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Critical approach to the coherence transition in Kondo lattices
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%'e study the Kondo lattice from the point of view of the scaling theory of critical phenomena.
The coherence temperature V', is associated with a crossover from a paramagnetic state with local
moments to a Fermi-liquid regime with strong magnetic correlations. %'e obtain an expression
for 7', in terms of the Kondo-lattice parameters and a crossover exponent p&. The eAect of a
magnetic field is investigated and characterized by another critical exponent. These exponents
obey scaling relations ~ith a shifted dimensionality.

The Kondo lattice' provides a useful model to describe
the physical behavior of heavy-fermion systems. The en-
ergy scales in this problem are the intensity of the cou-
pling between localized and conduction electrons J
(J & 0) and the bandwidth W of the conduction states
(W=1/p where p is the constant density of states). The
existence of two competing eA'ects in Kondo-lattice sys-
tems has been recognized, ' both associated with the
same renormalized coupling Jp between the localized and
the itinerant electrons. The first is the Kondo eA'ect that
leads, as in the well studied impurity problem, to a com-
pensation of the magnetic moments below a characteristic
temperature. The second is an indirect coupling between
the localized moments mediated by the conduction elec-
trons. This coupling, of the Ruderman-Kittel-Kasuya-
Yosida type, gives rise to a tendency for iong-range mag-
netic order between the local moments. Recent studies of
the two-impurity problem have led to new insights on the
interplay between these competing effects. Theoretical
investigations ' have shown the existence of a critical value
of the coupling parameter (Jp), above which the Kondo
eA'ect dominates and a nonmagnetic, collective Kondo-
type state is attained at zero temperature. 3 For
Jp( (Jp)„ long-range magnetic order, generally of the
antiferromagnetic or ferromagnetic type, is established in
the system at sufficiently low temperature.

An interesting phenomenon occurs in Kondo-lattice sys-
tems with Jp & (Jp), when, with decreasing temperature,
clusters of compensated spins start to behave "coherently"
producing significant changes in the resistivity and Hall
eAect. This transition, which is not a phase transition,
occurs at temperatures below the single-impurity Kondo
temperature T~ and marks the onset of a collective
(dense) Kondo state. It is generally associated with a
change in the behavior of the system from that of a
paramagnet with partially compensated local moments to

that of a Fermi liquid. The nature of this "coherence
transition" is, however, elusive and it is not known yet how
it relates to the relevant physical parameters. Neverthe-
less, this concept plays a central role in the study of heavy
fermions and underlies explicitly or implicitly most of the
recent literature on this subject.

In this Rapid Communication we study the coherence
transition in the Kondo lattice using the scaling theory of
critical phenomena and phenomenological renormal-
ization-group equations. We assume that in the Kondo-
lattice problem, at zero temperature, there is an unstable
fixed point at (Jp), or K, =I/(Jp), =(8 /J)„where
(Jp), is the critical value of the parameter Jp that
separates a phase with long-range magnetic order (fer-
romagnetic, antiferromagnetic, etc.) from a dense Kondo
phase with Fermi-liquid behavior. This is in fact the pic-
ture that emerges from calculations using the renormal-
ization group applied to the Kondo-lattice Hamiltonian.
Expanding the renormalization-group equations close to
the zero-temperature fixed point at E, we obtain

K„+i =K, +b"(E„—K, ),
with E (I/Jp) =W/J and for a change in the length
scale of the system by a factor b The quantity .x is a posi-
tive number.

%"e would like to introduce now the efI'ect of an increase
in temperature in the system. In the renormalization-
group approach one has to consider the question whether
to treat this parameter as a relevant or an irrelevant
"field." We shall treat it as relevant and the reason is that
we expect, in general, the exponents governing the diver-
gence of thermodynamic quantities in the paramagnetic to
antiferromagnetic transition at finite temperatures to be
diAerent from those of the zero-temperature transition
separating the Fermi liquid from the long-range magneti-
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cally ordered state. From the renormalization-group
point of view this implies that the fiow of the equations
starting from a small but finite temperature is always
away from the zero-temperature fixed point at K,. In par-
ticular, at the critical line, in the T x Jp plane, separating
the paramagnetic from the antiferromagnetic phase, the
fiow is towards another fixed point that controls this
finite-temperature transition.

