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We introduce an alternative mapping of the hopping problem onto a random resistor network,
which takes into account correlations among the occupation probabilities of different sites. The
effect of correlations on the low-temperature conductivity of one-dimensional chains in the nearest-
neighbor and variable-range-hopping cases is investigated by approximation of the network conduc-
tances by the critical conductance at the percolation threshold. Correlation effects are found to lead
to increased activation energies and a mesoscopic behavior which is much closer to experimental

data than that predicted by mean-field theory.

I. INTRODUCTION

Thermally assisted hopping of localized charge carriers
is thought to be the dominant transport mechanism in
disordered systems, when the Fermi level lies far below
the mobility edge. The matrix element for hopping be-
tween a given pair of levels is essentially given by the
product of a tunneling factor exp(—aIR,jl) and a
Boltzmann factor exp[ —(E; —E;)/kT]. At high temper-
atures the tunneling factor dominates and nearest-
neighbor hopping pertains, while at low-temperatures
carriers prefer to jump longer distances in order to find
states closer in energy, resulting in a temperature-
dependent activation energy, as was first proposed by
Mott.! The low-temperature dc conductivity has the
form

o(T)~exp[ —(To/T)"V*] (1.1)
and has been experimentally observed in a wide variety of
materials over fairly large temperature intervals.

Theoretical treatments of the low-temperature hopping
problem revolve around the equivalent-resistor-network
mapping of Miller and Abrahams,? and its subsequent
percolative analysis by Ambegaokar, Halperin, and
Langer® (to be referred to as AHL). Because of the com-
petition between the activation-energy term and the tun-
neling factor the states involved are mostly of the order
of 5 kT-10 kT distant from the Fermi energy, both below
and above it; it is generally assumed that the average den-
sity of states is constant within this energy range that
spans the Fermi energy.

An ingredient of this mapping that has been chal-
lenged* is the assumption that the occupation probabili-
ties of different sites are uncorrelated. Intuitively correla-
tions are expected to be relevant, because a carrier may
only hop to another site if that site is unoccupied. This is
particularly important for hops across the Fermi level
and back, because once a particle has been excited to a
state above the Fermi level it may only come back down
to a different site if another carrier is excited. Richards®
has demonstrated the importance of this effect, for the
case of an ordered binary chain at half-filling with
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nearest-neighbor hopping, and shown that the activation
energy is raised above the mean-field expectation. We
shall discuss this model in more detail later as it clearly
demonstrates the role of correlations.

In this paper we examine the effects of correlations on
the conductance by mapping the problem onto a resistor
network in which the nodes are many-particle
configurations rather than single-particle states so that
the occupation numbers are strictly one or zero. This
mapping has the additional virtue that interactions be-
tween carriers can easily be incorporated, though we
shall not consider them further in this paper.

Because we consider many-particle configurations rath-
er than single-particle states the networks are complex
and our study is restricted to rather short one-
dimensional chains, where we find that correlations pro-
duce substantial changes in both nearest-neighbor and
variable-range hopping, especially at the mesoscopic level
where the structure in the conductance of a single sample
as a function of the chemical potential® is found to arise
for different reasons than in mean-field theory.” In addi-
tion no flat regions are observed and the results are much
closer to experimental data than those predicted by
mean-field theory.

II. A MANY-PARTICLE RANDOM RESISTOR
NETWORK

The mapping of the hopping problem onto a random
resistor network introduced by Miller and Abrahams®?
neglects correlations among the occupation probabilities
of different sites. Site-site correlation functions are re-
placed by products of Fermi functions, which is only
correct in the absence of an external field, when the sys-
tem is in equilibrium. In the presence of an external elec-
tric field a current may flow between the two sites, and as
discussed in the Introduction the occupation probabilities
of the sites are expected to be correlated.

It turns out that by considering many-particle
configurations instead of single-particle states it is possi-
ble, using arguments analogous to those of AHL, to map
the problem onto an alternative resistor network in which
correlations are naturally accounted for and in which in-
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teractions between carriers can also be easily incorporat-
ed.

