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Thermodynamic parameters of the T 0, spin- z square-lattice Heisenberg antiferromagnet
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Transverse susceptibility (Z&), spin stiffness constant (p, ), spin-wave velocity (c, ), staggered
magnetization (M+), and the ground-state energy (Ep) of the T 0, spin- —,

' square-lattice
Heisenberg antiferromagnet are estimated by expansions around the Ising limit. Extrapolations of
the series, which take into account the leading singular behavior, give Zz( 8Z~J) 0.52~0.03,
Z~ ( 4psl j) 0.72 ~ 0 04 Ze, ( cslJ2J) 1.18+'0 02, 2M+ 0 605 ~ 0 015, and 4E /J

—2.6785+0.0010. The extrapolations are aided by universal amplitude ratios, whose values
can be obtained exactly from the spin-wave theory.

The discovery of "two-dimensional" antiferromagne-
tism in a number of "high-T, "materials has generated a
lot of theoretical interest. A host of numerical studies'
have presented strong evidence in favor of a zero-
temperature ordered state for the square lattice S
Heisenberg antiferromagnets. A continuum theory has
been developed to address the growth of the two-di-
mensional correlation length above the three-dimensional
ordering temperature. The parameters entering such a
description are the spin stiffness constant (p, ), the trans-
verse susceptibility (g&) and the sublattice magnetization
(M+), which can, in principle, be obtained from an un-

derlying microscopic model. If one assumes, for example,
that the square-lattice Heisenberg model with only
nearest-neighbor exchange J is a good representation for
the physics at the time and length scales of the experi-
ments, then the various parameters p, /J, Jg~, and M+
are uniquely determined. The interrelation between the
parameters is important as some combinations of them
control not only the growth of equilibrium correlation
length but also the low-temperature dynamics in these sys-
tems. It is important to realize, however, that these
quantities are not universal and would change if one was
to add, for example, a small second-neighbor interaction.
Nevertheless, certain suitably scaled dimensionless quan-
tities will remain universal [see Eq. (5)].

The original determination of these parameters comes
from the order 1/S expansion of the spin-wave theory. ' ')
Recent numerical studies, with varying degrees of accura-
cy, have shown that the spin-wave estimates are accurate
to better than 10%, except perhaps for g~ and p, . It is
standard to quote gi in terms of multiplicative renormal-
ization of the classical (S ~) answer (g&J —,

' Zz).
The estimates for Z~ have been higher than the spin-wave
estimate of 0.448 and have ranged between 0.523 and
0.74. ' %'e are not aware of any previous direct esti-
mate of p, .

The purpose of this paper is twofold. We develop for
the first time expansions for g& and p, in the variable
(J&/Jt), where J& is the exchange perpendicular to the
direction of ordering and JII the exchange along it. To es-
timate p„ the Ising axis is gradually rotated in space in
order to calculate the energy of an imposed twist. The de-

We find that the next two terms in the b series actually in-
crease, thus indicating that the apparent convergence seen
in the shorter series'1 was spurious. The net effect of
these terms is to lower the estimate for M+, thus bringing
it closer to the spin-wave estimate. '

In order to extrapolate the g& series reliably, we have to
consider the singular parts of g~ and M+ in the variable
(1 —J~/J~~) in some detail. Since these singularities are
caused by Goldstone modes and not by critical fiuctua-
tions, one expects the associated exponents to be given ex-
actly by the spin-wave value. ' Thus, if we write

+ 0~0+~sing& g& pa++sing & (2)

then the singular parts M„„g and g„.„g vanish as
[1 —(J&/J1) ]'t as J&/Jt 1. Since the Goldstone
mode is a long wavelength property one also expects that
once the appropriate dimensional parameters are scaled
out, one should be left with universal amplitudes indepen-
dent of short distance properties such as spin, etc. More
precisely, one expects that

