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We study surface melting in a two-dimensional lattice model which exhibits solid, liquid, and
gas phases. Density and order-parameter profiles as well as interfacial free energies are calculat-
ed for both (10) and (11) solid-liquid and solid-gas interfaces by use of the cluster variational
method. Both solid-gas interfaces begin to disorder slightly below one-half of the triple tempera-
ture, and undergo surface melting as this temperature is approached. The structural difference
between the solid and the two fluids causes the solid interfacial free energies to be large compared

to the liquid-gas tension.

The question of how a solid melts has been a long-
standing one. It has been suspected for many years that
melting could be initiated at the surface of the solid and
then proceed inward,!? a process known as surface melt-
ing. Recently, the existence of this process has been re-
ported in systems of Ar, Ne, CHy4, Pb, and H,0.3~7 Of
particular interest is the orientation dependence of the
process. There is experimental agreement that the most-
dense surface of Pb, the (111) surface, does not undergo
surface melting. However, there is disagreement on
whether the less-dense (110) surface does.>® In contrast
to these observations on Pb is the result that the most
dense surface of Ar does surface melt.3

The process of surface melting can be viewed as the
wetting of the solid-gas interface by the liquid on ap-
proaching the solid-gas-liquid triple point, and is therefore
a special case of complete wetting.? From this it follows
that the solid-gas, solid-liquid, and liquid-gas surface free
energies at the triple point are related by
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and the manner in which this quantity vanishes as the tri-
ple point is approached is known.?

Surface melting has been simulated,® but studied pri-
marily by molecular dynamics.!®™!3 This approach is
subject to various difficulties, however, which have been
manifested by a positive value'? for the left-hand side of
Eq. (1) which is not possible in equilibrium,? and a
disagreement as to whether a system interacting with
Lennard-Jones potentials undergoes surface melting. '%!!

Additional approaches would be desirable, but there is
little analytic work on microscopic models. This is be-
cause there are few analytic methods which provide
reasonable descriptions of all three bulk phases simultane-
ously, and are also capable of describing the interfaces be-
tween them. A first step toward such an approach was re-
cently taken by Trayanov and Tosatti,'* who employed
mean-field theory to study a form of three-dimensional
lattice-gas model, which included the motion of atoms
within each cell. The particles interacted via a Lennard-
Jones potential. Among their interesting results was that
both the (100) and (110) facets of the fcc solid surface
melted. Their method was not applicable to the most-
dense (111) face, however. Another result, not stressed
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by them, was that the solid-liquid surface free energy was
large compared to the liquid-gas free energy, much larger
than that obtained by molecular dynamics.!® It is not
clear how much of this result was due to the fact that the
density of their liquid phase was only 0.6 of the solid, and
that mean-field theory was employed. The latter, of
course, ignores the correlations between densities which
might be expected to be significant at solid-fluid inter-
faces. (It must also be noted that the surface free energies
determined by molecular dynamics are also uncertain due
to their sensitivity on the cutoff chosen for the Lennard-
Jones potential. '%)

We have studied surface melting in a lattice-gas system
and, in order to ensure that the short-range correlations
are treated accurately, have employed the cluster varia-
tional method (CVM).'> For simplicity, we have exam-
ined a two-dimensional model whose bulk phase diagram
is known from transfer matrix methods'® and the CVM. !’
The diagram shows a triple point at which the density of
liquid is 0.77 of the simple square solid. We are able to
study the possibility of surface melting of the solid at the
surface of highest density, the (10), as well as for the (11)
surface. We find that surface melting occurs for both of
these orientations.