Following AHL we consider a system consisting of
strongly localized single-particle states with energies
specified by some given distribution. Each state is re-
stricted to having an occupancy of 0 or 1. We assume
that the carriers are noninteracting but the arguments
given below are unchanged by interactions as long as one
replaces changes in site energies by changes in total ener-
gy. We take the intrinsic transition rate between a given
pair of sites to be given by

—alR;;|—(E;,—E;)/kT
Yo€ v b for E; > E;

—a|RiJ}

4 2.1
Yoe for E; <E,,

Yij=

where a/2 is the inverse localization length and the E,;
are single-particle energy levels. This satisfies the princi-
ple of detailed balance, which implies that in equilibrium

(E;—E,)/kT

Yij=Vji€ (2.2)

In the presence of an external field € detailed balance no
longer holds and the transition rates are modified to

—eeR,; /kT

Vi=vie ’ (2.3)
which for small fields can be linearized to give
7/’\1']'=?’ij+5?’ij=7’ij—7’ije€'Rij/kT . (2.4)

We shall work in the small field limit and keep only terms
up to O(e).

Consider two configurations of the system I and J
which are connected by the hop of a single particle be-
tween somie pair of sites i and j. Configurations are
specified by a set of occupation numbers
{n{,ng, ... ,n,{,}, each of which can be zero or one. The
net rate at which charge flows between these two
configurations is given by

jIJ:ﬁI‘?ij_ﬁJ?\ji >
where ﬁ, is the probability of finding the system in

configuration I in the presence of a small field e. We
shall write this as

P,=P,+5,,

(2.5)

(2.6)

where §; is the change in the configurational probability
and P; is the zero-field or equilibrium-configuration prob-
ability which is simply given by

o ~ErmHN/KT

Z

Here E; is the total energy of configuration I, N, is the
number of carriers in state I, u is the chemical potential,
and Z the grand canonical partition function. We shall
not need to evaluate §; explicitly in what follows. Substi-
tuting for P and 4 in Eq. (2.5) leads to

P= 2.7

5 %

Py Py

_ Py

Tu= "%

eR;; +kT , (2.8)
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where we have used the fact that P,y ;; equals P,y ji- The
quantity kT8;/P; is just the change 8u, in the local
chemical potential of configuration I, so

Py
Jy= kT]

The term in parentheses is the total potential difference
between configurations I and J, so we can consider them
to be linked by a conductance

(eRy;+8u;=+duy) . (2.9)

_ Py
kT -~

Thus we can replace our system by a resistor network in
which the nodes represent many-particle configurations
and the resistors hops between these. This should be con-
trasted with the Miller and Abrahams mapping where
the conductances connect single-particle states. The
equivalent network just described is necessarily more
complex than the mean-field one, as the number of
configurations increases exponentially with the number of
single-particle states.

Gy (2.10)

III. THE ORDERED BINARY CHAIN

To illustrate the many-particle network discussed
above consider an ordered binary chain consisting of al-
ternating particle and hole states, with nearest-neighbor
hopping only. The effect of correlations can be demon-
strated by taking a pair of particle-hole states connected
in a ring geometry. Consider first the case where there
are two particles in the system. There are six possible
configurations (1100), (1010), (1001), (0110), (0101), and
(0011), whose occupation probabilities P, to P4 are given
by
—E/T

Z ’

P1=P3:P4:P6:e

— —E/T
PZ—Ple £/ ’

— E/T .
P5—Ple/ )

(3.1

E is the energy difference between particle and hole
states. For this simple example one can explicitly evalu-
ate the changes in these probabilities when a small field €
is applied by solving the current conservation equations.
One obtains

81286:—832—84 Py

8,=8;=0, (32)
_(r—1)
RNPESTRALS

where r =exp(—E /T). The site-site correlation function
(nyny)—<(n){n,)=—P;+8§, (3.3)

picks up a contribution proportional to the applied field
through 8,. The constant part arises because we have
kept the number of particles fixed, and vanishes in the
grand canonical ensemble where the {(n j) are given by
the Fermi distribution. Thus the external field induces
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FIG. 1. The equivalent resistor network for a four-site sys-
tem with two particles and periodic boundary conditions.

correlations between sites, which may not be neglected
since we have kept terms of order € throughout.

