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The equilibrium shapes IES's) of icosahedral quasicrystals are analyzed for a wide class of lattice
models which incorporate finite-range two-body interactions. Completely faceted shapes have been
predicted for such models at temperature T =0. We prove that a number of simple shapes cannot
be ES's for any model in this class for which the atomic interactions are constrained to be pure-
attractive. This extends the result of Ho et al. [Phys. Rev. Lett. 59, 1116 (1987)], who showed that
the pentagonal dodecahedron, a shape observed in grains of icosahedral Al-Cu-Fe and Cra-Mg-Zn,
is a forbidden shape for pure-attractive models. We then introduce a lattice model for quasicrystals
which incorporates mixed attractive and repulsive interactions and show that the possible ES's in-
clude the dodecahedron and other previously forbidden shapes.

I. INTRODUCTION

Recently, several groups' have reported the
discovery of icosahedral phases which have been ob-
served to form large, single grains with smooth, flat
facets. To date, two different faceting shapes have been
observed: a rhombic triacontahedron, found' in
A16Li3Cu, and a pentagonal dodecahedron, exhibited by
the Al-Cu-Fe system and the Ga-Mg-Zn system. In
each case, calorimetric measurements indicate that the
icosahedral phase is thermodynamically stable. The re-
sults strongly suggest that if the grains were grown in
true equilibrium with the liquid phase, flat facets would
remain, although the grain shape might be different.

The theory of equilibrium faceting has been extensively
studied for crystals (see Ref. 6 and the references therein).
The equilibrium shape (ES) is determined by minimizing
the interfacial free energy as a function of orientation.
This minimization procedure can be accomplished using
the well-known Wulff construction. Herring"' and oth-
ers' ''' have analyzed the possible ES's for crystal lattice
models with short-range atomic interactions.

A number of different theoretical models of the
icosahedral phase have been employed in attempts to ex-
plain the observed faceting. First, the Wulff construction
has been applied to the quasicrystal model, ' ' which ex-
hibits long-range quasiperiodic translational order. Flat
faceting is predicted at temperature T=0 for two
different lattice models of perfect quasicrystals with
short-range interactions. ' ' It has been argued' that
any facet with a fivefold-symmetry axis is likely to remain
smooth at all temperatures. Second, faceting has been
analyzed for quasicrystals with a finite density of disloca-
tion defects. ' It has been suggested that "rounded"
facets occur, where the radius of curvature of the facets
decreases with increasing defect density. A mean disloca-
tion separation of 2000 A, which is consistent with the
observed translational correlation length in the
icosahedral alloy grains, yields facets whose curvature
would be undetectable experimentally. Finally, the Wulff
construction has been extended to a "quasiglass" mod-

el, ' a structure with finite-range translational correla-
tions, and once again, faceted shapes are predicted at
T =0. This model, which is probably too artificial to be a
realistic model of the icosahedral phase, has been created
as a theoretical counterexample to the notion that long-
range translational order is required to obtain flat facets.
It is unclear whether the result is relevant to the
icosahedral glass model' ' that has been proposed as an
explanation of the icosahedral phase.

Numerous equilibrium faceting shapes have been de-
rived in these studies. However, the primary emphasis
has been on determining whether faceting occurs at all,
rather than any systematic investigation of the possible
ES's. Each of the studies has employed a lattice model
with short-range attractive interactions of a type which
leads to a particularly simple form for the interfacial
free-energy density. In their Wulff-construction analysis
of this form of free energy, Ho et al. ' showed that the
ES of icosahedral quasicrystals and quasiglasses could not
be a pentagonal dodecahedron, although the shape might
arise in nonequilibrium growth processes.

The purpose of this paper is to extend the T =0 Wulff-
construction faceting analysis to a wider class of quasi-
crystal lattice models, which incorporate both attractive
and repulsive atomic interactions. Repulsion can arise
within a material because of intrinsic two-body repulsive
forces (e.g. , ionic interactions) or steric crowding of
atoIns in their local environments. Our original motiva-
tion was to consider whether the selection rule against
the pentagonal dodecahedral ES extends to the wider
class of models. The issue has immediate experimental
relevance because, as mentioned above, pentagonal dode-
cahedral faceting is observed in icosahedral alloys. Our
conclusion, briefly reported elsewhere, is that there is
no such selection rule: The pentagonal dodecahedron is a
permissible ES over a wide range of parameters, once
repulsive interactions are introduced.

In this paper we present a more general analysis of the
role of repulsive interactions in determining faceting
shapes. We show that repulsive interactions have some-
what different consequences for quasicrystals than for
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periodic crystals. We illustrate several faceting shapes, in
addition to the pentagonal dodecahedron, which cannot
occur in models with pure-attractive interactions, but
which are attainable in systems with both attraction and
repulsion between atoms.

In Sec. II we present a review of theory necessary for
our subsequent argument. Then, in Sec. III we make
some general observations about the Wulff shapes which
may be obtained from models which incorporate only
short-ranged attractive two-body forces. In Sec. IV we
describe our model for the surface energetics of quasi-
crystals. Possible ES's for icosahedral systems are
presented in Sec. V, and their relevance to experiment is
discussed in Sec. VI.

II. THE STANDARD METHOD OF COMPUTING
EQUILIBRIUM SHAPES

A. Wulff construction

For a general survey of the thermodynamic formula-
tion of the ES problem, the reader is referred to the re-
view by Rottman and Wortis. In this section we remind
the reader of those technical details of the theory that are
crucial to our results. Much of the work presented here
is due to Herring. '

Our starting point is the free-energy density for forma-
tion of an infinite plane interface between coexisting solid
and Auid phases. This depends on the temperature, T,
and the orientation of the interface with respect to the
crystal axes. Given the value of the surface free-energy
density y(n, T) as a function of the direction of the out-
ward unit normal, n, the shape of a macroscopic sample
of the solid at fixed T can be found graphically by the
Wulff construction. In three dimensions (3D), the ES is
found by the following steps: (1) Make a polar plot of
y(n, T) as a function of the direction of n. (2) For each
point of this y plot, construct an infinite plane perpendic-
ular to the radius vector at that point. (3) The inner en-
velope of all such planes has the same shape as the ES at
temperature T.

