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We study quantum spin chains exhibiting long-range order in the presence of quasiperiodic in-
teractions which are modulating functions of sites. The magnetic phase transition to long-range
order is shown to accompany a transition from critical to localized states. The presence of more
than one harmonic in the modulating interactions results in a cascade of transitions characterized
by the vanishing of the gap and sharp peaks in the total bandwidth and free energy.

Recently, quasiperiodic (QP) magnetic chains undergo-
ing a phase transition from (magnetically) disordered to
ordered phase with long-range order (LRO) were investi-
gated. "2 In these models, the nearest-neighbor (NN) ex-
change couplings were allowed two values in a Fibonacci
sequence. In both ordered and disordered phases, the
models were found to be critical where the scaling proper-
ties of the cantor spectrum exhibit distinct features in the
two phases.

In this paper, we describe a zero-temperature study of
quasiperiodic quantum chains with modulating interac-
tions. The models under consideration include the Ising
model in a transverse field,

H=Y J,cXc5+1+gnos, 1)
n

and the anisotropic XY model,

H=3 J,0i07+1+gnoiol+1, @)
n

where the o are Pauli matrices associated with the site .
The models are made QP by choosing either J, or g,
quasiperiodic. In the Ising model, the existence of a “du-
ality” transformation between the bond and the link vari-
ables ensures that a similar role is played by the exchange
and the field terms. We will set J, equal to unity and
choose the exchange interaction or magnetic field g, as

gn =AcosQ2ron) , 3)

where o =[+/5 —11/2 is the inverse golden mean.

Both the Ising and XY models, by Jordan-Wigner trans-
formations,? can be mapped to fermion models, quadratic
in fermion degrees of freedom,

H=3 lc)Apmem+ + (cpBpmem +H.c)]. (€))

Here, the ¢, are anticommuting fermion operators. The
matrices 4 and B are symmetric and antisymmetric ma-
trices, respectively. The second term in Eq. (3) is respon-
sible for the LRO in the spin systems and hence makes the
study of the spin problem very different from previous
studies* of tight-binding models describing an electron in
an external potential. As discussed in Ref. 3, a unitary
transformation reduces the model (4) to the tight-binding
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model which for the Ising and the XY models is respec-
tively given by
2

gnv/n—1+(1+gnz)v/n+gn+ll!/n+1=‘4_llln, (5)

2
gn—IV’n—2+(1+grlz—l)Wn+gn+an+2=Tll/n‘ (6)
Here, y, represents the wave function of the free fermion
at the site n.
The motivation for studying QP spin models with
sinusoidally varying interaction is the resemblance of Egs.
(5) and (6) to the Harper equation’®

Vn—1+rcosQron)y,+y,—1 =Ey, . @)

This equation is a discrete Schrédinger equation for an
electron moving in a potential given by Eq. (3) and consti-
tutes a cornerstone for the analysis of QP models for elec-
trons. Similarly, Egs. (5) and (6) appear in spin models
with sinusoidal external field or exchange interaction and
hence will be referred to as “‘generalized Harper equa-
tions.” Unlike the Harper equation, Egs. (5) and (6) are
not self-dual and have both the bond and on-site interac-
tion quasiperiodic. It has been shown that for A <2, all
solutions of the Harper equation are extended while for
A > 2, the states are localized. At the critical value A, =2,
the metal-insulator transition, known as the Aubry-André
(AA) transition takes place which is characterized by
self-similar wave functions and a cantor spectrum. Such
states have been referred to as the critical states.*

In this paper, we address the following questions: How
do the order-disorder magnetic phase transition and the
localization transition occur in the models (1) and (2)?
What relationship exists between these two transitions?
The magnetic transition is characterized by long-range
correlations in the order phase while the localization tran-
sition is seen by studying the properties of the energy
spectrum and wave function. We also investigate the
effect of higher harmonics in g, on the phase transitions in
the spin models. In the case of the Harper equation, the
presence of even one more harmonic to the cosine term is
found® to change the picture dramatically: The system is
found to exhibit not a single but a cascade of AA transi-
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tions with perhaps fractal phase boundaries. Similar
questions have also been discussed in the related problem
of the breakdown of Kol’ogorov-Arnol’d-Moser (KAM)
tori in reversible area-preserving twist maps.’ In this
case, the addition of higher harmonics to the standard
map is found to result in cascades of appearances and
disappearances of the KAM trajectories.

We now summarize the results of the paper. For QP
exchange interaction of field, equal to A cos(27c), the spin
systems (1) and (2) undergo a phase transition at A, =2
where the long-range correlation in the x direction
characterized by the correlation function Cy(n)
=(0| 656 +n/210) vanishes. (Here N is the size of the
spin chain.) Our numerical results indicate that at the
same critical coupling, a transition from critical to local-
ized states takes place. The addition of even one more
harmonic to the exchange interaction results in a cascade
of transitions signaled by the vanishing of the gap and
sharp peaks in the total bandwidth and free energy at the
critical points.

