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Binding of holes in one-band models of oxide superconductors
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We have performed exact-diagonalization studies of the ground state of the one-band Hubbard
model and the related strong-coupling Hamiltonian near half-filling. A tendency towards super-
conductivity, indicated by a negative “binding energy,” is found to be greater for the strong-
coupling Hamiltonian. We find that two holes are attracted to each other for parameter values
where the binding energy is negative. The symmetry of the two-hole bound state of the strong-

coupling Hamiltonian is predominantly d,2_

There is a considerable amount of experimental data
pointing out the relevant role that the copper-oxide planes
play in the high-T. perovskite superconductors.! Obser-
vations such as the smallness of the isotope effect,? anti-
ferromagnetism in related undoped materials,® and the
strong electron-electron interaction in Cu sites,* suggest
that a phonon mechanism alone cannot describe these su-
perconducting materials, and that the pairing mechanism
could be provided by spin fluctuations. These facts have
motivated a great theoretical effort to study the properties
of two-dimensional correlated electronic systems and the
related nondoped insulating materials.

Following Anderson’s initial suggestion,> these models
are usually taken to be some variation of the Hubbard
model Most commonly, the single-band Hubbard mod-
el®7 1% on the square lattice or an effective Hamiltonian
obtained from it in the limit of large Coulomb repulsion,
has been studied. Even for this well-studied case, the pos-
sibility of superconductivity remains controversial. Monte
Carlo variational studies on the strong-coupling Hamil-
tonian,®’ find a stable superconducting state below half-
filling in the d,2_,2 pairing mode. On the other hand,
both quantum Monte Carlo simulations® and exact diago-
nalization results on the Hubbard model® showed that all
pairing susceptibilities are suppressed by the Coulomb
repulsion, which was interpreted as evidence that this
model does not exhibit superconductivity. It is therefore
of interest to understand whether this difference could
arise from the different models that were being used; the
]
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Hubbard model in the case of the quantum Monte Carlo
calculations, and the strong-coupling Hamiltonian, which
is only equivalent to it in the limit of very large Coulomb
energy, in the variational Monte Carlo work. Actually, in
more recent Monte Carlo work,!® which computed in-
teraction vertices, evidence for pairing, and hence possible
superconductivity, in the d,._,. channel was obtained.
Nonetheless, it is clearly desirable to compare the behav-
ior of these models for realistic values of the parameters;
to our knowledge, this has not been done before.

We have therefore investigated the ground-state prop-
erties of the one-band Hubbard model and the strong-
coupling Hamiltonian near half-filling by exact diagonali-
zation. The Hubbard Hamiltonian is defined by

Hyubo = —t Z (c,oc,<,+cjoc,,,)+UZn,Tn,1 , (1)
i, j)o

where (i, indicates nearest-neighbor pairs, each distinct
pair being summed over once, ¢;;, Cis are creation and an-
nihilation o‘rperators of an electron on site i with spin o,
and n;;=cisCis. In the limit of large U, one can use a
canonical transformation to eliminate the states with dou-
bly occupied sites, and thus the size of the Hilbert space is
reduced from 4" to 3" states, where NNV is the number of
sites. Following Ref. 11, the ensuing strong-coupling
Hamiltonian Hsc can be written

Hsc=Hnn+tHNNN )

where

—n;, ;) enforcing the constraint of no double occupancy, S; is the spin on site

HNNN""— Z [(c,fcjlcjlckt+cjfcuckgc,r)+(c,w,lcklc,y+c,pc,1c,1ck1)]+(k<—>t) 4)
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where {i,j,k) indicates a sum over sites such that (i,;)
and (j,k) are nearest neighbors. HnnN represents a par-
ticle making a second-neighbor hop from i to k& passing
through a virtual intermediate state with double occupan-
cy on j. The first and second terms of Eq. (4) describe
processes in which the spin on the intermediate site j

39

I
remains fixed and is flipped, respectively.

Note that Eq. (2) includes only the first terms in an ex-
pansion of the Hamiltonian in powers of ¢/U. Neglected
terms are of order ¢3/U? or higher, so Hsc and the Hub-
bard Hamiltonian should agree for sufficiently small ¢/U.
Since Hnn and Hnnn are the same order in ¢/U, they
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should both be included for consistency. However, HNNN
is often neglected so we have also computed results for
Hnn by itself. In the strong-coupling Hamiltonian, a
“hole” is just an empty site, so the number of holes n, is
defined to be n, =N —n., where N is the number of sites
and n, is the number of electrons. In the half-filled case,
i.e., no holes present, the model becomes equivalent to the
spin- + Heisenberg antiferromagnet.