M+ Mp(1+At), gi gi(1+Bt), (3)

where A and 8 are universal and the scale for the anisot-
ropy variable t is set by the spin S through the relation

t 8(S)[1 —(J /J~i) ] '", (4)

where 8(S) goes as S ' as S~ eo. ' Thus, the quantity

Mgj~s/MpR I 0
+sing&+ J

(5)

tails of this p, expansion and its analysis will be discussed
elsewhere. We also extend the existing series for the sub-
lattice magnetization and ground-state energy to order
(J~/J~~)' . Previously, the series were known to order
(J&/Jt) . The motivation for extending the series for
M+ comes from the surprisingly rapid apparent conver-
gence of the magnetization series in order (J&/Js), when
the singularity of the form [1 —(J~/Js) ]'t is removed
by going to a new variable 8' given by'

1 —a - [1 —(J./J t) '1 '".
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should be a universal independent of S. In the S
limit the spin-wave theory gives R l. '

The series are analyzed in two different ways. One is
employing the change-of-variables technique of Huse, ' "
the other using a method that allows us to enforce the ra-
tio R to be one. The agreement between the estimates is
excellent and gives us further confidence in our extrapola-
tions.

We consider the Hamiltonian

0 g[J[~S;S +J (S,"S"+SfSJ)]+HQS,", (6)
(ij) 1

where the sum (ij ) runs over nearest-neighbor pairs of the

square lattice. The Heisenberg model is given by Jt~ J&
J. The series is developed by the method of Singh, Gel-

fand, and Huse. ' The sublattice magnetization is given
by

M+ -(S')
while the susceptibility g~ is obtained through the
ground-state energy, via the relation

E(H) Eo —
2 @AH +

The expansions are (x J~/Jt) (quoting six significant
digits)

2M+ 1 —
9 x —

22s x —0.018942 6x —0.0148 858x —0.008 753 82x

4Ep/J —2 —i x +0.0037x"—0.006 326 28x —0.003 300 85x —0.001 247 40x '

and

(9a)

(9b)

i g~J + 8
—

6 x+0.177083x —0.1898148x +0.191761x —0.196579x +0.197934x —0.201447x + (9c)

As argued earlier, the quantities M+, Eo, and Z& have
singularities at the Heisenberg point (x 1). The form of

' these singularities is known exactly from the spin-wave
theory to be of the type (1 —x ) +'~2 with m 0, 1,2,
for M+ and g&, and m 1,2, 3, . for Eo. We wish to in-
corporate this knowledge in our extrapolations. One way
of doing this is to go to the variable b defined in Eq. (1).
In this variable the Heisenberg point (8 1) is free of
singularities. However, this is achieved at the cost of
bringing other unphysical singularities in the complex
plane closer to the origin. The magnetization series in 8
becomes (quoting four significant digits)

M+ 1 —
9 6'+ 0.088 —0.009 3196 —0.0464 28"

+0.082576 + - . . (10)

I

form (1 —x) . The parameter a depends on the ampli-
tude of the next to leading singularity which is of the form
(1 —x) +'. We plot S~ vs 1/(N+a) and by adjusting a
try to get the points to lie in a straight line. Thus, we can
extrapolate to determine both S and C. The uncertainty
in estimating S should be of order I/N"+z.

Using the criteria of least squares, the best fits are ob-
tained for a 0.7 in case of M+ and a 0.35 in case of
Eo The plot. s are shown in Figs. 1 and 2. We estimate

2M+ 0.605 +' 0.015, 4E /J —2.6785 +' 0.0010 .

0.80

Although, the first three terms in this series are decreas-
ing in magnitude, the next two are increasing. Thus, this
series may be divergent at 8 1. This can happen because
going to the variable b maps a region of the negative x
axis ( —x & 3) within unit distance of the origin on the
negative 8 axis. Hence, the physical singularity at b 1

may no longer be the closest one to the origin. The result-
ing series can nevertheless be summed through Pade ap-
proximants. Ignoring the direct summation, the Pade es-
timates for the five term series lie between 0.610 and
0.624.

Here we will use a diff'erent method for summing these
series, where the convergence is controlled by the physical
singularity. Thus, so long as the amplitude for the high-
er-order singularities, such as (1 —x ) ~, etc., are not
anomalously large, the extrapolation will converge rapidly
and in a predictable way. We perform partial sums, S&,
for the series in Eq. (9). Then, asymptotically (as
N~ ao)
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I 1/
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1/(A+a)

I
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S~=S + C (11)(N+a)' '

where S is the sum of the infinite series and C is related
to the amplitude of the leading singularity which is of the

F1G. 1. Plots of partial sums S~ vs 1/JN + a for the magneti-
zation series in Eq. (9a). The filled circles correspond to a =0
and the open circles to a 0.7. The dashed line is a least-
squares fit to the points. The estimated uncertainties are shown

by brackets.
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Setting 8(S= —,
' ) equal to unity, the amplitude A in Eq.