The equivalent network for this system is shown in Fig.
1 and has a conductance

G ~exp(—2E/kT) . (3.4)

This result should be compared with the mean-field pre-
diction which gives an activation energy of only E. The
conductance is dominated by the two-particle—two-hole
Boltzmann factor because both particles must be excited
in order to transport a carrier around the ring. Despite
their lower probability in equilibrium, one- or three-
particle configurations have a lower energy cost, requir-
ing an activation energy of only E, since only a
single particle need be excited at any given time, and the
cost of having these is simply exp(—u/kT) and
exp[ —(E —u)/kT], respectively. The total conductance
of the ring is given by the sum of these three terms, and
can be written as

G ~exp[—(3E—|1E—ul|)/kT] . (3.5)

An interesting feature of this result is that the conduc-
tance is not independent of the chemical potential, as
mean-field theory predicts, when the Fermi level lies be-
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FIG. 2. The conductance of an ordered binary chain as a
function of the chemical potential as predicted by mean-field
theory (AHL) and the effect of including correlations (CLT).
Units are arbitrary.
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tween O and E. A comparison of the predictions of the
two theories calculated by solving the relevant network
equations is shown in Fig. 2. Note that the peak value of
the conductance when correlations are taken into ac-
count is lower than that predicted by mean-field theory,
and the peaks are rounder than the valley. We shall
come back to these points when we discuss random
chains.

IV. RANDOM SYSTEMS

One does not expect the temperature dependence of
the conductance in a large random system to be qualita-
tively altered by the inclusion of correlation effects.
Mean-field theory is expected to be correct for pure parti-
cle or pure hole transport, and this provides a lower
bound on the conductance. Correlations are expected to
suppress the conductance so mean-field theory for both
particle and hole transport served as an upper bound.
Rather, as demonstrated in the case of the ordered binary
chain, we expect the activation energies which appear in
the exponential variation of the conductance to be in-
creased, and the mesoscopic structure to be changed.

The resistor network introduced in Sec. II is highly
complex even in one dimension. The number of nodes in-
creases exponentially with system size which limits any
direct evaluation of the network conductance, by solving
Kirchhoff’s equations, for instance, to rather small sys-
tems. Furthermore the low-temperature regime, where
correlation effects are expected to be most important, is
difficult to reach because the individual conductances in
the network become exponentially different in magnitude
and this leads to numerical difficulties.

In such cases a percolative approach, such as the one
first employed by AHL,® where one removes all resistors
and then replaces them smallest first until the lattice per-
colates, has been shown to reproduce the exponential
dependence of the resistance of the network quite well if
the spread of the resistors is greater than about eight de-
cades.®? To what extent this bound is applicable to the
many-particle networks is not clear since the distribution
of resistors in the network is not homogeneous. Subnet-
works of small and relatively larger resistors correspond-
ing to low- and high-energy excited states span the net-
work with the number of resistors in respective subnet-
works increasing exponentially with the magnitude of the
resistors. One can however convince oneself by examin-
ing the binary chain that the critical resistance at per-
colation still dominates the resistance at sufficiently low
temperatures. Even if this condition is not satisfied this
sort of approach is useful as it places a lower bound on
the conductance.

Following AHL we remove all the resistors in our net-
work and replace them, smallest first, up to some G, the
smallest conductance at which the network first per-
colates. In the zero-temperature limit the conductance of
the network will be dominated by G.. The allowed con-

ductances must satisfy the condition
Gy =G, 4.1

or
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< Py
€T kT
Considering for the moment those hops which lower the

energy of the system, i.e., E; > E;, we may rewrite this in
the form

(E,—pN;+kT]nZ) = R
Emax R

G (4.2)

1=

g 4.3)

max

where E_,,=—kT In(G,.) and R ,, =In(G.)/a.