We took a square lattice with periodic boundary condi-
tions, the largest sizes being 4 x4 for Hsc, and /8% /8 for
the Hubbard model. We only included configurations
with the smallest z component of total spin, but this is not
really a restriction because these span all possible values
of the total spin itself. For the 4 x4 lattice, we considered
additional geometrical symmetries (translations by two
lattice spacings in each of the two directions and two
reflections) and spin reversal symmetry when applicable.
As a result, the largest matrix that we had to diagonalize
had dimension 60060. We used a conjugate gradient
method'? to compute the minimum eigenvalue of the
Hamiltonian matrix and its eigenvector within each sub-
space of different symmetry. We checked to see if the
ground state is degenerate and, if so, we averaged over all
the ground states.

In order to determine the possibility of superconductivi-
ty in this model, we study the binding energy of two holes
defined by

Epr=(E,—Eo) —2(E|\—Ey), (5a)

where E,, is the ground state of the system with m holes.
A negative value of Ep > presumably indicates an attrac-
tive interaction between holes. We must, however, distin-
guish pairing, which could lead to superconductivity, from
phase separation of holes. We have therefore also studied
the binding energy of three holes with respect to splitting
into a pair and a single hole, defined by

Epg3=(E3;—E¢) —(E;—E¢) —(E\—Ey), (5b)

and the binding energy of four holes with respect to form-
ing two pairs, defined by

EB,4=(E4_E())_2(E2—E()). (5¢)

Both Ep 3 and Ep 4 would be negative if phase separation
occurs. Superconductivity is therefore indicated by Ep >
being negative and Eg 3 and Ep 4 being positive.

In Fig. 1 we show the results for Eg > on the tilted
/8x+/8 lattice’ for the Hubbard model, Eq. (1), the
strong-coupling Hamiltonian, Egs. (2)-(4), and the
strong-coupling Hamiltonian with nearest-neighbor in-
teractions only, Eq. (3). We see that while Eg, is only
slightly negative for the Hubbard model, there is a larger
binding in the strong-coupling Hamiltonian, and an even
larger effect if only the nearest-neighbor hopping is in-
cluded. Note that the strong-coupling regime corresponds
to small t/U. In Fig. 2 we show the results of the binding
energy of two holes added to half-filled band for various
sizes as a function of ¢/U, obtained with the full strong-
coupling Hamiltonian. For t/U=0.1 it is encouraging
that our results are not very size dependent, except for the
2x2 lattice which is clearly too small to be very useful.
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FIG. 1. Binding energy, Es,>, of two holes added to the half-
filled band for the tilted v/8 x /8 lattice (Ref. 9). The results are
for the ground state of the Hubbard model, HHubb, the strong-
coupling Hamiltonian, Hsc, and the strong-coupling Hamiltoni-
an with nearest-neighbor hopping only, A nn.

The value of t/U at which Eg > changes from positive to
negative decreases with increasing size and it is interesting
to speculate on whether this value tends to zero!> N— oo,
We find that the one-hole system is ferromagnetic, i.e.,
has maximum total spin, for very large U, in accord with
Nagaoka’s theorem.'* For the 4x4 lattice we find that
ferromagnetism disappears for t/U 2 0.025, in agreement
with Dagotto et al.'> For two holes we find that the
ground state is always a singlet. Results for magnetic
properties of the model will be published separately.

Our results for Ep 5, Ep 3, and Ep 4 are shown in Fig. 3
for Hsc on the 4x4 lattice. It is seen that both Ep 3 and
Ep 4 change sign at about the same value of ¢/U con-
sistent with the idea, discussed above, that they both be-
come negative when phase separation of holes occurs.
Notice that there is a window of values of ¢/U, roughly in
the range 0.06 St/U S0.16, where Ep ;> is negative while
Eg 3 and Ep 4 are positive, indicating possible supercon-
ductivity.

Another indication of the attraction between two holes
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FIG. 2. Binding energy, Ep, in the ground state of the
strong-coupling Hamiltonian, with two holes added to the half-
filled band, for various sizes.
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are the usual pairing operators. This is just the correla-
r tion function corresponding to the response functions
—0.5 - 5 computed in Refs. 8-10. Both the correlation and
- - response functions should provide evidence for long-range
1.0 P R T B R superconducting order, if it exists, for sufficiently large
00 01 02 03 04 05 sizes. In particular, the correlation function, Eq. (7),
t/U should diverge proportional to /V in this case. Substituting

FIG. 3. Eg,, Es,3, and Ep 4 are the “binding energy” of two,
three, and four holes, respectively, defined in Eq. (5) in the text,
at zero temperature. The results are for different values of /U
for Hsc on the 4x4 lattice. For superconductivity one expects
Eg > to be negative and E,3 and Ep 4 to be positive.