For illustrative purposes, it is convenient to consider
the ES problem in two dimensions (2D). The Wulff con-
struction in 2D involves the same steps as in 3D, with the
obvious difference that a line, rather than a plane, is
drawn perpendicular to the radius at every point of the y
plot. An example of this construction is shown in Ref. 8,
Fig. 1. Quite generally, in 2D or 3D, the y plot consists
of smooth regions meeting at cusps, where the derivatives
of the plot vary discontinuously. Each cusp can result in
an extended Aat surface, or facet, normal to the cusp
direction. Smoothly varying portions of the y plot can
contribute regions of the ES where the normal to the sur-
face varies continuously. Parts of the y plot which do
not contribute to the ES (that is, the normals to the ra-
dius vector do not lie on the inner envelope) are said to be
passive. A plane surface normal to any passive direction
is unstable with respect to local rearrangement into a
"hill-and-valley" formation made up only of surfaces
with normal orientations found in the ES.

Herring has formalized these and other observations
concerning the relationship between the y plot and the

ES. We quote here a theorem which determines whether
or not there exists in the three-dimensional ES a facet
normal to a particular direction. (For 2D, replace the
word "sphere" with "circle".)

Theorem 1 (Herring) T.o ensure that the surface of the
equilibrium shape has a Aat portion of finite extent and
with an orientation normal to a given vector OA of the y
plot, it is necessary and sufficient that the y plot have a
pointed cusp at A and simultaneously that there be some
sphere through 3 and the origin which lies entirely inside
the y plot.

For most lattice models of perfect crystals in 3D, it is
found that along the symmetry directions the y plot at
low T has cusps so pronounced that every point on the
smoothly varying regions of the y plot is rendered pas-
sive. Thus the ES is polyhedral, with sharp corners and
edges. As the temperature is raised, the cusps are weak-
ened by the effects of thermal fluctuations, allowing the
formation of rounded surfaces between the facets. Each
facet has a roughening temperature, above which its cusp
becomes smoothed out, and the facet itself vanishes.
Beyond the highest roughening temperature (assuming
that this temperature is below the melting temperature of
the solid), the ES is everywhere completely smooth.

B. y plot constructed from sections of spheres

For the remainder of this paper we shall consider only
atomic structures in which the effective interactions are
finite-range two-body forces, so that the bulk cohesive en-

ergy of the solid can be written as a sum over pairwise
bonds. We assume that the bonds can be divided into a
finite number of sets, labeled by i, whose members have
identical lengths I, and directions A,-, each bond requir-
ing energy c; to be broken. The number of bonds of type
i cut by a Aat surface of area S, with unit outward normal
n, is Sl,p, ~n. A, ~+corrections, where p, is the average
volume density of bonds of type i. Provided that the lo-
cal density of bonds of each type is sufficiently uniform
throughout the material, the corrections may be neglect-
ed in the limit of macroscopic S, and the number of
bonds cut will be invariant under translations of the sur-
face parallel to n. Then the surface energy per unit area
1s

e(n)= g(e, l p;)~n. A;~ .

Expressions of this form arise in a wide class of lattice
models. Thus, in addressing the T =0 faceting problem,
it is natural to concentrate on surface free energies of the
form

N

y(n)= g g, ~n. A, ~,

where the unit vectors A; depend on the bond directions
and the details of the model, and the coefficients g, are
functions of the strength and sign of the interactions.
(We have dropped the explicit temperature dependence of
the surface free energy. Henceforth, it will be assumed
that T =0.)

If all possible normal vectors n are placed tail to tail at
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some point in space, their heads describe a sphere of unit
radius. The surface of this sphere may be partioned by
the construction of a set of great circles, one perpendicu-
lar to each vector A, entering Eq. (1). This construction,
illustrated in Fig. 1(a), divides the surface into spherical
polygons. Herring used the term pyramid to describe the
region of solid angle subtended at the origin of the sphere
by such a polygon. Within any pyramid p, none of the
terms n A, changes sign, so there exists a vector s such
that

y(n)=n sP

The point s will be called the pole of pyramid p. The

origin 0 and the pole s lie at diametrically opposite posi-
tions on the sphere of radius —,'!s !, centered at —,'s .
Within pyramid p, the y plot coincides with the surface
of this sphere. The boundary between adjacent pyramids
p and p' is marked by a knife-edge cusp of the y plot,
along which

n. s =n. sP P

Therefore, the y plot is made up of sections of spheres
which join continuously, but not smoothly [see Fig. 1(b)].

4g

Si

(b)

2
(b)

FIG. 1. Illustration of the Wulff construction described in
Sec. II B for a simple lattice model with cubic symmetry. (a)
The unit sphere of normal orientations, h, to the surface of the
equilibrium shape. A great circle is constructed perpendicular
to each of the three bond directions A, (which lie along three
mutually perpendicular crystal axes). This construction divides
the surface of the sphere into eight spherical triangles, and
divides the solid angle about the origin, 0, into eight "pyram-
ids. " The intersection of any two great circles, such as at n„
gives rise to a point cusp in the y plot along direction n, from
the origin. (b) The Wulff plot corresponding to (a). Within each
of the eight pyramids, the surface of the y plot coincides with
the surface of the sphere on which the origin and the pole of the
pyramid are to be found at diametrically opposite points. (The
poles lie along the (111) directions. ) The cusps in the surface
produced by the intersection of the spheres lie along the three
axes.

