devi-
ations, ~, so that the peak heights roughly match those of
the experimental curves. The calculated spectra are
shown as solid lines in Fig. 4. The position and width of
the reAectance peaks are primarily determined by the ex-
perimental average particle radius and are in good agree-
ment with the experimental measurements. The heights
of the calculated peaks are primarily determined by the
assumed standard deviations. Satisfactory agreement
with the peak heights is obtained with values of o. lying
within the range commonly observed.

The shape of the reflectance peak is determined by the
effective polarizability function, weighted by the assumed
particle-size distribution function. For the reasons dis-
cussed above, the peak is asymmetric with a pronounced
minimum, or "dip, "on the high-frequency side of the res-
onance. Lee et pI. chose this well-de6ned spectral
feature to characterize the peak position as a function of
particle size.

TABLE I. Summary of reAection-spectra minima.

Mean
radius

(A)

25
70

110
185
270
380
450

Calculated
~min

(cm ')

27 100
26 300
26 100
25 600
25 100
24 800
24 800

Experimental'
~min

(cm ')

29 000
26 700
26 000
25 200
25 200
25 000
24 300

'See Ref. 2.

B. Incoherent scattering

With respect to the position, width, intensity, and even
the shape of the reflectance peaks, the efFective dipole ap-
proximation is in satisfactory agreement with experi-
ment. The major discrepancy between the calculated and
measured reAectance spectra is an apparent overall
depression of the measured reflectance throughout the re-
gion of the resonance. The reflectance spectra appear to
be superimposed on a smooth background with a broad
trough right in the region of the reflectance peak. This
discrepancy cannot be removed by adjusting the effective
polarizability or filling factor used in the calculations.
Decreasing either of these would cause a decrease in peak
height on the low-frequency side and a shallomer dip on
the high-frequency side of the reAectance resonance,
rather than a depression of both, as observed. For simi-
lar reasons, the discrepancy cannot be removed by in-
creasing the standard deviation used in the calculations,
or even by introducing a further broadening mechanism,
e.g., via random dipole-dipole interactions of the type en-
visaged by Persson and Liebsch. '

In view of the magnitude and length scale of the vari-
ances in particle density to be expected under the condi-
tions of the experiments, it is tempting to attribute the
apparent overall depression in the measured reflectance
to the presence of incoherent scattering from random
particle-density fluctuations. This process would remove
energy from the specularly rejected beam. Since the in-
coherent scattering cross section also has a resonance in

While it is easy to measure experimentally, the position
of the miniinum lacks a simple theoretical significance. It
is determined by the combined inhuence of the position
and the width of the resonance, and both are size depen-
dent. The position of the minimum is less sensitive to the
standard deviation of the size distribution than to average
particle radius. We assume a common standard deviation
of 1.0 in Table I, where we compare calculated positions
of the minima with the experimental positions.

Given the uncertainty in the experimental particle-size
distributions, the agreement between the effective dipole
approximation and experiment is good, Since some of
the observed particle-size distributions were reported to
be bimodal, better agreement might be obtained using
histograms of the actual experimental distributions in
place of fLN in Eq. (15).
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the same region of the spectrum as the specular
reflection, incoherent scattering from particle-density
fluctuations would remove energy from the coherent
beam and thus depress the measured specular reflectance
throughout the region of the peak, while leaving it almost
unchanged at other wavelengths. With a sufficiently de-
tailed knowledge of the particle-density fluctuations one
could attempt to correct the calculated specular
reflectance for energy losses due to incoherent scattering,
but it would be easier and far more reliable to correct the
experimental reflectance measurements using measured
intensities of the incoherently scattered light. In future
experiments it would be helpful to have a detailed charac-
terization of the particle-size distribution, as well as mea-
surements of the non-specular-scattered light intensity as
a function of wavelength and angle.

VI. CONCLUSION

The electrodynamic response of an isolated sphere is
equivalent to that of a coherent ensemble of ideal point
multipoles with appropriately chosen size-dependent
multipole polarizabilities. The effective multipole polari-

zabilities can be obtained by dividing the Mie-scattering
coefficients by the corresponding partial-wave amplitudes
of the incident wave. These polarizabilities hold for
spheres of arbitrary size and material and include the
effect of a host medium. For small particles of optically
good metals, such as silver, the electric dipole term alone
gives a good approximation to the exact solution in the
neighborhood of the strong dipole resonance.

Combining the effective dipole polarizability with the
Clausius-Mossotti equation yields a size-dependent gen-
eralization of the Maxwell Garnet t theory for the
effective material constants of a suspension. In the ab-
sence of higher multipole contributions, the effective opti-
cal constants may be used in conventional optical calcula-
tions. In this approximation the distribution in particle
size must be taken into account. The method can be used
with experimental size distributions, when these are
available. Assuming a log-normal size distribution, cal-
culated reflectances are in good agreement with the size
dependence of the position, width, and shape of the reso-
nant peaks observed in recent reflectance measurements
on porous glass media containing silver particles.
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