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Impurity pinning of charge-density waves and spin-density waves
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We reexamine the threshold electric field of the charge-density wave (CDW) within the
Fukuyama-Lee-Rice model, where the temperature dependence of the effective Hamiltonian for
the phase p of the CDW is explicitly included. Our theory describes very well the temperature
dependence of the threshold field in NbSe3 when the effects of the thermal fluctuations of p are
included. An extension of the model for the spin-density wave predicts that the threshold electric
field in the spin-density wave does not exhibit a divergence at T T, but is almost constant for
T~ 0.ST, and slightly increases (—33%) near T T,.

Usually the threshold electric field of the charge-density wave (CDW) in quasi-one-dimensional systems such as
NbSe3, etc. , is described in terms of the Fukuyama-Lee-Rice (FLR) theory. ' In this approach the spatial configuration
of the phase p(x) of the order parameter is described by the phase Hamiltonian

H(p) d x —,
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and X, V, A(T), p, (T), and n are the dimensionless
electron-phonon coupling constant, the impurity potential,
the temperature-dependent order parameter, the conden-
sate density, which has the same temperature dependence
as the superfluid density in a BCS superconductor, and
the electron density, respectively. Here we include the
temperature dependence of all the coefficients explicitly
but neglect the anisotropy of the elastic term, since this
does not affect the temperature dependence of the thresh-
old electric field. In particular, the coupling term to the
electric field E follows the chiral symmetry. However,
the temperature dependence of this term is different from
that assumed in Refs. 1 and 2. In general, the coupling
term is given by a limiting value of f(to, q) which has
diA'erent limits depending on whether m~~vFq. Here cu

and q are the frequency and the wave vector associated
with p(x, t). In the static limit f f ~

[cx:A (T) in the vi-
cinity of T,l while in the dynamic limit f fp [eel(T)
for T T,I. In Refs. 1 and 2 the latter limit is used,
which is appropriate to describe the microwave conduc-
tivity or the dc conductivity for E&&E~. However, in the
analysis of the dc conductivity for E=Er, fi should be
used since q —1. ' the inverse of Fukuyama-Lee-Rice
length ' due to the spatial distortion of p, while to =0.

In this Brief Report we shall show that Zq. (1) predicts
the unique temperature dependence of the threshold field
though it depends on whether we are in the strong-pinning
regime or in the weak-pinning regime. ' Further in the
latter case it depends on the dimensionality D of the sys-
tem.

First, in the strong-pinning regime the threshold field at
T 0 K is given by

When the impurity concentration n; is the order of a few
ppm, Eq. (3) will give Er —U/cm. Also, as already point-
ed out by FLR, Er (0) depends linearly on n;, which has
been verified in some experiments. ' For Ta0 K, Eq. (1)
predicts in the strong-pinning regime

Ey(T)/Er (0) = [&. (T)/&(0) ) [p/p, (T)1,

which increases monotonically with T. As T approaches
T„Eq. (4) diverges as

E (T)/E (0)=0.868(1 —T/T, ) (s)

Though such a divergence in Er (T) has been seen in a
number of experiments, the observed Er(T) exhibits a
minimum slightly below T =T„which contradicts Eq.
(4). The minimum in Er(T) is described if the effects of
the thermal fluctuations in p is included. The thermal
fluctuation in p modifies Eq. (4) as9

Ei.(T)/Er(0) =e 'lh(T)/h(0)] [p/p, (T)], (6)

where Tp is a parameter proportional to (=vF/T, . Now
Eq. (6) predicts a minimum in Er(T) at T =T, —

2 Tp if
To«T, consistent with the experiments. In Fig. 1 we
compare Eq. (6) with Ei-(T) measured for NbSe3 by
Fleming. ' In this comparison we adjusted both Ez-(0)
and To. As seen from Fig. 1 the present theory gives an
excellent description of Er (T) of the second CDW with

T,2=59 K. Qn the other hand, for the first CDW, the
measured Er(T) diverges stronger than Eq. (6) predicts

39 1989 The American Physical Society



39 BRIEF REPORTS 9641

E
LJ)E

I
uJ

4
Lal

I
Lal

200
12

1.0

100

0.8
0 0.5 1.0

0
0 100 150 T~K)

FIG. 2. The predicted temperature dependence of Er(T) of a
spin-density wave in the strong-pinning limit is shown as func-
tion of the reduced temperature T/ T,.

