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Charged solitons in the Hartree-Fock approximation to the large-U Hubbard model
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Stable Hartree-Fock solutions consisting of parallel arrays of line defects in the antiferromag-
netic order are found in the large-U Hubbard model, in two dimension near to half-filling. The
excess holes are bound by a gain in kinetic energy of order ¢ to form charged-soliton lines. There
is a close parallel to one dimension. Quantum fluctuations are not treated but are expected to be

important.

INTRODUCTION

The properties of strongly correlated electrons are topi-
cal because of the high-T. copper-oxide superconductors. '
The simplest model of this type is a one-band Hubbard
model

H= ; (C;I,cj,+c,Lcia)+UZni,tni,1 > m
(o i

where n,-<,=c,"f,c,-, is the number operator for particles on
site i with spin o, and U and ¢ are the on-site Coulomb
repulsion and the hopping matrix element between nearest
neighbors (NN), respectively. This model is too simple to
describe in detail the CuO; planes with d states on the Cu
atoms and p states on the O atoms. The two-band model,
however, can be reduced in certain limits to an effective
one-band Hamiltonian H of the z-J form? (written here
for electrons),

H=—t Y,

(ait;aja t ajtraio) t E J (Sl Sj % ninj) ’
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where

alb=0—n; -)cl, and nm =X clei.
o
The parameters ¢ and J describe the hopping matrix
element for the charged singlet and the NN Heisenberg
coupling. There is a close relationship between H and H
since it has long been known that H can be transformed
into H by means of a canonical transformation in the limit
t/UK1 and the deviation from half-filling is small [i.e.,
np(=1—X.{(n)) <1]. In this case J =41 2/U.

Recently there has been a lot of work on mean-field ap-
proximations to H. The difficult local constraint in H,
which limits the occupation on any site to at most one
electron, can only be approximately treated. In this paper
we examine the Hubbard Hamiltonian (1) for which this
problem as such does not appear. We will use a Hartree-
Fock approximation and take ¢/U, n, <1. Our motivation
is threefold. First, quite a lot is known about the proper-
ties in one dimension.** A comparison of our Hartree-
Fock results with exact results in one dimension is instruc-
tive. Second, we were motivated by the recent Hartree-
Fock calculations of Zaanen and Gunnarson using a two-
band model.’ The comparison between two- and one-
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band models is useful. Third, the recent discovery of in-
commensurate spin fluctuations in La;—,Sr,CuQ,4 crys-
tals® is a further motivation since such correlations are
predicted in Hartree-Fock calculations. Our calculations
were only done at a large value of U and the exact rela-
tionship to the spin-bag polarons introduced by Schrieffer,
Wen, and Zhang’ and studied in detail by Su® at inter-
mediate U requires further consideration.

HARTREE-FOCK EQUATIONS

In the mean-field approximation, the U term in (1) is
linearized (for holes) as

HU =UZ ((n,-,1>n,»,1 +(n,~,1)n,~,1 - (fl,',f)<ni,1>) . (3)

We look for a solution where the average values (n; ,) are
spatially varying. We take the real-space supercell to be a
rectangle (or a square) of L sites and minimize the energy
with this constraint. We consider only supercells with an
even number of holes and impose the further constraint
that the up and down spin bands are degenerate. This ex-
cludes ferromagnetic polaron-type solutions which in the
t-J model are unstable above J/t~0.07.° If L =2, the
Hartree-Fock (HF) ground state is the simple commensu-
rate antiferromagnetic (AF) phase of wave vector
Qo=(r,7).'° This applies to the half-filled band where
the solution is simply (n;)=7%[1+om(—1)"] with
i4 =2 for the i € A4 sublattice and i 4 =1 otherwise. In the
limit ¢/U—0, m~1—2J/U and energy per site
E o = — J/site corresponding to a simple Néel state. The
energy of a single additional hole E(N+1) —E (V)
has a minimum value U —J in this limit. For finite n, this
phase is not stable with respect to a phase of large super-
cell with nonuniform spin and charge.

The Bloch waves of (3) are constructed in the reduced
Brillouin zone [of size (27)?%/L] as

L
\Ifia’%: Y ajo(K)ck+j.expik- (R+1;) , “)
=1
with
L
/LY |ajps) |>=1.
=1

| @;o(k) |? is the weight of the state (k,o) on the site j in
the supercell and is obtained by solving, for a given (k,o)
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state, the L X L linear system,

ZHﬁ(k)ajg(k) =F1sais(k) , (5)
J

where

H (k) 'U(n,-—a)é,-j-f-%:expik' (R+r)ti j+r -

The hopping integral #; j+r is nonzero when i and j+R
are NN. The energy spectrum then contains L bands (la-
beled by /). Self-consistency is ensured by the set of cou-
pled nonlinear equations,

L
<”ia> = Z Z

I=1{k| <«kg

laP (k) |2, (6)

with
L
1/L Z 1 (nis) =n.
o,i =

One should not forget that | a;,(k) |? is itself a function of
all the {n;,). The summation in (6) is performed up to the
Fermi level. n is the total hole density close to half-filling,
ie., n=1+ny, ny=1/No (Ng=5). Ny is related to the
order of commensurability of the superstructure.