FIG. 2. One quadrant of the y plot for a two-dimensional
system having fourfold rotational symmetry. In both (a) and (b)
the lines OS& and OS4 are mirror planes. (a) Within each of the
pyramids P;, the surface of the y plot (solid curve) coincides
with the circle (dashed curve} which has the origin, 0, and the
pole, S;, at diametrically opposite positions. At the boundaries
between pyramids there exist cusps, labeled C;, which may
point inward or outward. An outward-pointing cusp (in this ex-
ample, C& ) is always formed when the poles (S2 and S3 ) of two
adjacent pyramids (P& and P3) each lie on the side of the py-
ramid interface opposite the respective pyramid. (b) Construc-
tion of the equilibrium shape. A line is drawn through each
cusp C;, oriented perpendicular to OC;. Irrespective of whether
the cusp points inward or outward, the line passes through the
poles of the pyramids which meet at the cusp. The equilibrium
shape (drawn with a heavy solid line) is the envelope of these
lines. Where the lines extend beyond the inner envelope, they
have been drawn as dashed lines. Notice that the outward-
pointing cusp, C&, does not contribute an edge to the equilibri-
um surface.
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n s =n .c=y(n ) .
C P C C (3)

Equation (3) implies that the poles s are coplanar with
the cusp c, which lies along the direction of n, .

When the Wulff construction is carried out for a y plot
made up of sections of spheres, the plane drawn perpen-
dicular to the radius at any point within any pyramid p
passes through the corresponding pole s . It can then be
shown that the inner envelope of the construction is com-
pletely determined by the point cusps, resulting in a po-
lyhedral ES. All smoothly curved regions of the y plot
are passive.

In 2D, Eq. (2) still holds, but the "two-dimensional py-
ramid" is a range of polar angles, and the corresponding
region of the y plot is a sector of the circle on which the
origin 0 and the pole s lie at diametrically opposite posi-
tions. Each two-dimensional pyramid lies between two
neighboring pyramids, the intersections with which give
rise to two cusps of the y plot; each cusp c is collinear
with the poles of the two pyramids which intersect to
form it. These features are illustrated in Fig. 2, which
shows part of a y plot. This sector of the plot is made up
of four circular portions with poles at the points labeled
S, . The cusps formed by the meeting of the circular arcs
fall into two categories: those like C, and C3, which are
pointed towards the origin of the polar plot, and cusps
such as C2, which point outward. No circle drawn
through the origin and an outward-pointing cusp can lie
entirely within the y plot; therefore, by theorem 1, there
cannot be an equilibrium facet normal to the direction of
such a cusp. In other words, the ES for a system with a y
plot made up of portions of circles (spheres in 3D) is com-
pletely determined by the positions of the in ward-
pointing cusps.

III. FACETING WITH PURE-ATTRACTIVE
BOND INTERACTIONS

Let us restrict y(n) to be of the form of Eq. (1), with
the further condition that all the coefficients g; be posi-
tive. This situation arises at T=0 for a broad class of
microscopic models which incorporate pure-attractive
two-body forces.

Two recently published' ' ' models for icosahedral
quasicrystals with nearest-neighbor interactions were
shown to result in y(n) of the form

N

y(n) =g g ~n. A, ~,

where the unit vectors A; have icosahedral point-group
symmetry. In this special case, Ho et al. ' concluded

The corners of pyramids lie along directions in which
there is an intersection between two or more great circles,
i.e., along directions given by

n, =+A, X A /~A, X A ~,

for any i&j A. ssociated with each such intersection
there is a point cusp in the y plot, at position
c=n, y(n, ). The pole s ~ of every pole p' having a corner
at n, satisfies

that the ES could never be the icosahedron or the pentag-
onal dodecahedron. Their argument was based on the
observation that the Wulff construction for Eq. (4) results
in an ES with a vertex at every pole position s . Ho
et al. then showed that a necessary condition for a con-
vex polyhedron to be the ES for some set of A s is that
there exists a set of great circles, such that every intersec-
tion between the circles coincides with a vertex direction
of the polyhedron. This condition cannot be fulfilled for
an icosahedron or a dodecahedron.

We shall address the more general question of whether
a given shape can be the ES of any model having y(n) of
the form of Eq. (1) with more than one coefficient g, , each
of which is constrained to be positive (i.e., pure-attractive
interactions). Our Wulff-construction analysis will be
valid for materials having crystalline or quasicrystalline
translational order, and bond-orientational order of arbi-
trary symmetry. The results we obtain will then be ap-
plied to the case of icosahedral symmetry.

A. WulÃ analysis for arbitrary symmetries

Herring has pointed out that if y(n) is given by Eq. (1)
with all coefficients positive, then for any direction of n
the pyramid p(n) within which n lies gives a larger value
of n. s than any other pyramid, p':

n s
~

j&n-s,

Equation (5) implies that for any n the y plot is the outer-
most surface which can be chosen from among the
spheres defined by Eq. (2):

y(n)= supn. sP

This excludes the possibility of an outward-pointing cusp
of the type discussed in Sec. II, since in the vicinity of
such a cusp there must be sections of the spheres forming
the cusp which lie farther from the origin than the sur-
face of the y plot [see Fig. 2(a))]. With this observation,
we are able to prove the following theorem.

Theorem 2. When y(n) is of the form of Eq. (1) with
all the coefficients g; & 0, there is a one-to-one correspon-
dence between the point cusps of the y plot and the facets
of the Wulff shape. The direction of each cusp, n, is iden-
tical to the outward normal direction to the correspond-
ing facet.

Proof. Theorem 1 states that each facet is normal to
the direction of some point cusp of the y plot. We now
have to show that the relationship is one to one, i.e., that
there is a facet normal to every cusp direction. Consider
a point cusp c of the y plot lying along direction n, from
the origin. Let there be m pyramids p' having a corner at
n„and pole s ~ satisfying Eq. (3). We calculate the
center-of-mass position of these poles, which is

S $
m

and construct the sphere defined in polar coordinates by
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n.s, =(1/m) $ n. s ~ for n. s, &0,

r (n)= 0 otherwise .

This sphere passes through the origin and the cusp c.
Using Eqs. (5)—(7), it can be shown that the sphere lies
entirely within the y plot, except at c itself. According to
theorem 1, the existence of such a sphere is a sufficient
condition for the ES to exhibit a finite facet normal to n, .
This argument was developed quite generally for any
cusp, so we have proved the one-to-one relationship be-
tween cusps and facets. Q.E.D.

