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Spreading pressure study of the commensurate solid to domain-wall fluid transition
of monolayer He on graphite
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Results of a spreading pressure study of the commensurate solid to domain-w'all fluid (CS-
DWF) transition of monolayer He on graphite are reported. The CS-DWF phase boundary be-

tween 1.2 and 2.8 K is determined from the location of pronounced maxima in isothermal com-

pressibility data constructed from the spreading pressure data. The scaling of the compressibility

data at this transition is consistent with a chiral crossover exponent smaller than —, .

Present understanding of the commensurate-incom-
mensurate (C-IC) transition in physisorbed films relies
upon the domain-wall description of the weakly incom-
mensurate regime. Specifically, the weakly incommensu-
rate phase is described in terms of domains of the com-
mensurate structure separated by domain walls where the
domain-wall free energies alone determine the thermo-
dynamic stability of a given domain-wall structure. An
important aspect of the domain-wall description of the C-
IC transition is the recognition that domain walls can pos-
sess a definite helicity and that the dissimilar energetics of
domain walls with diff'erent helicities reduces the symme-
try of the commensurate solid Hamiltonian. This intro-
duction of chirality is expected to alter the universality
class of the C-IC transition. In this Brief Report we dis-
cuss a spreading pressure investigation of domain-wall
thermodynamics at the commensurate solid to domain-
wall fluid (CS-DWF) transition in monolayer He on
graphite.

Consider the monolayer He-graphite phase diagram
presented in Fig. 1. The phase denoted J3x J3 is a
commensurate structure with a threefold-degenerate
ground state. The disordering of the commensurate solid
at the critical density (i.e., n=l in Fig. 1) falls in the
same universality class as the two-dimensional, three-state
Potts model. At densities slightly in excess of the criti-
cal density, the commensurate solid is thermodynamically
unstable while at considerably higher densities a triangu-
lar, incommensurate solid is obtained. In the density
regime intermediate between the commensurate solid and
the triangular solid two phases are evident. Direct mea-
surements of the structure of these two intermediate
phases are not available; however, theoretical calcula-
tions ' and computer simulations " suggest that the low-

temperature phase is an incommensurate, uniaxial
domain-wall solid which melts into a disordered domain-
wall network (i.e., domain-wall fluid) at approximately I

K. This interpretation is consistent with low-energy elec-
tron diKraction ' (LEED) and neutron-diffraction' re-
sults for para-H2/graphite which has a phase diagram
similar to that of He-graphite. ' The data collected in

this investigation illuminate several aspects of the He-
graphite phase diagram. Isothermal compressibilities
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FIG. 1. Phase diagram of monolayer He physisorbed on

graphite. The data depicted are taken from the heat-capacity
studies of Ref. 3 (&), Ref. 4 (0 ), and Ref. 5 (+) and the iso-
thermal compressibility results of this study (o). The dashed
lines indicate approximate locations of phase boundaries. The
abbreviations denote incommensurate solid (IC), striped incom-

mensurate solid (SIC), W3& J3R30' commensurate solid

(&3xJ3), domain-wall fluid (DWF), and fluid (F) and vapor
(V) phases.

constructed from spreading pressure data are used to lo-
cate the CS-DWF phase boundary from 1.2 to 2.8 K.
Heretofore the location of this phase boundary has been
indeterminate as prior investigations have not been sensi-
tive to the CS-DWF phase boundary. Additionally, the
scaling properties of the compressibility data are exam-
ined for the influence of chirality upon this transition.

The strain gauge employed in this study has been de-
scribed in detail elsewhere. ' Briefly, the strain gauge is
composed of a cylindrical capacitor whose inner conductor
is constructed of MAT, a semiordered exfoliated graphite,
awhile the outer conductor is dimensionally inert. The two
conductors are separated by a small gap. When a 61m is
adsorbed onto the MAT substrate, the radius of the inner
conductor dilates in response to the film-induced surface
stress. This dilation is measured capacitively. To lowest
order the film spreading pressure p is proportional to
I/C, ~~t„—I/Cs~ . The proportionality constant was
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determined at an elevated temperature where the iso-
thermal differential of the (Jibbs free energy was em-
ployed to relate the Glm spreading pressure to the vapor
pressure of coexisting bulk vapor. The adsorption area of
the strain cell was calibrated at the order-disorder transi-
tion where the isosteric temperature derivative of the
spreading pressure provides a clear signature of the criti-
cal density. '