The expansion of the renormalization-group equations
for the Kondo lattice, close to the zero-temperature fixed
point, can be generalized for finite temperature and is
given by

K„y ) K, +b"(K„K,) T„—, —

SINGLE ION

KOMX) LlhK

T„+) b~T. .
where T 7'/W (or 7/J since W and J scale with the
same exponent at K, ) and y is a positive number since
temperature is included as a relevant field in the problem.
Notice that Eq. (2) implies J„+~ b «J„close to K, The.
coupling between temperature and the exchange energy
was taken to lowest order in the equations above which
can be iterated to yield

KI i"(K—K, —aT)+K, +al«T,

where l b", a (b" b) ',—K W/J, and K, is the
zero-temperature fixed point governing the magnetic to
Fermi-liquid transition. At T 0 we can define a correla-
tion length g (K—K, ) '~" which for K & K, or
(Jp) & (Jp), gives the typical size of magnetically corre-
lated regions. In analogy with a temperature-induced
phase transition, we introduce the exponent v 1/x
characterizing the divergence of the correlation length at
the critical value of the parameter (Jp). At finite temper-
atures we obtain the following relation for the correlation
length:

where ftxj is a scaling function and we introduced a
crossover exponent p, defined by p& y/x vy. We
neglected a regular, linear temperature-dependent term
which does not affect our results as long as p, ~ l. If this
is not the case it should be taken into account.

Although we derived above explicit results only for the
scaling expression of the correlation length, scaling theory
implies that for any other thermodynamic quantity like
specific heat, susceptibility, etc., temperature will appear
in the same combination as in Eq. (4). It also implies
that the equation for the critical line, separating the anti-
ferromagnetic phase from the disordered paramagnetic
state, is given by T~ A lK —K, l

'. lf p, & 1 we write
TN=A lK —K, —aTl '—:A lK —K,(T) l

' or alterna-
tively, J,(T) J,(T~O) —cT gT ', where J, is the-
critical value of J and c and g are constants. The regular
linear term can be identified with the result found by
Doniach ' and it is dominant at low temperatures if p, & l.
The critical line T~(J) is shown in Fig. 1 together with
the crossover line which has the equation T, =8

l K
K, (T) l

'. This line in th—e noncritical region of the
T x Jp plane, i.e., Jp & (Jp)„ is characterized by the same

J/W

FIG. 1. Finite-temperature phase diagram for the Kondo lat-
tice (schematic plot for p&

—', ). Below the single-ion Kondo
line, the local moments are partially compensated both in the
critical [jp & (Jp), l and in the noncritical region.

exponent p, of the critical line. It describes the change of
behavior of the correlation length, or any other thermo-
dynamic quantity, from a temperature-dominated region
with local moments to a collective, Kondo-type regime
with (K —K, ) '»T. This occurs because the scaling
functions for the thermodynamic quantities, that we rep-
resent quite generally by g(x) where x T/(K —K, ) ',
have different asymptotic behavior for x»1 or x«1.
Consequently the line T, 8 lK —K, (T) l

' defines the
crossover between two different physical regimes; one
dominated by thermal fiuctuations that we identify with a
paramagnetic state with local moments and the other with
x«1 where the Kondo effect dominates. Furthermore,
the scaling approach predicts that all anomalies in the
thermodynamic quantities in the noncritical regime and
for T« Ttr (Tr, 'Tx/W where 7'tr is the Kondo tempera-
ture) should occur along the crossover line T, cL

l K
—K, l

'. We can alternatively express these results writ-
ing the scaling functions in the form g(x) g(T/T, ) for
T&& Tg.

The analysis above shows that the crossover line pro-
vides the relevant characteristic energy scale for the Kon-
do lattice in the noncritical region at very low tempera-
tures (T« Ttr ). It leads to the main result of this Rapid
Communication: We identify the crossover line with the
so called "coher-ence transition" observed in heavy fer
rnions and which marks the onset of the dense Kondo re-
gime with decreasing temperature.

In order to complete the phase diagram shown in Fig. 1,
we must include the one-impurity Kondo line Tg

exp( —1/Jp). This is important since single-ion Kondo
effects may be relevant both in the critical and in the non-
critical region of the diagram. ln the critical region, i.e.,
for Jp & (Jp)„ the system crosses with decreasing tem-
perature both the single-ion Kondo line and the critical
frontier. This is the reason for the existence of reduced
moments in long-range-ordered magnetic Kondo-lattice
systems. The same phenomenon occurs in the noncritical
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region where single-ion Kondo effect becomes effective be-
fore the coherence transition.