FIG. 1. The threshold electric field of NbSe3 as a function of
temperature. The crosses are the experimental data taken from
Ref. 10, while solid curves are theoretical results; for the first
CDW with T, 144 K, we used the D=2 weak-pinning model
with Er(0) =765 mVcm ' and To 60.6 K. For the second
'CDW with T, 59 K, we used the strong-pinning model with
Er(0) =117 mVcm ' and To 14.6 K. The dashed curve is a
tentative comparison of the strong-pinning model with ET for
the first CDW.

H; ~(p) —[(rr/2)NoV] d (T) tanh[A(T)/2T]

xgcos2[g x;+y(x;)] . (9)

Bechgaard salts. From the analysis of the fluctuation
propagator and the pinning potential in the SDW, the
only necessary change in Eq. (1) is the coupling to the
random impurities (the second term). This is now given

at T T, ~. Here we treat two CDW's below T, i and T,2

independently as is commonly done.
We shall see shortly that ET(T) of the first CDW is de-

scribed by the weak-pinning expression with D 2. We
note also that To 14.6 K deduced from the above fitting
is very close to To =15.2 K determined from the threshold
field of NbSes in a strong transverse magnetic field (-23
T) by Coleman et al. " This also indicates that To is not
only insensitive to the impurity concentration but also to
the transverse magnetic field.

Repeating FLR, we obtain in the weak-pinning regime

EP'(0) ~ n (7)

Furthermore, we obtain

E (T)/E (0) =[E'(T)/E'(0)]'" (8)

where D is the dimensionality of the CDW. In general the
divergence of ET(T) near T= T, becomes stronger in the
weak-pinning regiine. As is seen in Fig. 1, Eq. (8) with
D 2 gives an excellent description of ET(T) of the first
CDW in NbSe3, though we do not know why D 2 should
be used. Perhaps this implies that the elastic constant EC

for the first CDW is strongly anisotropic so that we have
E ] + E2 )P EC3. Further, D 2 predicts also ET ~ n;,
which appears to be consistent with a recent study' of the
impurity effect on NbSe3. In summary, we have shown
that the effective Hamiltonian (1) predicts quantitatively
the temperature dependence of the threshold electric field
of the CDW.

Now we shall apply a similar model to the spin-density
wave (SDW) in the quasi-two-dimensional systems like

Also in the small V limit (No V« 1) a more general result
of Tiitto and Zawadowski' reduces to Eq. (9). Again in
the strong-pinning limit Eq. (1) with Eq. (9) predicts

r

ET(0) =+ —(xNoV) h(0) (10)
e n

which is now of the order of 10 V/cm for n;/n —10
The temperature dependence of ET(T) is given by

ET(T)/E~~(0) = tanh[A(T)/2T] [p/p, (T)],~(T)
~(0)

which increases monotonically with temperature from
unity to 1.33 at T T, . There is. no divergence in ET(T)
near T T,. Equation (11) is numerically calculated and
shown in Fig. 2. In particular for T (0.5T„E~~(T) is
practically independent of T, which is consistent with a re-
cent experiment on ET(T) of the SDW in (TMTSF)2NO3
by Tomic et al. '

Note that unlike the case of CDW, the thermal fluctua-
tion is unimportant here, since T, is rather small (—10
K), and To cs: g =UF/T, is rather large (To—10 K).

In the weak-pinning regime we obtain again Eqs. (7)
and (8), where Eq. (11) has to be used for ET(T)/ET(0)
in Eq. (8) now. Therefore, unlike the case of the CDW,
we do not expect any divergence in ET(T) in the vicinity
of the transition temperature.

We have benefitted from a clarifying discussion with S.
Tomic on her recent experiments on (TMTSF)2NO3.
This work is in part supported by the National Science
Foundation under Grant No. DM86-11829.
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