The directions of the cusps in y(n) are completely
determined, through the great-circle construction, by
the choice of vectors A, entering Eq. (1). Therefore, we
can state a

Corollary to theorem 2. Suppose that y'(n) is of the
form of Eq. (1) with all g, )0. A necessary, but not
sufficient, condition for a given faceted shape to be a pos-
sible equilibrium shape is that there exists a set of great
circles whose intersections are in one-to-one correspon-
dence with the facets, and such that each intersection lies
along the outward normal direction to a facet.

The condition is not sufficient for the following reason.
Complete description of a polyhedral shape requires that
one specify (in addition to the outward normal direction
to each facet) the relative sizes of the facets which depend
on the radius from the origin of each cusp. Even though
a polyhedron may satisfy the condition on the normal
directions of its facets, we have not proved that there ex-
ists a choice of positive g s which correctly reproduces
the relative sizes of its facets.

A more concise statement of the restriction on possible
ES's may readily be proved from the corollary to theorem
2: For the class of pure-attractive lattice models we have
considered, any ES has to be a zonohedron —a convex
polyhedron in which each face has a center of inversion
symmetry. ' This result enables many potential ES's to
be eliminated, simply because they exhibit facets with an
odd number of edges.

the surface of an icosahedron is defined as the set of im-
ages of P under the action of the full 120-element
icosahedral group ( Yh or m 5 3). The same set of points
may be generated starting from any member of the orbit.
An orbit induces a representation of Y&, in which each
element of the group corresponds to a permutation of the
orbit. The vectors in any icosahedral orbit lie in pairs on
axes through the center of the icosahedron. Each axis
will be taken to be a unit vector, its sense (parallel or anti-
parallel to either one of the pair of orbit vectors) being
determined by arbitrary convention. Taken together,
these axes comprise the icosahedral axis set A(P) gen-
erated by P.

The number of elements in 0(P), and consequently the
number of axes in A(P), depends on the precise position
of P on the icosahedron. We list below the five categories
of icosahedral axis sets and the symbol used to denote
each. The positions of the generators for cases (1)—(4)
are illustrated in Fig. 3.

(1) The set of six fivefold axes, V6, generated by P lying
at a vertex of the icosahedron.

(2) The set of ten threefold axes, F&o, generated by P ly-

ing at a face center.
(3) The set of 15 twofold axes, E„,generated by P ly-

ing at an edge center.
(4) The set of 30 axes, M3o, generated by P lying on a

mirror plane of the icosahedron, where P is not also one
of the points of rotational symmetry. There is a continu-
um of such points, so a particular set is specified by the
location of a generating point. We shall refer to the fol-
lowing sets: (a) M3o generated by a point lying a frac-
tion 3(3—r)/10 of the way along the line from a vertex
of the icosahedron to the center of any face adjacent to
that vertex; (b) M30', generated by a point lying at the

B. ES's of icosahedral systems

We now specialize to the case of systems with
icosahedral orientational symmetry. A generalization of
Eq. (4) which may include the eff'ects of next-nearest-
neighbor, or indeed any finite-range, two-body attractive
forces is Q3, M '; M;..Q3

where the unit vectors A'"' can be arranged in finite sets,
2'"'=

I A "', a=1, . . . , N„I, each exhibiting icosa-
hedral symmetry. Once again, the coefficients g'"' are re-
stricted to be positive.

At this point we provide a more precise definition of
what is meant by an "icosahedrally symmetric" set of
vectors. A set of vectors which is said to have full
icosahedral point-group symmetry is the union of
icosahedral orbits The orbit G(P). of a point P lying on

FIG. 3. One face of an icosahedron, showing generators of
the six icosahedral axis sets referred to in the text. The stan-
dard stereographic symbols indicate the fivefold, threefold, and
twofold rotation axes, which generate the axis sets V6, F», and

E», respectively. The solid lines connecting these axes
represent mirror planes of the icosahedron. The circled digits
indicate points which generate the axis sets M 3o M 3o and

(3)
M3O .
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midpoint of the line connecting the centers of any two
edges which bound the same face of the icosahedron; (c)I30 generated by a point lying on an edge of the
icosahedron, a fraction (2r )

' of the way along the edge
from either end. [The symbol r represents the golden
mean, —,'(&5+ 1).]

(5) The set of 60 axes generated by any point P on the
icosahedron which does not give rise to one of the sets in
(1)—(4). Once again, there is a continuum of such points.
We shall not need to refer to this case again.

Icosahedral orbits and axis sets wi11 appear throughout
our discussion in classifying different features of the
icosahedral faceting problem. For instance, the vectors
A '"' in Eq. (8), which appear only in the form ~n A '"'~,
can be expressed as the union of icosahedral axis sets.
The cusps of the y plot lie along directions

Nf = 12,20, 30, 32, 42, 50, 60, 62 . (10)

(All other values may be obtained from these eight by
adding integral multiples of 60.)

Returning to the Wulff analysis, one concludes from
the corollary to theorem 2 that the ES of the model under
consideration can never be an icosahedron (Nf = 12) or a
pentagonal dodecahedron (Nf =20), because these shapes
are not zonohedra. Any set of great circles whose inter-
sections include outward normal directions correspond-
ing to each face of an icosahedron or a dodecahedron
necessarily has many additional intersections. These ad-
ditional intersections lead to additional facets (beyond
those for the icosahedron or dodecahedron). In other
words, there exists no union of sets 3'"' of icosahedral
axis vectors such that the cusp directions in Eq. (9) may
be completely organized into pairs, one along each axis in
V6 or F&0 ~ This extends the validity of the result of Ho
et al. for a single coupling to the case of arbitrarily many
g (P)&s

The Wulff shape produced by the icosahedral set with
fewest vectors, 3 ' "= V6, is the 30-faceted rhombic
triacontahedron. ' Increasing the number of vectors in
Eq. (8) always results in a y plot with a greater number of
cusps and hence, by theorem 2, an ES with more than 30
facets. Indeed, the next lowest number of facets which
can be obtained is Nf =62: the great rhombicosidode-
cahedron [see Fig. 4(c)], produced by the choice
3 '''=E&&. Thus, the first two, and six of the first eight,
members of the sequence in Eq. (10) are not attainable
with pure-attractive interactions. This contrasts with the

+A "'X A' /i A'"'X A'"'i .
CX f3 a p

Since point-group operations preserve the lengths of, and
angles between, the axis vectors, the set of all cusp direc-
tions must be decomposible into one or more icosahedral
orbits.