Spreading pressure data collected along seven isosteric
trajectories with densities ranging from 1.004n, to 1.087n,
are presented in Fig. 2. The most compelling feature of
these data, the negative slope of (I) for T & 3K, is a conse-
quence of positive entropy variation with coverage as seen
by invoking the Maxwell relation '

—A(|)(l)/BT)
~ ~ ~ =n(BS/6n)

~ T /v .

and weaken until a rounded anomaly is obtained as evi-
denced by the 2.75-K isotherm. While such an evolution
can be attributed solely to path renormalization effects for
a second-order transition with a phase boundary of the
form depicted in Fig. 1, ' it is appropriate to examine
these data for the influence of a chiral field. The low-
temperature data are inadequate to determine scaling ex-
ponents and as such are consistent with arbitrary values of
the chiral crossover exponent y, .

In the vicinity of the disordering transition at n, the
data are less ambiguous. Consider the eA'ect of a relevant
chiral field which vanishes at n, such that the singular
part of the free energy is a homogeneous function of two
relevant fields t (p, T) and u, (p, T) with u, (p, (n, ),
T, (n, ))=0. Scaling theory indicates that the compressi-
bility scales to leading order as

Phenomenologically, this result is a reflection of the low
entropy of the commensurate structure at the critical cov-
erage.

The isothermal compressibility near the CS-DWF
phase boundary was constructed by interpolating the data
of Fig. 2 to yield p(n) for temperatures between 1.2 and
2.8 K. The interpolated data were then used to calculate

( —1/n ) (Bn/bp)
~ T w = (art/aq) I T, JY .

The computed compressibility data along five isotherms
are plotted in Fig. 3 as functions of (I). Anticipating the
scaling theory results presented below, the open circles of
Fig. 1 denote the CS-DWF phase boundary in the n-T
plane as determined from the location of the isothermal
compressibility maxima. Below 2.5 K the phase boundary
follows the 1.050n, isostere to the precision of the data
(+' 0.007n, ).

Now consider the scaling of the isothermal compressi-
bility data presented in Fig. 3. The low-temperature
compressibility isotherms are strongly peaked. With in-
creasing temperature the compressibility peaks broaden

80 (d —y, )/y, 2(d —y, )/y,

t)I' T, /

8a (d —2y, )/y, (d —2y, )/y,
')

T,N

(2)

where the expression on the right-hand side of Eq. (2) em-
ploys the first term in a power-series expansion for u, in
terms of d,p. Inspection of the higher-temperature
compressibility data of Fig. 3 reveals that |)ET/8(I) 0 as
Ap~ 0. Consistency of these data with Eq. (2) requires
(d —2y, )/y, & 1 or y, & —,'. This constraint upon y,
agrees with the extended scaling relation for y, derived by

provided y& & 2y, where y, is the Potts scaling exponent.
The right-hand expression follows upon expanding t as a
power series in d, p =

~
p(T) —

(/), (T)
~

and recognizing that
the quadratic term is the lowest term in the expansion
since Bt/8$ 0 at n, Inse. rting y, = —', (Ref. 19) yields
Ba/8& —d, p /. This power law is consistent with the
high-temperature compressibility data of Fig. 3. For
y, & 2y„one finds to leading order
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FIG. 2. Spreading pressure data along seven isosteres. Cov-
erages measured relative to the critical density (n, ) are 1.004
(O), 1.018 (+), 1.032 (r)), 1.043 (x), 1.057 (&), 1.073 (+),
and 1.087 (&).

FIG. 3. Computed isothermal compressibility data along five
isotherms: 1.50 K (x), 2.00 K (r)), 2.50 K (O), 2.70 K (+),
and 2.75 K ( 0 ). The lines are guides to the eye.
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den Nijs which predicts that y, y, —1 —, . Finally,
for the more general case of a relevant chiral field which
does not vanish at the disordering transition at the critical
coverage, heat-capacity data require that the scaling ex-
ponents at the critical density be identical to those of
three-state Potts model in the absence of chirality. The
compressibility scales as shown in Eq. (1).

To recapitulate, the results of this study provide the
first, accurate determination of the CS-DWF phase

boundary in He on graphite. The scaling of isothermal
compressibility data at this transition is consistent with a
chiral crossover exponent smaller than 3 .
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