SOLITON LINE

We investigate the simplest kinds of solutions which
have many features of a one-dimensional problem. We
consider the possibility for the AF background to have a
series of line defects localized along the (1,0) or the (1,1)
directions and we minimize the HF energy by iterating
Egs. (5) and (6). Obviously these stable solutions are
a priori local minima of the HF energy. Although it is
impossible to assert that our lowest minimum [the (1,1)
soliton] is actually the absolute minimum of the class of
the HF solutions, this study proves that the kinetic-energy
gain per hole can be of order ¢ within HF. On each side of
the solitons, the AF order parameter has a phase
difference of #. The argument that such a phase
difference would spread out over large distances to mini-
mize exchange energy does not apply in the presence of
the charged soliton.!" Since the soliton line is a line of
zeros in the magnitude of the order parameter there is no
inconsistency in having a n phase shift on either side of
the line and no tendency to twist the order parameter. In
the half-filled band, this is an excited state with a magnet-
ic energy cost of order J/2 at the boundary. However,
such a state becomes a lowest HF ground state as doping
is introduced. The (1,0) soliton line is centered on a row
of sites (S1) or between two neighboring rows of sites
(S2). (S1) and (S2) are antisymmetric and symmetric,
respectively, with respect to a reflection along the soliton
line. The soliton line along (1,1) (called S3) is obtained
by considering an L XL supercell, L odd, with a phase
shift of = in the AF order parameter on the diagonal of the
cube.

The size of the supercell is closely related to the density;
we have shown that the lowest energy is achieved for ex-
actly one additional hole per site on the line. We have
studied different sizes of such supercells for J/t =0.25;
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from L =14 (2x7) up to L=26 (2x13) for S1 and S2
and L =25 (5x5) and L =49 (7x7) for S3. The self-
consistent on-site charge and spin densities are plotted in
Fig. 1. The added hole density vanishes at distances of
more than a few lattice spacings from the central line.
The shape of the charge density is then size (L) invariant.
The staggered magnetization, away from the line, also
rapidly reaches the equilibrium value of 1 —2J/U of the
uniform AF phase n; =0.

The holes of spin — o take advantage of the bottom of
the self-consistent potential U(n; ) until all minima are
filled. On the other hand, the excess hole sits at the top of
the potential losing energy of order U. A general feature
of our solutions is that the excess hole can benefit from the
t term in (1) by delocalizing over at least two nearest-
neighbor maxima of the potential resulting from the soli-
ton formation. If the line is located between two rows of
sites (§2), these adjacent levels have the same energy so
that the kinetic part of the Hamiltonian will introduce a
splitting of 2¢ between them. With half a hole per site, the
energy gain is then roughly z (per hole). If the soliton is
located on the sites (like S1 and S3), the energy gain es-
timation is slightly more complicated; a one-dimensional
HF calculation with three sites leads to an energy gain of
~t>JforU~12—'16.
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FIG. 1. Charge (filled circles) and spin (open circles) density
deviations {n;) —{n;)o and (o0 —(o;) from the unperturbed state
(np =0) vs position i perpendicularly to the soliton line. The cir-
cles, triangles, and squares correspond to the S1, S2 (1,0) and
S 3 (1,1) solitons, respectively.
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These preliminary considerations are confirmed by the
numerical calculations of the energy spectra shown in
Figs. 2(a) and 2(b) [for the (1,0) solitons for simplicity].
The midgap states are localized by the HF potential
U{n;,) in the vicinity of the magnetic line. The solitons
are independent since tiny energy dispersion is found per-
pendicularly to the line (x direction). Along y, this
dispersion is usually weak (of order J) except for the
upper midgap band of soliton S'1. In this case, the HF po-
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FIG. 2. Energy dispersion spectrum of the (1,0) solitons
along the magnetic line: (a) S'1 soliton, a~0.5; (b) S2 soliton,
the midgap and the upper states are split by the hopping perpen-
dicular to the line.

TABLE I. Numerical results of the mean-field energies for
J/t=0.25. From the total energy per site, we extract the energy
costs (after subtracting U) to add one hole to the AF uniform
state. The first, second, and third columns correspond to the S'1,
S2, and S 3 solitons, respectively (see text).