In addition, the set of outward normal directions to the
faces of any icosahedrally symmetric polyhedron must be
decomposible into icosahedral orbits. Therefore, the
number of facets exhibited by the ES, Xf, can take only
certain values, which may be derived from the above list
of icosahedral axis sets. The eight lowest permitted
values of Nf are

crystallographic symmetries, for which the fewest-faceted
shape is a zonohedron. For instance, in the cubic system,
the cube is a possible ES. Note, however, that the oc-
tahedron may not be obtained as the ES of a pure-
attractive cubic lattice model.

IV. LATTICE MODELS WITH MIXED ATTRACTIVE
AND REPULSIVE INTERACTIONS

One is prompted by the results of the preceding section
to consider whether or not the range of possible equilibri-
um shapes might be extended by permitting negative
coefficients in the expression for the macroscopic interfa-
cial free-energy density [Eqs. (1) and (8)]. On the micro-
scopic level, this corresponds to incorporating into our
model repulsive, as well as attractive, interactions. Physi-
cally, repulsion may arise because of inherently repulsive
finite-range two-body forces, such as screened electrostat-
ic repulsion between cations. In addition, steric crowding
of individual atoms, or clusters of atoms, may result in
effective two-body repulsion.

We defer further discussion of possible ES's until the
next section. At this point we describe a microscopic toy
model for three-dimensional quasicrystals which includes
repulsive effects, and demonstrate that it yields an expres-
sion for the interfacial free-energy density which is of the
form of Eq. (8) with coefficients of mixed sign. Our mod-
el is a generalization of the lattice-gas model for quasi-
crystal faceting introduced by Garg and Levine. ' The
model can be defined in two stages, which will be de-
scribed, in turn, in the following subsections. Briefly, the
generalized dual method (GDM) is employed to create a
packing of unit cells. Then we specify an atomic decora-
tion of the cells, and bond energies between the cells, so
as to arrive at an expression for the energy density of a
flat interface. (It is in this second respect that the theory
of Garg and Levine differs from that of Ho et t21. '

)

The magnitude of the repulsive interactions which may
be included in the model is limited by the requirement
that the material be stable, in a limited sense which wil1
be defined here. It is an assumption built into all such
atomic lattice models, crystalline or quasicrystalline, that
there exist interatomic forces such that each atom is
stable with respect to local deviations from its lattice site.
No further assumption is made about the form of these
forces, other than the resulting bond energies, which de-
scribe the net energy required to move two atoms from
their lattice positions to infinite separation. Therefore,
we are unable to address the stability of the material with
respect to arbitrary changes in the positions of the atoms.
When repulsive bonds are included in the model, only
two checks of bulk stability can be made: that both the
free energy to completely dissociate all the bonds, and the
net cost of creating a cleavage surface within the materi-
al, remain positive.

Ideally, one would proceed by analogy to the case of
perfect crystals, for which it is possible to construct lat-
tice models ' in which the next-nearest-neighbor bonds
are repulsive, while bulk stability is maintained by the
presence of attractive nearest-neighbor bonds. However,
the vast number of different local configurations occur-
ring within a quasicrystal greatly complicates any calcu-
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lation involving effects beyond nearest-neighbor range.
Therefore, we assume that only "contact" forces exist,
and choose some of these to be repulsive. While this
model may not be physically very realistic, it nonetheless
reproduces many macroscopic features of next-nearest-
neighbor models, and has the advantage of tractability.

A. Quasicrystat structure

In this subsection we review the use of the GDM to
generate three-dimensional quasicrystals, and discuss
certain important features of the structures so produced.
The GDM begins with the construction of a grid of
infinite planes perpendicular to each member of a star of
unit vectors, 6 = Ie, , i =1, . . . , N]. The planes belong-
ing to grid i may be labeled with an integer in sequence of
their positions along the e,- direction. These planes may
be periodically or quasiperiodically spaced; in either case
the unit of spacing is some length b;. The grids divide
grid space into open volumes, each of which may be
uniquely labeled by a set of N integers k, defined as fol-
lows: any point lying within the open volume in question
falls between the planes from grid i having labels k,- and

k, +1. Then the dual construction maps each volume in

grid space onto a lat tice point in real space at
&k, a;e;, where a, is the length of all lattice edges

parallel to e, . The result is a space-filling arrangement of
parallelepipeds, each of which is dual to an intersection
between three grid planes.

The orientational symmetry of a quasicrystal produced
using the GDM depends on the choice of star vectors e,
and their associated real- and grid-space lengths, a, and

b, . In order that the quasicrystal diffraction pattern be
invariant under the symmetry operations of some point
group 6, the star 6 should decompose into subsets, each
of which is a 6-symmetric axis set, and within which a,
and g; are independent of i. The number of different
unit-cell shapes is determined by the number of distinct
triplets of edge vectors a;e;. For example, the star with
fewest vectors which produces an icosahedral packing is
the set 6= V6, with a, =a and b, =b for all i. There re-
sult two different cell shapes, the minimum possible num-
ber for a quasicrystal. With this star, the value of a
determines the overall scale of the quasicrystal, while the
magnitude of b has no physical significance. Generally, if
6 has M distinct symmetric subsets, with M ) 1, one in-
troduces M —1 constants which fix the ratios of the a, 's

between subsets. Varying these constants affects the rela-
tive sizes and aspect ratios of the cells in the packing, and
consequently changes the positions of peaks in the
diffraction pattern. The ratios of the b s provide a fur-
ther M —1 degrees of freedom which determine the rela-
tive number of occurrences of different cell shapes, and
the relative intensities of various diffraction peaks. We
remind the reader that quasicrystal lattices produced by
periodic an quasiperiodic grid spacing have the same cells
shapes, but may differ in the configuration of cells, and
the relative numbers of the various shapes.