is given by the hole-hole correlation function, defined by
Co) =-LZA =m) (1 =m0, 6)
b

which gives the probability that there is a hole at r given
there is one at the origin. On the 4x4 lattice there are
only five different neighbor distances and two of these
(second and third neighbors) are equivalent because of an
extra symmetry on the 4 x4 lattice with periodic boundary
conditions.'® The behavior of these correlation functions
is shown, as a function of ¢/U, in Fig. 4 for two holes. We
can see that at /U $0.05 the holes tend to be as far as
possible on the lattice. As ¢/U increases into the region
where the binding energy E > shown in Fig. 3, is negative,
this situation is reversed and the holes tend to be as close
as possible, as one would intuitively expect.

In order to study pairing, we compute the pairing corre-
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FIG. 4. A plot of hole-hole correlation functions, C(r)
defined by Eq. (6) of the text, for all inequivalent separations of
the holes (first neighbor, second neighbor, etc.) for the ground
state of the strong-coupling Hamiltonian on a 4x4 lattice, as a
function of ¢/U.

Eq. (8) into Eq. (7), one has averages of four fermion
operators. Terms where the sites of two or more of these
operators coincide correspond to spin or charge correla-
tions rather than pairing correlations. We therefore feel
that the most useful quantity to study is the restricted
average where all four sites are different. Note also that,
with this restriction (i) the two terms in Eq. (7) are the
same; (ii) doubly occupied intermediate states can never
appear so one can replace the ¢ by regular electron opera-
tors c; and (iii) one can also replace electron operators by
hole operators 4 defined by hif, =Ci, -0

By diagonalizing the N XN pairing correlation matrix
we are able to study pairing modes of different sym-
metries. On the square lattice the only possible sym-
metries are s,p which is doubly degenerate, d,2_,2 and
dyy. In Fig. 5 we show the largest eigenvalue, A, of each
symmetry for different values of ¢/U for Hsc on the 4x4
lattice. For ¢/U=0.06, which is roughly the point at
which Eg, becomes negative, the eigenvalue of dxz_yz
symmetry dominates. Furthermore, the eigenvector has
largest weight on nearest-neighbor sites. We find very
similar results for Hyn. If we allow the four sites in Eq.
(7) to be the same, then there is a large contribution to P
from the resulting spin and charge fluctuations, and the
largest eigenvalue has s-wave symmetry, though the
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FIG. 5. A plot of the largest eigenvalue, A, of each symmetry
of the N x N matrix Pin, defined in Eq. (7) of the text, with the
restriction that the sites of all four fermion operators are

different. The results are for the ground state of the strong-
coupling Hamiltonian on a 4 x4 lattice.
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d,2_ 2 eigenvalue is the next largest. We feel, however,
that information about pairing is better contained in the
results with restriction to different sites because these are
uncontaminated with charge and spin fluctuations. This
argument is supported by the result that the d,:_ 2 mode
begins to dominate very close to the value of ¢/U where
Ejp , becomes negative. For Hyy, however, we find that
the d,»_,: fluctuations dominate even if one includes
terms where sites are the same.

To conclude, we have provided evidence suggesting, but
by no means proving, that the one-band strong-coupling
Hamiltonian has a d-wave superconducting phase for
small concentrations of holes below half-filling. This is in
agreement with earlier studies using a Gutzwiller-type
variational wave function®’ for the nearest-neighbor
strong-coupling Hamiltonian and recent Monte Carlo
simulations of the Hubbard model.!® We feel that our
work is complementary to these studies in that, although
we work with smaller lattice sizes, we do not have to guess
the form of the wave function, as in Refs. 6 and 7, and we
can work at T=0 whereas the results in Ref. 10 are re-
stricted to moderately high temperatures. We have also
given a more detailed study of the behavior as a function
of ¢/U. It is interesting to note that the spin-bag model'’
also predicts a pairing wave function with d,2_,: symme-
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try in real space. Although we have been unable to study
the 4x4 Hubbard model we do find, for the tilted v/8Xx+/8
lattice, that two holes are attracted to each other in real
space for ¢/U values where Ep ; is negative, just as oc-
curred for Hsc on the larger lattice. It would be very in-
teresting to compute the pairing functions of the 4x4
Hubbard model, to see if there is a dominant dxz_yz mode
there too. Imada, Hatsugai, and Nagaosa'® have studied
a somewhat more general model than ours and also con-
cluded that there are parameter values where two holes
bind. They do not, however, report in detail how the re-
sults depend on the parameters of the model and do not
look at the symmetry of the bound state.
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