Energy expectation values

L=2x%x9 L=2x9 L=7x7
Size (np=7% (=% (n=7)
E o/site 1.42992 1.42370 1.8758
Ey/U/hole 1.1406 1.1327 1.1023
AEy/hole —U 0.124 —0.003 —0.009
AE o/hole —U —0.923 —0.979 -1.15

tential at the soliton center is identical along y so that the
t coupling is at a maximum. However, this does not lead
to an energy gain because the band is completely filled.
The actual kinetic gain always comes from the overall
lowering of the midgap band due to hopping perpendicu-
lar to the line.

The small gap in the charge excitation spectrum is of
order 4J (compared to the AF excitation gap U —2J).
The Fermi level lies in this gap if the line contains exactly
one extra hole per site. Indeed, if one reduces the hole
density (for a fixed supercell), then the top of the upper
midgap band begins to empty which is energetically un-
favorable. The system will then spontaneously choose a
new supercell in order to keep the Fermi level pinned in
the gap.

We have compared these states to the AF state at n =1
and computed the energy difference

AE(m/hOle -'Eto[(N"' 1 ) _Emt(N)

to add one hole to create an incommensurate phase (see
Table I). As expected, this quantity of order U —1¢ is size
independent since the soliton spacing is larger than its
width (of order 3 sites). The small extra kinetic-energy
gain of the (1,1) compared to (1,0) lines comes from the
small delocalization of the centered spin not only along x
but also along y.

DISCUSSION

Our HF results show periodic arrays of line defects or
line solitons along the (1,1) direction similar to the
Zaanen-Gunnarson results for the two-band model. Tak-
ing the Fourier transforms of the charge- and spin-density
distributions we obtain a set of & functions (Fig. 3). In an
array of (1,1) solitons, the Qo magnetic order is modulat-
ed by a periodicity 24, 4 =No/+/2 being the soliton spac-
ing, so that the strongest spin-density wave (SDW) peak
is at Qo(Qo—n/A4)=(1—n,)Qy. The charge-density
modulation corresponding to the A spacing gives a peak at
21/ AQo==2n,Qo.

The energy cost to distort the soliton line is small and
the Hamiltonian contains large matrix elements ~¢ to
move each hole. The key question is whether the array of
parallel soliton lines remains or whether the fluctuations
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FIG. 3. Reciprocal lattice vectors for the (1,1) soliton. For
the spin density (charge density), the weights are 1.0 (0.48),
0.22 (0.71), and 0.06 (1.0) at the Q3=Qo—1/NoQo [where
No=1/(n—1)=7], Q2=2Q and Q;=2/N¢Qo, and wave vec-
tors, respectively (J/t =0.25).

due to the hole kinetic energy etc., will destroy long-range
order. An alternative way of posing the question is to note
that these HF solutions gain a kinetic energy ~ —1.15¢
per added hole, but this is above the energy ~ —3.48¢
which is possible for a hole to gain in the retraceable path
approximation'? (J=0). Zero-point fluctuations should
be very important. It should be noted however that the
discrepancy is actually smaller if one compares Eo(N
+1) —E (V) in our solution (~ —1.15¢) to the same
quantity obtained by exact diagonalization for the same
finite value of J/t;%'3 in HF, adding a hole does not cost
significant magnetic energy.

It is useful to look at the analogous limit in one dimen-
sion where many exact results are known. For repulsive
interactions, away from half-filling, the problem is known
to scale onto the Tomonaga line.* In the limit of strong
repulsive interactions, in the Tomonaga model, there are
divergences at 2kr and 4kr in SDW and charge-density
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wave (CDW) response functions, respectively (for exam-
ple, see Ref. 4);

xQkp,0) ~(o/Ep) ~ Ve o

N@kp,0) ~(w/Eg) ~2t17e

where o is the frequency, kr is the Fermi wave vector,
and the exponent y,=(1+U/4xt)"2. We denote the
scaled repulsion as U. If we use the weak-coupling form
then U =U/2. Thus y and N approach universal values in
the limit U/4nt— oo. In one dimension the zero-point
fluctuations destroy long-range order but divergencies
remain in the response functions.

The primary wave vectors for SDW and CDW order
(1 —n,)Qo and 2n,Qp are analogous to 2kr and 4kr in
one dimension. The question of whether divergencies
remain in two dimensions at these wave vectors we cannot
answer. Nonetheless it would be worthwhile to look for
them in experiments. The report of incommensurate
short-range order in certain La, —,Sr,CuQO4 samples is en-
couraging.® It may be possible to see a 4kr divergence by
x rays, for example, although a charge localization in the
copper oxides on a single Cu site should mainly show up
as a modulation of the Cu-O distances in the plane rather
than the Cu-Cu distances which may make it more
difficult to observe. Finally, the influence of such incom-
mensurate fluctuations, if they exist, on possible supercon-
ducting states is an open question. It is interesting to note
in this connection that Bonca, Preloviek, and Sega® found
evidence for hole-hole pairing preferentially along (1,1)
axes, a similar orientation to the soliton lines.
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