One feature of all three-dimensional quasicrystals con-
structed using the GDM is the existence of rails: one-
dimensional sequences of cells, connected by identically

~ jk Idjk X dkj I

where

N—
1

Im 91m X 1 ln n n

n =1

with

(12)

(13)

=[e X(e Xek)] e /b (14)

In order to check the bulk stability of the material, we
shall also need an expression for the face density p k. the
average volume density of faces which are shared be-
tween cells in [j,k ]. This density is given by

p, k
=

I
d&.d, k X dkj I

where d & and dk are given by Eq. (13), and

(15)

N

dg = g 7}g„Q„C„
n =1

N

n =1
(16)

shaped parallel faces. Each rail is dual to a line of inter-
section between two grid planes. In grid space, any two
planes belonging to different grids, say j and k, intersect
along a straight line L parallel to e Xe&. The intersec-
tion between this line and any third grid plane, perpen-
dicular to et (l&j,k), say, is dual to a cell in which two
opposite faces are oriented perpendicular to e- X ek, these
faces are related by a translation through +a&e&. Succes-
sive intersection points along L produce a rail. The aver-
age direction of translation, q, as one moves from the
center of one shared face to the next along the rail de-
pends on the orientation and relative separation of the
grid planes which intersect L. In a system with a high de-
gree of rotational symmetry, such as an icosahedral pack-
ing, the average rail direction is just the normal to the
connecting faces, i.e.,

q—:q, k =e, X ek /Ie, X ek

L is one of an infinite set of parallel lines of intersection
between elements from grids j and k. Hence, there exists
a family of nonintersecting "parallel" rails, labeled [j,k],
with the same average direction in real space. We have
already seen that if the point group of the system is G,
the star must be the union of G-symmetric axis sets.
Consider the set of all rail directions, Iq k I, obtained
from such a star by using Eq. (11). (We do not distin-
guish between q k and —q k.) Since operations of the
point group G preserve the lengths of, and angles be-
tween, the star vectors, the set I qjk I must also be decom-
posible into 6-symmetric axis sets.

Each cell in the quasicrystal lies at the intersection of
three nonparallel rails. Since a quasicrystal constructed
from a star with N vectors has ~N(N —1) families of
rails, any one family of rails can pass through only a frac-
tion of the cells. Rather than directly computing this
fraction, it is convenient to define the rail density o. &..

the mean area density of rails in [j,k], measured in a
plane normal to q k. It can be shown that this density de-

pends on the orientations of the star vectors, as well as
the a, 's and b, 's, through the formula
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with

g~„=(ejXek).e„lb„. (17)

Note that p & is also equal to the average volume density
of cells which lie on rails belonging to [j,k ].

Table I lists properties of the rails present in an
icosahedral quasicrystal constructed from a set of star
vectors, 6, which is composed of any combination of the
sets V6 F]p and E». The list is organized according to
which sets of grid planes intersect to form the rails. If 6
is composed of only one axis set, 6=A, then all the rails
are produced by the intersection of planes normal to vec-
tors belonging to A. The set of all such rails is denoted
in the left-hand column of the table by A XA. When 6
is the union of icosahedral axis sets (e.g. , 6'=A 'eA ),
then the rails are produced not only by the intersection of
planes belonging to grid in the same axis set (i.e.,
A ' XA ' and A XA ), but also by intersections between
planes from different axis sets (A'XA ). For each pair
of axis sets, the families of rails produced by the intersec-
tion of their grids may be grouped into sets having a com-
mon shared face shape and directions which form an
icosahedral axis set. Each line of the table gives one of
the shared face shapes, the number of families of rail
which exhibit the shape, and the icosahedral axis set to
which the rails are parallel.

For those families of rails which arise from a star com-

posed of only one of the axis sets, the Table gives two ad-
ditional pieces of information: the rail density, o., which
is the sum of o~„[Eqs.(12)—(14)] over all families [j,k]
with the same shared face shape and rail direction, and
the face density, p, which is the sum of p, k [Eqs.
(15)—(17)] over all families with the same shared face
shape, irrespective of rail direction. Both quantities are
calculated for cell edges of unit length. (When the star is
made up of two or more axis sets, p and o. depend on the
ratios of real- and dual-space lengths between the axis
sets, and there exists no one representative value for ei-
ther quantity. ) For example, the fourth line in Table I in-
dicates that the intersections between grids planes which
are normal to the E» directions produce (among others)
rails in which the shared faces are parallelograms with
edges meeting at an angle of 36'. These rails belong to 30
families, each of which is parallel to one of the V6 direc-
tions, i.e., there are five families parallel to each fivefold
axis. The combined rail density of the five families paral-
lel to any one of the fivefold axes is o. =0.1176; the com-
bined face density for all 30 families is p =0.9708.

B. Surface energetics

One simple decoration of the quasicrystal involves the
placement of an atom at the center of each unit cell, and
the association of a "bond" with every face between adja-

TABLE I. Properties of rails arising from intersections between different sets of grids employed in

the generalized dual construction for icosahedral quasicrystals. The table groups together all rails pro-
duced by the intersection of two grid planes, one from each of the icosahedral sets listed in the left-hand
column. (The nomenclature for icosahedral axis sets is defined in Sec. III.) Each line of the table
represents a set of families of rails, within which the shape of the shared cells faces is identical and the
rail directions belong to the same icosahedral axis set. The angle 0 is the smaller internal angle sub-

tended by the edges of each shared (rhombic) face. The number of families belonging to each set equals
the number of different pairs of grids, j and k, which produce rails with the particular face shape,
oriented along one of the directions in the specified axis set. See the end of Sec. IV A for further details,
and definitions of the face and rail densities, p and o, respectively. [The symbol r represents the golden
mean, —'(&5+I).]
Intersecting

gnds tang
Shared faces

L9 (deg)

Families of rails
Number Direction

V, xV,
F,o XF,o

E
1 s XE is

V6 XF,o

V6 XEis

FioxE,

2/&5
v'8

2/r'
27

1/2
v'2

63.435

41.810
70.529

36
60
72
90

37.377
79.188

31.717
58.283
90

20.905
54.736
69.095
90

4.6165

1.3207
3.6502

0.9708
1.5250
1.5708
0.8967

15

15
30

30
30
30
15

30
30

30
30
30

30
60
30
30

Eis

Eis
M3o(i)