Thus instead of considering conductances one can con-
sider adding nodes of increasing energy subject to the
above constraint until the network percolates. We have
not found any way of analytically solving this problem in
the manner of AHL, so we have had to resort to a numer-
ical investigation. Although the percolative approach
simplifies the problem considerably, the exponential
growth of the network with increasing system size limits
the systems that can be examined, computer time being a
more restrictive constraint then storage, to one-
dimensional chains of up to 60 atoms. The most compu-
tationally efficient way of implementing the above pro-
cedure in one dimension that we have found is the follow-
ing: One first locates the ground state, which must be-
long to the percolating cluster, and then explores allowed
hops to the right. The allowed configurations are stored
and their allowed right neighbors located. This pro-
cedure is repeated until a right hop leads to the ground
state at which point the system has percolated, or until a
dead end is reached where no more right hops are possi-
ble at which point E_,, must be increased. The ground
state can be located iteratively since the system is nonin-
teracting, and the procedure can be started after all nodes
with E < E ,y4; have been added, as one knows that E
must be greater then the mean-field result.

The results of such an investigation are presented
below where we examine the effect of correlations on the
percolation estimate of the conductance of random one-
dimensional chains connected at either end to reservoirs
which have the property of always being able to donate
or accept particles if energetically favorable.

max

A. Numerical results for 1D chains

1. Nearest-neighbor hopping

The conductance of one-dimensional chains with
nearest-neighbor hopping is known to be simply activat-
ed. At low temperatures the activation energy in mean-
field theory is given by the largest energy barrier that
needs to be overcome. The effect of taking correlations
into account is shown in Fig. 3, which shows a plot of the
fractional change in E,,, due to correlations as a func-
tion of system size, averaged over an ensemble of systems.
The site energies are uniformly distributed between 0 and
W, with one barrier of height W to set the scale.

The change in activation energy 8E ,, increases with
system size because the probability that a particle has to
cross a pair of particle-hole barriers that dominate the ac-
tivation energy increases. Closer examination shows that
the particle-hole barriers have to be next to each other,
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FIG. 3. The fractional change in the activation energy due to
the inclusion of correlations as a function of the system size for
a one-dimensional chain with nearest-neighbor hopping.

otherwise the system is able to make use of the reservoirs
and smaller barriers to create room before crossing the
largest. In addition the barriers have to be of roughly the
same size. The four-site system with site energies 0, 1, 1,
and 1 illustrates this point.

For long chains it is highly probable that a pair of
particle-hole barriers with energy difference W will ap-
pear, leading to the same activation energy and chemical
potential variation as the ordered binary chain. The
probability of such a configuration appearing increases
linearly with system size which is consistent with Fig. 3.
Correlation effects are thus always important in nearest-
neighbor hopping.

2. Variable range hopping

In the Mott hopping regime the conductance of one-
dimensional systems is known to behave as

o(T)~exp[ —(T,/T)V?], (4.4)

before crossing over to a simply activated form for
sufficiently long chains.!® T, depends upon the length of
the chain L, and within mean-field theory is well approxi-
mated by!!

Ty~aln(2aL) . 4.5)

In order to examine the role of correlations in the
variable-range regime we have calculated the change in
T, for various values of L and «a, averaged over about
100 samples. The temperatures at which the calculations
are performed have to be carefully chosen so that one is
in the T2 regime. For short chains the temperature
interval over which T, defined as E2,, /T, is tempera-
ture independent is small. At too low temperatures the
carriers essentially hop right across the system, and T,
increases with increasing temperature as the activation
energy increases. At high temperatures the problem be-
comes nearest neighbor like and the activation energy is
fixed so T, decreases with increasing temperature.