The model is defined on a two-dimensional square lat-
tice, lattice constant co, at each site of which there can be
a particle. If site i is occupied, its first-, second-, and
third-neighbor sites are excluded from being occupied.
An attraction at the fourth-neighbor distance encourages
the formation of a v/5%+/5 square solid, and a competing
attraction at the fifth-neighbor distance discourages it
leading to the formation of a liquid. The Hamiltonian is

H=—es2nin; — 35;":‘”;‘ —uXn, )
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where n; =1 if site i is occupied and is zero otherwise, u is
the chemical potential, and — g4, — &5 are the interaction
energies of fourth- and fifth-neighbor pairs, respectively.
The ratio of the former to the latter is 1.2:1. The first sum
runs over all fourth-neighbor pairs, the second over all
fifth-neighbor pairs, and the third over all sites.

The underlying lattice can be divided into five inter-
penetrating /5% +/5 square sublattices as shown in Fig. 1.
In the solid phase, one of the five sublattices is occupied

9722 © 1989 The American Physical Society



n
w
P
o

(b) 9,i
(d) 6b,i (e) 4,i

FIG. 1. Labeling of the five sublattices and the contributing
clusters. The square shows the unit cell of the solid.

primarily, for instance, sublattice 1. For both liquid and
gas phases, all five sublattices are occupied equally. Fol-
lowing Ref. 17, we choose the basic clusters of the CVM
to be the 3% 3 clusters as shown in Fig. 1. A given site i is
labeled by two indices (m,l), m the underlying lattice
plane number, / the sublattice. The lattice plane number
m of site i depends on the orientation of the interface,
while the sublattice label / does not. Within this
scheme, '®'° the CVM yields for the entropy of the whole
system, including the interface, the approximation

S =>4a,S,
=2.89; = 2.S6ai — 2Seb,it 2S4,i , (3)
] { ] 13
where Sy; = —kpT Trpg ; Inpg ;, with kp Boltzmann’s con-

stant, and pg; the partial density matrix of the 3% 3 clus-
ter with site i at its center. The Se4,i, Seb,i, and S4,; are
given by similar expressions; their associated clusters are
depicted in Fig. 1. The internal energy is

E=— 84ZTrp9n,-nj - 85;Trp9n,-nj N (4)
(if) ij)

where py is the partial density matrix of any of the several
3x 3 clusters which contains the ij pair. The grand poten-
tial is then

Q=E—TS—puXTrpyn; . ()

This potential is minimized with Lagrange multipliers in-
troduced to ensure the proper constraints among the
partial-density matrices.?° The equilibrium cluster proba-
bility (partial-density matrix) is found by solving a set of
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nonlinear equations resulting from the minimization.

The bulk properties are those found earlier.'®!” In par-
ticular, there is a triple point at temperature T
=0.441es/kp. The solid, liquid, and gas densities there
are 0.199, 0.153, and 0.0116, respectively (in units of
cg %) The density profile of an interface between two
coexisting phases I and II is obtained from 7,
=Trpy ;nm,i; the interfacial free energy is given by

Gl'll=Llim Alim [QI,II(L) - ;‘ Q]J(L) - ‘12‘ Qu,[[(L)]/A .

(6)

Q1 11(L) is the grand potential of a finite strip of length A,
width L with the m =0 row identical to one in bulk phase
I, and row m=L to one in bulk phase II; Q;[(L),
Quu(L) are similarly defined. In choosing L, one must
make sure that the two ends (m=0,m=L) be physically
identical if an ordered phase is imposed at both ends. Be-
cause the contributions to Q; (L), Q11(L), and Qp (L)
from the ends at m =0 and m =L cancel, they need not be
included in the actual calculation of the interfacial free
energy. Therefore, we can use

O’]_[]=Llim Alim [Q[',H(L) - 5— Qf,I(L) - ;‘ ﬂlll.lI(L)]/A s
@)

where the prime denotes the same quantity calculated as
if the strip were between semi-infinite bulk systems of the
appropriate phase on either side. In calculating Qf yj, the
cluster probabilities associated with planes 0 < m < L are
varied to minimize the grand potential energy of Eq. (5).
We start with L of 80, then increase it until the interfacial
free energy converges to 0.1% (typically, L = 150).