V,
Fio
V6

Eis

Eis
Eis

Eis
Eis
M3o(2)

Eis
M3o(i)

Eis
M3o(3)

0.2236

0.0600
0.0848

0.1176
0.1039
0.1902
0.0400
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cent cells. ' [This decoration is not meant to be realistic,
but only to provide a simple model for which y(n) is cal-
culable. ] In general, the energy of such a bond might de-

pend on the configuration of cells out to quite some dis-
tance from the bond. We make the nearest-neighbor ap-
proximation that the energy of a bond between adjacent
cells depends only on the shape and orientation in space
of the face shared by the cells. This implies that all faces
between cells in the family of rails [j,k] have the same
energy, c. k. Since the mean density of such bonds is p k,
given by Eqs. (15)—(17), the average bond energy density
within the bulk (i.e., the net dissociation energy per unit
volume) can be written

" = X pj's eJi
k,jk) j

(18)

Consider cleaving the quasicrystal between unit cells to
create a surface which, although microscopically uneven,
is macroscopically flat with normal orientation n. The
energy required for this process is the sum of the bond
energies for all faces between cells which have been
separated. We first examine the case when all bond ener-
gies are positive. Since rails follow a macroscopically
straight path through the material, the surface energy is
minimized when any rail with direction q k satisfying
n qJi. &0 is cut in exactly one place, and any other rail is

not cut at all. The total energy cost may be calculated
from the number of cut rails belonging to each family.
For a macroscopic surface of area S, oriented normal to
n, the number of rails in [j,k ] which must be cut is
~n. q i, ~Scr [ii+0( S ' )], where o i is the mean area
density of rails, defined by Eqs. (12)—(14), and lengths are
assumed measured in cell-edge units. Then the macro-
scopic interfacial energy density is

At T =0 the energy and free energy are identical, so one
can see that y(n) is of the form of Eq. (1), with each bond
direction A, in the equation corresponding to the direc-
tion of a family of rails in the lattice model.

As an example, we return to the quasicrystal construct-
ed from the V6 star of vectors, for which there are 15

possible rail directions, q k EE». The shape and size of
the connecting faces in the different families of rail are
identical, and by symmetry, the face energies cjk and
mean densities o.

k must be independent of j and k.
Thus,

which fits the form of Eq. (4).
The principal aim of this section is the incorporation of

repulsive interactions into the lattice model. One obvious
approach is to assign a negative energy for cutting any
rail belonging to a certain subset of all families of rails.
However, the straightforward inclusion of "repulsive
rails" leads to departures from Eq. (1) in the form of
y(n), arising from anomalous configurations adopted by (p) —&(p)~(p) (19)

interfaces whose macroscopic tangent direction makes a
small angle to a family of repulsive rails (i.e. ,

~n. qJi, ~
&&1). Rather than the surface following a path

which cuts the fewest possible rails, as is the case for
pure-attractive models, it may be energetically more
favorable to zig-zag back and forth many times across
each repulsive rail. The average distance along the sur-
face between cuts across a repulsive rail may be as small
as a few cell spacings, so the reduction in the interfacial
energy density can be quite significant.

The zig-zag surfaces (at T =0) are clearly unphysical.
They can be traced back to the fact that we have included
only nearest-neighbor interactions in our model. In crys-
tal lattice models, where each unit cell is identically coor-
dinated, repulsion must be introduced through next-
nearest-neighbor bonds, while the nearest-neighbor bonds
are kept attractive. As it turns out, any choice for the
relative strengths of the repulsive and attractive interac-
tions which satisfies the stability criterion also ensures
that zig-zag surfaces are suppressed. In quasicrystal
models, which are constructed from two or more distinct
unit cells, a stable lattice model which includes repulsive
interactions may be constructed from nearest-neighbor
bonds alone. We have intentionally excluded next-
nearest-neighbor bonds to avoid calculational di%culties.
This exclusion, though, permits zig-zag surfaces to be-
come the surfaces with lowest energy. To eliminate this
problem, we will impose the constraint that no surface
can cut a rail more than once. We imagine that this con-
straint might be obtained dynamically, say, through
step-step interactions that raise the energy of zig-zag sur-
faces, while leaving the energy of other surfaces un-
changed. We will assume the existence of such interac-
tions, and simply ignore the zig-zag surfaces in comput-
ing the minimal energy surface. The interactions have no
other effect on the computation. With this understand-
ing, the calculation of the minimum interfacial energy for
a surface with a given macroscopic normal direction n
may be performed in exactly the same manner as when all
rail energies are positive.

In order to incorporate repulsive interactions into an
icosahedral model, while maintaining bulk stability, it is
necessary that the possible rail directions decompose into
two or more icosahedral axis sets, 3'"', corresponding to
two or more types of cell faces. At least one of the sets
must be assigned a positive (attractive) bond energy. We
have seen that, when the quasicrystal star 6 is the set of
fivefold axes, the rails belong to one icosahedral axis set,
resulting in all cell faces having the same shape. There-
fore, this star is unsuitable for a model with mixed in-
teractions. If 6 is instead chosen to be the set of twofold
axes, it can be seen from Table I that there are four dis-
tinct face shapes and icosahedral subsets of rail direc-
tions: one subset with rail directions in E», two with
directions in V6, and the last having directions in F&o. By
symmetry, the bond energies c k and rail densities a,k

within each subset must take values c'"' and o "', respec-
tively, independent of j and k. Therefore, y(n ) takes the
form of Eq. (8) with the coefficients
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unrestricted, apart from limits imposed by the require-
ment of stability. As discussed above, the stability condi-
tions amount to demanding that the bulk dissociation en-
ergy u [given by Eq. (18)] be positive, and y(n) remains
positive for all directions n.

The set E» is not the only icosahedral star which gives
rise to more than one axis set of rail directions. For in-
stance, consulting Table I once again, the set of threefold
axes produces rails along the directions in E» and M3O'.
Still greater variety can be obtained by employing a star
which itself is composed of more than one icosahedral
axis set. For example, combining the V6 and E&5 sets of
star vectors, the rail directions include those which
would arise from either subset alone, plus additional
directions produced by intersections between two grid
planes, one from each of the two subsets.