A plot of the change in T due to correlations as a
function of T, is shown in Fig. 4. The data are fairly
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FIG. 4. The change in T, plotted as a function of T, for
one-dimensional chains of various lengths with variable-range
hopping. Some typical error bars are shown. Units are arbi-
trary.

scattered, because short chains have poor statistics,'? and
probably more so because the conditions mentioned
above are difficult to implement in practice, but several
trends can be noticed. 87, decreases with T, as would
be expected, since the average energy barrier that has to
be crossed decreases, and for a given value of T the
larger system sizes tend to show larger differences, espe-
cially at large values of T,. This is probably because in-
creasing L while keeping T, fixed decreases the average
distance between hops.!! The particles in the longer sam-
ples thus have to make, on average, a greater number of
hops and hence the chances of correlations being impor-
tant are increased.

The interesting regime is the low-T, regime since this
corresponds to the thermodynamic limit, where one takes
L to infinity keeping aL constant, but unfortunately our
system sizes are too small to probe this region. A simple
linear extrapolation from the available data yields
changes of about 4% in Ty, but the effect may be larger
given the tendency of 8T, to increase with L. An upper
limit for 8T, of 3T, can be obtained by noticing that
E_ ., can at most be twice its mean-field value. One has

0=8T,=3T, . (4.6)
The conductance behaves as
172
Pr AL IEL L @.7)

so it is the value of 8T, /T for small T, which is impor-
tant.

Correlation effects are more striking if one examines
the mesoscopic structure of a single sample. Recent ex-
perimental work on quasi-one-dimensional systems® has
revealed large reproducible noiselike structure in the con-
ductance with variation of the Fermi level. Lee’ pro-
posed that such structure was due to single hops control-
ling the resistance of the sample over a small range of
values of the chemical potential and, by approximating
the conductance of the chain by the critical conductance
at percolation, using the mean-field networks, was able to
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show that mean-field theory could indeed reproduce
much of this structure. Two types of hops were found to
be important. When the dominant hop involved states on
opposite sides of the Fermi level the conductance was
found to be independent of the chemical potential, while
if the states were both above or below the Fermi level a
linear variation with slope 1/T was observed. The struc-
ture consisted of peaks some with flat tops, as the dom-
inant hop changed with the chemical potential.

Experimentally the flat tops have never been observed,
and it is interesting to speculate whether taking account
of correlations may modify the flat tops as they do in the
case of the ordered binary chain discussed in Sec. II
where it as always cheaper to introduce an extra particle
from the reservoir in order to lower the activation ener-
gy. Correlation effects are expected to modify this struc-
ture since it is not the dominant single hop but rather the
largest energy barrier which needs to be crossed which
controls the resistance at low temperatures.

Figure 5 shows a typical example where we have plot-
ted both the mean-field and correlation resistance for a
chain of 60 atoms with aL =20, so typically only a few
hops are required to traverse the system as in the experi-
mental situation.® Correlation effects remove the flat re-
gions predicted by mean-field theory, and the results
resemble experimental data much better than the mean-
field curve but there are some features, such as the sharp
valleys and round peaks, that we believe arise from the
percolation approximation although some of these
features seem to appear in the experimental data. The
source of peaks and valleys can be deduced from Eq.
(2.10). The critical conductance must have the form

lnGC~_—_——kT —aR’.j ,
where F= —kT InZ is the free energy of the system.
At low temperatures the free energy of the system is
well approximated by the ground-state energy

(4.8)
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FIG. 5. A plot of the logarithm of the conductance In(g)
against u, the chemical potential for a one-dimensional chain of
60 atoms, with aL =20. The solid curve in the mean-field pre-
diction, and the dashed line the result of including correlations.
Units are arbitrary.
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E,, —uN,, except when the system is about to change
ground states, when contributions from two states be-
come important. Ignoring this for the moment it can be
seen that the structure of the peaks and valleys is related
to whether the dominant hop contains more or less parti-
cles than the ground state. Large fluctuations in particle
number are not favored so most of the peaks will have
slopes of 1/T although larger slopes are also possible.
Peaks correspond to the situation where the dominant
hop goes from having more particles than in the ground
state to having less, so the ground state must change
across a peak. Across a valley the ground state is likely
to remain fixed, the system simply goes from having one
less particle to one more.

