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Random-phase approximation in the fractional-statistics gas

1 MAY 1989

A. L. Fetter and C. B. Hanna
Department of Physics, Stanford University, Stanford, California 94305

R. B. Laughlin
Department of Physics, Stanford University, Stanford, California 94305

and University of California, Lawrence Livermore lVational Laboratory, P O. Box .808, Livermore, California 94550
(Received 24 October 1988; revised manuscript received 13 March 1989)

The random-phase approximation for a gas of particles obeying 2 fractional statistics, in the

context of Feynman perturbation theory performed in the fermion representation, is shown to
yield a gauge-invariant Meissner eA'ect with full screening in the ground state, a coherence length

comparable with the in interparticle spacing, and a linearly dispersing undamped collective mode.

It was recently proposed by one of us' that the charge
carriers in high-temperature superconductors might obey
v 2 fractional statistics, and that this might be the
cause of the charge-2 superAuidity. In this paper, we
strengthen this point of view by explicitly calculating the
linear response of such a system to an applied external
electromagnetic potential. The key step in this calculation
is the use of random-phase approximation (RPA) to ac-
count for the long-range gauge potentials associated with
the fractional statistics. The resulting response function
exhibits a Meissner effect and also closes the gap in the
unperturbed collective-mode spectrum, yielding a linear
spectrum in the long-wavelength limit. This latter effect
is the inverse of the "plasmonization" of low-lying collec-
tive modes in an electron gas. These results imply that the
quantum-mechanical ground state implicit in the
random-phase approximation is a true superfluid, and in
particular exhibits broken symmetry.

In a first-quantized fermion representation, the many-
body Hamiltonian takes the form

)p, +A, (r, ) )', (1)
j 2m

where r denotes a two-dimensional vector in the x-y plane
and where

A, (r, ) -h(1 —v) g
Here v characterizes the specific form of the fractional
statistics: v 0 corresponds to a fermion representation of
noninteracting bosons and v = —,

' is the case of current in-

terest. The system may be thought of physically as spin-
less fermions interacting through long-range magnetic
vector potentials, including three-body contributions asso-
ciated with the terms proportional to LAJ ~

%e first consider the mean field A generated by the
average density p of the particles. Replacing the sum in

Eq. (2) by an integral, we find

A(r) -ptr A. (1 —v) (i& r) = —,
' B&& r. (3)

Here B-2trph(1 —v)z is an equivalent uniform mean
magnetic field that defines the corresponding magnetic

length a=(5/B)'t and cyclotron frequency to, -B/trt.
We use this mean field to define an unperturbed one-body
Hamiltonian

the eigenfunctions pt„(r) and eigenvalues ej„=(n
+ —,

' )A co, of which are those associated with the Landau
levels in the field B Wit.h this definition of /fo, the
analysis becomes an expansion in the perturbation Hamil-
tonian

Pi =P —Po

[(p+A) (A —A)+-,' )A —A ~'1 (S)
m

Note that the interactions implicit in /f~ couple to the
particles through the mean-field density and current-
density operators, defined by

jo(r) g 8(r —r, ),
J

j(r) -g —,
' [pl+A(rl), b(r —r )l (7)

J

The physical density operator Jo is the same as jo, but the
physical current density

J(r) g —,
'

[pal+At(r~), b(r —r~)j, (s)
J

differs from j(r) by an internal diamagnetic contribution.
The problem of interest is the linear response to an

external electromagnetic field, described by a potential
A„'"'(r, t ), where p runs over 0, x, and y for the time and
space components. The perturbation Hamiltonian associ-
ated with this field is

aB(t) - — [A'"'(r, t) J(r, t)
—Ao"'(r, t)Jo(r, t)]dr .

The linear response has two contributions, a diamagnet-
ic part proportional to the density and a paramagnetic
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part proportional to the retarded correlation function of J„
and J,:

d,„,(1,2) = —i([J„(1),J„(2)l&e(ri —r2) . (io)

is given specifically in terms of 6, by

K„,=pr„„(I—S„p)+~„„(q,~) . (i2)

The first step in obtaining an approximate expression
for 6 is to introduce the unperturbed correlation function

In this expression, the angular brackets denote an average
in the exact ground state, the caret denotes Heisenberg
representation, and l denotes a space-time point r~t ~. The
linear response in Fourier space, defined by

4ir&J„(q,co)) = —K„,(q, ro)A,'"'(q, ro)

(b)

(c)

FIG. 1. First-order diagrams relevant for RPA description.
(a) Two-body term, (b) three-body term that must be retained,
and (c) and (d) three-body terms that are negligible in compar-
ison with that in (b).