In our numerically exact study of the QP models, the
system is approximated by a sequence of periodic models
with progressively larger unit cells of size equal to the Fi-
bonacci sequences and is studied with periodic boundary
conditions. With use of the method of Lieb, Schultz, and
Mattis,? the eigenspectrum was computed, from which
the free energy and the correlation lengths were obtained.
The critical value A, for the onset of LRO corresponding
to the vanishing of the gap in the spectrum can be analyti-
cally obtained from the following equation:®

N N
Hl &= l_Il AcosQron) =1. (®)
n= n=

This equation has a unique solution at A=A,=2 as

N— oo, Figure 1 shows the x correlation C,(1) for the

Ising model. For A <A, the system is ordered along the x

direction with nonzero x correlation and makes a phase

transition at A equal to A, beyond which it has zero corre-
lation along the x direction. Figure 2 shows analogous
plots for the x and y correlations in the XY model.

Figures 3 and 4 show the numerical results of total
bandwidth for a finite cyclic chain for the Ising and XY
models, respectively. Identical results are obtained if
Jn=xcos(2ron) and g,=1. This computation involves
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FIG. 1. The long-range correlation Cx(1) vs A for an Ising
spin chain of 89 sites.
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FIG. 2. The long-range correlations Cx(1) (triangles) and
C,(1) (dotted line) for the XY chain of 89 sites. The first van-
ishes outside the region (—2,2) while the latter vanishes within
these boundaries.

calculating the bandwidth associated with each of the en-
ergy levels and then summing them as the Bloch index is
varied in the first Brillouin zone.® The total bandwidth,
although finite for a finite-size cyclic chain for A <A,
goes to zero as N ~%. This implies that the eigenspectrum
is a cantor set and that the states are critical. The scaling
exponent § was found to exhibit a very mild dependence
on A for A <A., which we believe is due to finite-size
effects and is equal to 1.0 = 0.1 for the Ising and 1.3+ 0.1
for the XY model. For A > A, the § diverges to infinity,
thereby implying that we have a point spectrum. The
“tails” in the total bandwidth, corresponding to its rapid
falloff for A > A, are longer than the corresponding tails
in the spin correlations. However, as shown in Fig. 3, they
are found to become shorter as the number of sites in the
chain is increased. Apart from looking at the total band-
width, the nature of the states both above and below A,
was also confirmed by looking at the scaling properties of
various individual states. The individual bandwidth is also
found to decay algebraically for A <A, and exhibits ex-
ponential decay above A..

For the pure models, the states are always extended and
in the previously studied QP models,''? the states were al-
ways critical and hence the transition to LRO is not ac-
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FIG. 3. The total bandwidth (TBW) vs A for an Ising chain
for 233 (dotted line) and 89 sites (dashed lines).
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FIG. 4. The total bandwidth vs A for an XY chain for 89 sites.
The inset shows the blowup of the critical regime.

companied by any transition in the spectral properties.
The isotropic XY model with J, =g, =Acos(2zon) can be
reduced to the Harper equation (7) which undergoes the
AA transition. However, this metal-insulator transition
does not correspond to any magnetic phase transition as
the isotropic XY model does not exhibit any transition to
LRO. In the study of systems with two competing in-
teractions, to the best of our knowledge, the QP spin sys-
tems studied here provided the first example where the
magnetic and spectral transitions occur simultaneously.

We examine next the effect of adding higher harmonics
to the modulating interaction,

&n [cos(2zon) + acos(dron)l. )

-

(1+a?)'2
For a nonzero, the critical equation (8) has no solution for
A <2 for any value of a. Therefore, in this parameter re-
gime, the gap remains finite. Furthermore, the total
bandwidth retains its character, i.e., corresponds to the
critical states in this regime. For A > 2, where the unper-
turbed system is localized, the critical equation has N

solutions a.(k),k =1, ...,N, as N— oo, corresponding to
gk =0,
2rok)
(k) = — cos( '
e (k) cos(4rok) (10)

The cascades of transitions in the Ising and XY models
correspond to the vanishing of the gap in the spectrum.
We observe that at these critical points where the theory
becomes gapless, the free energy and the total bandwidth

sites in the neighborhood of one of the critical points. Similar
behavior is seen at other critical points.

exhibit local maxima (see Fig. 5). Therefore, an addition
of higher harmonic in g, results in the models becoming
gapless at certain critical values of a for fixed A > 2 where
the total bandwidth shows an enhancement. We point out
that unlike the AA cascades in the Harper equation,
where the extended states are intermingled with the local-
ized states with fractal boundaries,® the cascades in the
generalized Harper equation alter the nature of localized
states only at the critical points. This distinction is due to
the complex nature of transition in spin models where the
magnetic phase transition is forced to occur simultaneous-
ly with the transition to localization. Unlike the cascades
of the Harper equation, the cascades in spin models have
to satisfy an additional constraint; namely, the critical
points have to satisfy Eq. (8). Therefore, the cascades of
the transition that we see in spin models with LRO are
more restrictive and the deeper understanding of their na-
ture requires more detailed investigation.

In conclusion, in both Ising and XY chains with QP
modulating exchange interaction or magnetic field, the
vanishing of the gap not only signals the onset of LRO but
also corresponds to a transition in spectral properties. We
hope that the future studies of the generalized Harper
equation will provide deeper understanding of its rich and
complex behavior.
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