The calculated density profiles of the solid(10)-gas in-
terface at temperatures 7/ T, =0.45 and 1.0 are shown in
Figs. 2(a) and 2(b). The coordinate z perpendicular to
the interface is measured in units of the lattice parameter
of the solid ¢; =~/5cq. Profiles for the solid (1 1)-gas inter-
face are similar, but the interface is always somewhat
wider at the same temperature than that of the more-
dense solid(10). It can be seen that even at 0.45T, the
surface of the solid is significantly disordered. On ap-
proaching the triple point, the liquid phase intervenes be-
tween the solid (of either orientation) and gas. This can
be seen by noting that the interface in Fig. 2(b) is a com-
posite one consisting of a solid(10)-liquid interface [Fig.
3(a)] and a liquid-gas interface [Fig. 3(b)]. The thick-
ness of the intervening liquid in our calculation is limited
only by how accurately we can determine the triple tem-
perature. At the triple point the interfacial free energies
satisfy Eq. (1), within the numerical accuracy, for both
(10) and (11) directions. Hence, we conclude that both
orientations undergo surface melting.

The three surface free energies for each orientation are
shown in Table I. Because of the underlying lattice in our
model, the interfacial free energy between disordered
liquid and gas phases depends on the direction of the in-
terface between them. The effect is small, but serves as a
measure of the anisotropy imposed by the lattice calcula-
tion. The anisotropy of the solid-liquid interfacial free en-
ergy is small, only a little more than 2%. That of the
solid-gas interface follows from the other two anisotropies
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FIG. 2. The density profile of solid(10)-gas interface at (a)
T/ T" ==‘045, and (b) T/ T"-l.

and Eq. (1). The most notable result in Table I is that the
solid-fluid free energies are much larger than the liquid-
gas tension. Presumably, this is due to the short range of
the interaction and the fact that the local density in the
ordered solid changes rapidly with position, while that in
the fluid does not. Thus the density-density correlation
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FIG. 3. Density profiles at Ty of (a) solid(10)-liquid inter-
face, and (b) liquid-gas interface.
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TABLE I. Interfacial free energies at the triple point in units
of &/cs.

Direction Oig ol Osg
(10)  0.0916+0.0001 0.1721 +£0.0001 0.2646 * 0.0009
(11)  0.0924%0.0001 0.1758 +0.0001 0.2683 % 0.0009

functions, which enter into the interfacial free energy, are
quite large at a solid-fluid interface even though the aver-
age densities may not be very different. Figure 4 shows
the variation of density through the solid(10)-liquid inter-
face as well as the variation of the solid order parameter.
The latter is simply the average occupation of the solid
sublattice minus the average occupation of the other four
sublattices.

It seems reasonable that the relatively small liquid-gas
tension and the occurrence of surface melting in this mod-
el are related. If the liquid layer were not permitted to in-
trude, the solid-gas interfacial free energy would be even
larger than that of the solid-liquid because of the greater
difference in the local densities. This large free energy is
reduced by permitting the liquid to intrude. Even though
there are now two interfaces, the solid-liquid and liquid-
gas, the relatively small cost of the latter makes this pro-
cess free energetically favorable.

Our calculation has been carried out on a two-di-
mensional system with short-range interactions. A similar
calculation in three dimensions incorporating long-range
interactions, while considerably more difficult, should be
feasible. But even the two-dimensional calculation dis-
plays a result which we believe carries over to a three-
dimensional, nonmetallic system such as Argon. This is
that the anisotropy of the solid-liquid interfacial free ener-
gy is small at the triple temperature, which implies that
one should expect that all surfaces will display the same
surface melting behavior; either they will undergo it, or
they will not. Thus, from the fact that Ar(111) undergoes
surface melting,> we would expect all directions to do so.
This is an expectation, not a necessity. Should a system
show a different behavior, then a surface melting (wet-
ting) transition would be observed as a function of surface
orientation. '
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FIG. 4. Density and order-parameter profiles at the
solid (10)-liquid interface.
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