$„,(1,2) = —i(T[j„(1)jv(2)])p (i3)
where the subscript 0 denotes an expectation value in the
unperturbed ground state. We then perform a perturba-
tion expansion for the mean-geld correlation function

2)„,(1,2) = —i(T[j„(1)j,(2)]), (14)
using the usual Feynman rules of field theory. The in-
teraction Hamiltonian contains long-range potentials
similar to those familiar from the electron gas. As in that
case, the leading contributions at long wavelengths arise
from the repeated "bubble" diagrams (the RPA) in which
the same momentum transfer q appears on each interac-
tion line. One of these [see Fig. 1(a)] arises from the
(p+A) A term in /t'i. Since this part of the interaction
involves all three components of A„, it couples the various
components of 2)~„. For example, the first-order contribu-
tion to 2)pp involves both 2)p~ and S~pp (we take q along
x). The three-body interactions lead to three RPA-like
diagrams [Figs. 1(b)-1(d)], but only the first of these is
divergent. The significant RPA-like contributions reduce
to an expression for 2)„,of the form

n =np+npvn, (i 5)
where V is the 3 x 3 Hermitian potential matrix

l 0iq
(1 —v) 2x

2

,
—iq0 0,

~=-~"'"=(i+pe')s(i+ pe),
where

00 i
( I v)2z

() () ()
q 000

(i7)

The final linear-response kernel E„, follows by combin-
ing Eqs. (12) and (17).

Given these expressions, it remains only to determine
the unperturbed matrix S (q, ro). Specializing to the case
of v 2, and taking length and energy units for which a
and hro, are both unity, we obtain

q Xp qcoZp
1

2)P(q, ro) =—qroZp co2Zp —1

iqZ~ icoX ~

iqZ]

lmXi

Z2

where

The final step in the calculation is to correct the matrix
S, which is defined in terms of the mean-field currents j,
by adding the "internaV' diamagnetic contribution associ-
ated with 0 J —j. In the long-wavelength limit, we ob-
tain

OO —x n —
1

&;(q, ro) = —,
' g z z [(1—b„i)(n —x)'+(n+1) '(n+1 —x) '[n(n+1) —(2n+3)x+x ]'],' n=i (n —1)l(ro' n')— (2o)

and x=q /2. We note that the resulting K„", is mani-
festly gauge invariant because the three-component vec-
tor with eleinents ( —ro, q, o) is an eigenvector with zero
eigenvalue.

The Meissner eff'ect follows from the static limit of the
response function K(q) =K~~(q, co=0). A direct expan-
sion for q 0 yields the relation

Kap (q) =pll —-', q'+O(q')]. (21)

Here, the 1 is the diamagnetic contribution, and the
remainder arises from the paramagnetic part. As in the
usual BCS theory, the paramagnetic contribution van-

ishes for long wavelengths, leaving a full Meissner effect,
with all the particles contributing to the effective super-
conducting density. Comparing the form of Eq. (21) with
the corresponding result for the phenomenological Pip-
pard kernel

K p[1 —(qgp) /5+O(q )], (22)

we obtain a zero-temperature coherence length gp of
(15/8)' a, which is comparable with the interparticle
spacing.

The collective modes associated with density fiuctua-
tions occur at the poles of the response function happ. In
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the present RPA, these arise from the zeros of the deter-
minant, since the singularities at to n cancel identically.
Expanding for small q and ro, we obtain

at small q and to by

RPA~ g RPA~ (u, q) '
ito

"
4tr ro2 —(u, q)2 ' (25)

Imho" —[q/2u, +O(q )]B(co—u, q), (23)

where the sound speed u, is W2 in units of to, a. This value
agrees with that calculated from the total energy per par-
ticle E hco, of the unperturbed system with two filled
Landau levels, in the manner

8 2 rJE
us

~ p

1/2

(24)

The corresponding Hartree-Fock energy is smaller by a
factor 29/32, which implies that the Hartree-Fock sound
speed is 5% smaller than this value. Note that the pole in

hoo is sharp, with no background continuum of the sort
found in a Fermi liquid. Note also that the structure fac-
tor S(q) vanishes linearly for small q, as in the case both
in a Fermi liquid and a Bose superfluid, in contrast to the
quadratic behavior of the unperturbed structure factor.
This difference reflects the presence of superfluid density
fluctuations in the ground state implicit in the RPA.

We note finally that the RPA Hall conductance, given

is almost certainly an artifact of the calculation, attribut-
able to neglect of nonsingular diagrams. A Hall conduc-
tance of this form also results for the case of v 0, which
is a Bose gas.

The present paper has shown how Feynman diagrams
for the coupled density and current correlation functions
of the fractional-statistics gas can be summed to yield
physically sensible results, and that these include the
Meissner effect and presence of a sharp Goldstone mode.
The same techniques should prove valuable in considering
other aspects of the problem, such as the effect interparti-
cle repulsions.
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