(3) is estimated to be -2.680—

A =0.66+' 0.13.

z =2x/(1+x) . (i2)

Here the uncertainties are set by extrapolating with a =0.
These numbers compare very favorably with the Monte
Carlo estimates of Reger and Young, '(' who find
2M+ =0.60 ~ 0.04 and 4Eo/J = —2.680 ~ 0.002. The
energy estimates are also consistent with the best varia-
tional bounds of Liang et al. '(') who find 4Eo/J~ —2.6752 +' 0.0016.

The g& series is dominated by a simple pole at x = —1,
which corresponds to the staggered perpendicular suscep-
tibility. It is essential to remove this singularity before
further analysis. This is done by going to a new variable z
given by

-2.676—

-2.672—
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-2.660
0

I
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I I
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$ /(N+a)5/2

I

0.8 1.0

The resulting series is
FIG. 2. Plots of partial sums S&, as in Fig. 1, for the Energy

series in Eq. (9b). The open circles are for a =0.35.

2 g~J=
8

—
~'& z+0.00260416z —0.000289 352z

—0.000 818 749z —0.000 836 162z —0.000 730472z —0.000 615089z (i3)

The change of variables in Eq. (12) enhances the ampli-
tude of the (1 —x ) i singularity by a factor of 4 relative
to the amplitude for the (1 —x )'i singularity. This
would suggest that in an extrapolation of the type used for
Eo and M+ the a needed may be much larger. Further-
more, the amplitude for all higher-order singularities,
such as (1 —x ) i, is enhanced even more. This makes
the above extrapolation procedure less reliable. Hence,
we supplement the above method by the restriction that
the estimates for g& and its amplitude for the square-root
singularity should lead to the universal amplitude ratio R
in Eq. (S) equal to unity. We choose a such that this con-
straint is met (see Fig. 3). This leads to the estimate

This number is remarkably close to that obtained by
random-phase approximation and the Schwinger boson
mean-field theory. By a similar analysis of the p, series
the renormalization of the spin stiffness constant is es-
timated to be

Zp, 0.72+' 0.04 .

Furthermore, the ratio of the series for p, and g& lead to
the estimate for the renormalization of -spin-wave velocity

2 g~J=0.0328 ~ 0.0015 . (14) 0.046—

1 —I$ =(1 —2) ' (is)

Alternatively, we can use the change-of-variables method
discussed earlier. Since that method eliminates all singu-
larities at the Heisenberg point, it is not affected by large
amplitudes for higher-order singularities. Hence, one
might expect it to do relatively better in this case. Going
to a new variable 6' defined by

0.042—

0.058—

0.054r ~ t'

and constructing Pade approximants, we estimate 2 @~J
=0.0322 ~ 0.0010. Here the uncertainties reflect the
spread in the Pade estimates. Thus, we take our final esti-
mate for g& to be

2 g~J 0.0325 ~ 0.0015.
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0

I
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I

0.8

To compare with other answers, note that

Z~ =8@~J=0.52 ~ 0.03.
FIG. 3. Plots of partial sums S~, as in Fig. 1 for the g~ series

in Eq. (13). The open circles are for a =1.65. This value of a is
chosen to get the amplitude ratio R in Eq. (5) equal to unity.
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to be

Ze, (Zp, /Z~) ' 1.18 +' 0.02 . (19)
the I/L correction to g~ should be as large as that for
M+. This should be taken into account when extrapolat-
ing results of finite-size calculations. '

Thus, although our estimates for Z~ and Z~, diA'er from
the order 1/S spin-wave values by more than 10%, the es-
timate for Z, is quite close to it.

The idea of universal amplitude ratios" suggests that
I would like to thank S. Chakravarty, D. A. Huse, and

B. I. Halperin for comments and discussions.
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