To summarize this section, we have shown that there
exists a microscopic model for quasicrystals for which the
macroscopic interfacial free-energy density is well defined
and takes the form of Eq. (1). The coefficients g, may be
positive or negative and chosen independently of one
another, subject to constraints imposed by the symmetry
of the system [which force y(n) to take the more restrict-
ed form given in Eq. (8)], and the requirements for bulk
stability.

V. FACETING WITH MIXED ATTRACTIVE
AND REPULSIVE INTERACTIONS

We now provide a plausibility argument that the in-
clusion of repulsive interactions may provide a richer col-
lection of possible ES's than in the pure-attractive case.
Consider starting with y(n) given by Eq. (1), with all
coefficients positive. From inspection of Eq. (1), it should
be apparent that the addition of terms with negative
coefficients g, , representing repulsion, favors the forma-
tion of a plane surface normal to the corresponding direc-
tions A;. If the original y plot has a cusp along a direc-
tion making a small angle to such an A;, then that cusp
will be moved inwards by the additional term. On the
other hand, any cusps of the original y plot which are far
from all the newly favored directions will be pushed out-
ward relative to the average. As the magnitude of the
negative coefficients is increased, cusps that originally
pointed towards the center of the y plot may be Aattened,
resulting in a reduction in the size of the corresponding
Wulff facets. Eventually, cusps may be inverted so that
they point outward, at which stage their facets vanish
completely from the ES. Thus, the one-to-one correspon-
dence between cusps and facets may be broken by the in-
clusion of repulsive interactions, and the corollary to
theorem 2, which, applied to purely attractive interac-
tions, may no longer hold true.

The remainder of this section will be devoted to exam-
ples of ES's calculated for icosahedral systems when
mixed attractive and repulsive interactions are involved.
We shall find that the ES need not be a zonohedron, so
that shapes which were forbidden in the pure-attractive
case are attainable in the mixed case. We shall concen-
trate on those shapes which have the fewest facets, be-
cause they are most likely to be observed experimentally.

P( V6 E ]s ) =g ( V6 ) ~g (E&s ) (20)

is varied between +1.0 [Fig. 4(a)] and —1.2 [Fig. 4(f)].
For P( V6, E,s) positive, the number of facets is constant,
as one would expect from theorem 2. The trivial case
fj(V6,E»)=0 is illustrated in Fig. 4(c). As P( V6, E&s) is
made progressively more negative, the facets which do
not lie normal to a fivefold axis become smaller, and for
)33( V6, E&s ) ~ —1.2 are completely suppressed; in this lim-
it the ES is the dodecahedron.

Recall that each coefficient g entering Eq. (20) depends
not only on the bond strength, c, but also on the rail den-
sity, o [see Eq. (19)]. To evaluate how reasonable the
models are physically, it is instructive to directly com-
pare the repulsive versus attractive bond strengths neces-
sary to produce a dodecahedral ES. Let us assign equal
energies e( V6) &0 to bonds through the faces associated
with the two sets of rails which lie along directions in V6,
e(F&o) =0 for the F&o rails, and e(E, s ))0 for the E,s

rails. When the greater density of repulsive rails (see
Table I) is taken into account, it is found that the dode-
cahedron is the ES for e( V6)/e(E») 5 —0. 16. This ratio

In particular, we shall demonstrate how to obtain simple
(in most cases equilateral) polyhedra for all but one of the
Nf values listed in Eq. (10).

Once again, we emphasize that all the examples shown
were constructed subject to the conditions that the bulk
dissociation energy be positive and y(n) remain positive
for all n. The sets of directions 3'"' and coefficients
g(A'"~)—:g "' in Eq. (8) will be specified for each ES.
Where appropriate, an interpretation will also be provid-
ed in terms of our microscopic model. For the most part,
we shall work with a quasicrystal constructed with the
E&s star (i.e., the 15 twofold axes of an icosahedron),
which results in rails along the V6, F,o, and E,~ direc-
tions (see Table I). It should be noted that a given shape
can often be obtained for several different choices of star
vectors and bond strengths. Selection of bond directions
and strengths which result in a particular Wulff shape is a
somewhat hit-or-miss procedure. It is known that the
directions of the cusps in the y plot are given by Eq. (9).
Therefore, one can choose the bond directions to ensure
that there is a cusp whose direction is normal to each
facet in the desired ES. However, it is usually unavoid-
able that many other cusps are created as well, so one has
to adjust the coefficients g'"' until these additional cusps
are rendered passive. The lack of independent control
over the value of y(n) for each icosahedral set of cusp
directions greatly hinders this procedure.

(1) Xf =12 ( pentagonal dodecahedron ). In Sec III i.t
was mentioned that when there is one set of vectors in
Eq. (8), lying along the twofold axes of an icosahedron,
the Wulff construction produces the 62-faceted ES shown
in Fig. 4(c). Note that if the large facets normal to the
fivefold axes were expanded at the expense of the other
facets, the shape would become a pentagonal dodecahed-
ron. This effect can be achieved by introducing a second
set of vectors, lying along the V6 directions. Figure 4
shows e series of ES's obtained from these two sets of
bond directions as the ratio
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At this stage, further experimental work is needed to
determine whether the faceting shapes that have been ob-
served are the same as those that would be obtained un-
der equilibrium growth conditions. If this were the case,
then the important role played by repulsive interactions
in accounting for the occurrence of the pentagonal dode-
cahedral shape might provide some insight into the atom-
ic structure within these materials. To date there has
been little progress in the determination of the atomic
structure of the icosahedral phase from diffraction data.
A fundamental theoretical problem is the fact that the
diffraction pattern cannot generally be separated into the
lattice factor and the structure factor, which contains in-

formation about the unit-cell decoration. It may be that
clues from the faceting of icosahedral phases can provide
information about atomic bonds on a microscopic scale
and, thereby, distinguish among atomic structural mod-
els.
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