The rounding of the peaks is related to the change in
ground state. Near the peak center the free energy is
smaller than its zero-temperature value because contribu-
tions from the ground states on either side become im-
portant. The cross over between the two regions does not
occur with a discontinuity as at zero temperature but
smoothly with a nonlinear dependence on p. Thus from
Eq. (4.8) the reduced free energy leads to a smaller con-
ductance. Valleys are not rounded because the ground
state is likely to remain fixed. In reality not all peaks
would be effected by this mechanism because if the dom-
inant hop changes across a peak then two critical paths
become important near the peak center and this offsets
the decrease in the free energy. All the valleys would be
rounded because across a valley the dominant hop always
changes, while the free energy is fixed, and so the effect of
two critical paths in parallel would be to increase the
conductance compared with the percolation estimate.

These arguments do not rule out the possibility of hav-
ing flat tops to peaks or bottoms to valleys, but we have
not observed any so far. Interestingly if the free energy is
replaced everywhere by its zero-temperature value, these
do occur; so it appears that the free energy is important
here as well. It may be that at the temperatures where
variable-range hopping is operative flat regions are al-
ways rounded out. Special examples can be constructed
where flat regions appear at sufficiently low temperatures.

Webb et al.® also followed the position of given peaks
as a function of the temperature and found that some
shifted to larger values of u, some shifted to smaller
values and some did not shift at all. This behavior is sim-
ple to understand within the many-particle formalism.
Consider a given valley. The dominant hop changes
across a valley and using Eq. (4.8) it easy to show that the
position of the valley minimum has a temperature depen-
dence of the form

Ky ~a(R;—R3)T , 4.9)

where R, and Rj, are the distances a particle hops in
the dominant hop on either side of the peak. The sign of
the shift thus depends upon the difference in hopping dis-
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tances on either side of the valley. Thus all valleys
should shift except those rare ones where there is no
asymmetry in the hopping distances. Peaks, on the other
hand, can frequently exhibit no shift since the dominant
hop can remain fixed across a peak.

V. CONCLUSIONS

We find that correlation effects are important to a
correct understanding of hopping conductivity. At low
temperatures it is not the dominant single-particle hop
which determines the conductance in the Mott hopping
regime but the dominant hop between many-particle
configurations. Correlation effects are found to lead to
increased activation energies and modified mesoscopic
behavior in the hopping conductivity of one-dimensional
systems. While the amount by which the activation ener-
gy is increased is clear in the case of nearest-neighbor
hopping, more work needs to be done on longer chains in
the variable-range case, before something can be said
about the thermodynamic limit. It may be possible, by
making further approximations in the percolation pro-
cedure, to do this and also to study higher-dimensional
systems. The inclusion of correlations leads to a meso-
scopic behavior which is much closer to that experimen-
tally observed in one dimension than that predicted by
mean-field theory. The peaks and valleys are related to
whether the dominant hop between many-particle
configurations contains more or less particles than the
ground state and not to whether the dominant single-
particle hop connects states above or below the Fermi
level, as in mean-field theory. Within the percolation ap-
proximation we find that there are clear differences be-
tween peaks and valleys. Across a peak the ground state
changes and this rounds the peak, while-across a valley
the ground state remains fixed and they remain sharp. In
reality the valleys would be also be rounded due to the
importance of two conducting paths near the valley
minimum. No flat regions were observed as in the experi-
ments.

In mean-field theory and in our calculations Coulomb
interactions between carriers have been ignored. In sys-
tems where the states are strongly localized these are of
long range as screening is not effective and are known to
lead to the formation of a soft gap'® in the density of
states. It should be possible to understand the role of
Coulomb interactions in one dimension by using the
many-particle networks.
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