The scaling function f[x], characterizing the correla-
tion length, is such that f[0]=const implying that at
T=O, g cx: (K—K, ) "for Jp & (Jp), . The existence of a
finite correlation length, which gives the typical size of
magnetically correlated regions at zero temperature, is a
direct consequence of the scaling approach. We point out
that a finite g has been observed in recent inelastic neu-
tron scattering experiments in CeCu6 at very low temper-
atures. The correlation length g diverges only in the criti-
cal region Jp~ (Jp), and for T=T~. Also because we
took temperature as a relevant field, the exponent v does
not describe the divergence of the correlation length at T~
which is given by a diH'erent exponent v, such that
g a: (T T~) —'. The specific heat can also be obtained in

the scaling theory. We write the singular part of the free
energy as

where q[x] is a scaling function, with q[0] =const, and a
is a critical exponent. For the specific heat we obtain to
first order in temperature, Ccx:(K—K, ) 'T. Be-
cause we are dealing with a zero-temperature fixed
point, ' the scaling relations which involve the dimension
d are modified according to the rule d~ d+y [y is
defined in Eq. (2)] so that we get an increase in the
effective dimensionality of the system. The hyperscaling
relation, for example, is now given by 2 —a=(d+y)v.
Using standard scaling relations but with d substituted by
d+y we can write CCL(K —K, )'" ~ T for y & l. If
y~ I and d=3, the exponents associated with the zero-
temperature fixed point attain, due to the dimensionality
shift, their classical (mean field) values and C/ T
ca(K —K, ) ~. The enhancement of the specific heat at
low temperatures for y & 2 can be related to the proximity
of a magnetic instability and the presence of strong mag-
netic correlations.

In order to calculate the zero-temperature susceptibili-

ty, for the ferromagnetic case, one has to consider the
effect of a magnetic field in the system. Defining an ex-
ponent o- through the recursion relations for the magnetic
field close to the zero-temperature fixed point at E„
h„+ ]

=b h„, we derive the generalized scaling form for
the ground-state energy,

(K K)"+" [(h/ J)/I K—K, I
"'"'], (6)—

where v[z] is a scaling function and v(d+y) =2 —a. The
susceptibility g= —(8 E/8 h)g=p at T=O and we get
@ex: (K—K, ) " where y= v(2o+y —d). It is also
enhanced due to the proximity of the magnetic instability
at E,. When y ( 1 and d =3, we find for the Wilson ratio
g/yo~(K —K, ) ' which turns out to be nonuniversal.
For y ~ 1 and d=3, g/yoee (K —K, )~ which is univer-

sal for y =3. yo is the coe%cient of the linear term of the
specific heat.

More interesting, the shift in the coherence temperature
(defined, for example, by some particular anomaly in a
thermodynainic quantity for T« T~) due to the magnetic
field follows the relation AT, ~ h ", where Pq

-va. For
antiferromagnetic interactions, it is the staggered suscep-
tibility that diverges at K, but we expect enhancement of
the uniform susceptibility and AT, ~h ". The scaling
theory predicts that the same exponent yields the shift in
the critical (Neel) temperature due to an external field,
i.e., AT&~h '. Finally defining the critical exponent 8
through the field dependence of the magnetization m for
K K„m ~ h '~, also p= p, +p—p, and P through
m a: (K—K, )p for T 0, we obtain the scaling relations
a+2P+y 2 and 8=&/P for the exponents associated
with the zero-temperature fixed point.

The exponent y in Eq. (2) can be identified" with the
dynamic exponent z. Since at T=O there are only quan-
tum fiuctuations in the system, we have AJ ~ (At) ' and
consequently time scales as the inverse of energy and
z =y. The dynamic exponent z reAects the nature of the
low-frequency excitations" but the character of these ex-
citations in the dense Kondo state and in particular their
wave-vector dependence are not yet known. We recall
that for y =z =3, we found the susceptibility and effective
mass to diverge with the same exponent close to J,. This
value of z is associated with paramagnon type of excita-
tions. ' ' Most probably y or z is close to three (p, = —', ) in

heavy fermions since the Wilson ratio does not vary very
much from one system to another. "

It has been shown using renormalization-group calcula-
tions that in one dimension the Kondo-lattice problem
has (Jp), =0 so that any coupling between localized mo-
ments and the conduction electrons leads to Fermi-liquid
behavior. This situation can be described by scaling
theory and corresponds to the case x =0 showing that in
one dimension the fixed point at (Jp), =0 is marginal. In
this case of course there is no critical line since the system
does not order magnetically. The crossover line can, how-
ever, still be obtained and we find T, ~ exp( —y/Jp).
Then in one dimension, the expression for the coherence
or crossover line depends exponentially on the coupling
parameter as the single-ion Kondo temperature.

In conclusion, our scaling theory accounts in a simple
and unambiguous way for the coherence transition in

heavy fermions. It characterizes this transition in terms
of the Kondo-lattice parameters and critical exponents. It
is a one exponent theory since given y (d +y ~ 4) all other
exponents can be found. We show that universality con-
cepts may be useful in the study of heavy fermions.
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