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Electromagnetic interactions between fluctuations near the superconducting phase transition
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We calculate the amplitude ratio C+/C — for specific-heat fluctuations near the super-
conducting-phase transition, taking into account the lowest-order Auctuations about mean-field
theory. For a U(1) Ginzburg-Landau theory, minimally coupled to electromagnetism in d dimen-

sions, C+/C — 2/(2dt2+v «), where tr is the Ginzburg-Landau parameter. We discuss how this
result arises from the microscopic theory of superconductivity.

I. INTRODUCTION

The short coherence length of the high-temperature su-
perconductor YBa2Cu 307 —s has enabled fluctuation
eff'ects to be observed even in bulk samples near to the su-
perconducting transition temperature T, . Measurements
have been reported for Auctuation contributions to the
conductivity, ' the magnetic susceptibility, ' the ther-
mopower, '' and the specific heat. ' ' In most of these
cases, the temperature dependence of the data has been
consistent with the interpretation that Gaussian
Auctuations —the lowest-order Auctuations about mean-
field theory —are responsible for the observations. The
observation of a Auctuation contribution to the specific
heat' in zero external magnetic fieM is of particular in-
terest, because it can be used to test directly the hy-
pothesis that the order parameter has only two real com-
ponents. Indeed, in Ref. 12, the ratio of the amplitudes of
the Gaussian Auctuation specific heat above and below the
transition, C+/C, was found to be significantly larger
than expected for an s-wave superconductor, leading to
the conclusion that the pairing involved a higher-angular-
momentum state. It should be noted that this result does
not require any special assumptions regarding the spatial
anisotropy, the values of the parameters in the Ginzburg-
Landau free energy, or the applicability of BCS theory.

The purpose of this Brief Report is to calculate C~/C—
in the Gaussian approximation, where the direct interac-
tion between Auctuations is ignored. Previously, this has
been done for the O(n) model, ' but this calculation ig-
nores the fact that in a superconductor, the Auctuations
can interact indirectly through the electromagnetic field.
In the present paper, we examine this eff'ect: as might
have been expected, the inclusion of the electromagnetic
field only decreases C+/C —.Thus we may safely dismiss
a possible explanation of the findings of Ref. 12 based
solely on the previously neglected eAects of electromag-
netic interactions.

In Sec. II we calculate C+/C — in a U(1) Ginzburg-
Landau theory minimally coupled to electromagnetism.

Such a calculation only depends on the static properties of
the fluctuations, but apparently not on the spectral density
of excitations of the many-body system. We have found it
instructive to investigate exactly why it is the dynamic
properties of the Auctuations do not aAect the result, and
these considerations are explained in Sec. III.

II. GINZBURG-LANDAU THEORY

C+
C(t) (2.1)

C+
C— 2dl2 (2.2)

For a superconductor with a charged condensate, how-
ever, fluctuations in the order parameter generate currents
and fields which can couple order-parameter Auctuations
at diff'erent positions. This occurs when the longitudinal
component of the vector potential becomes massive,
through the Anderson-Higgs mechanism, ' at the expense
of one of the Golstone modes. Physically, this corresponds

The calculation of C+/C essentially amounts to
counting the number of temperature-dependent, long-
wavelength modes above and below T, . Such modes are
described by a propagator in momentum space k of the
form G (k) ce (k +m ) '. In the context of Ginzburg-
Landau theory, the temperature T, enters through the
propagator's "mass" m, which is simply proportional toj~

T —T, ~. For an O(n) model describing a neutral con-
densate, there are n massive modes above T„but there is
only one massive mode below T,. It corresponds to the
amplitude of the order parameter, while the n —1 Gold-
stone modes correspond to the phases of the order param-
eter. Furthermore, for fixed

~
t (, where t =(T T, )/T, , —

the mass of the longitudinal mode below T, is W2 times as
big as the mass above T,. It is straightforward to find the
most singular terms in the free energy and thence find the
fluctuation specific heat' above (+ ) and below ( —) T, :
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to the existence of a temperature-dependent electromag-
netic penetration depth, X(T), below T, . ' As shown
below, it is this temperature dependence which generates
an additional term in the specific heat below T„. the diver-
gence of the electromagnetic penetration depth as T T,
ensures that this term also contributes to the fluctuation
specific heat below T, and hence to the denominator of
C+/C —.

Consider the usual (i.e., n =2) expression for the
Ginzburg-Landau free-energy density of a superconductor
of volume Vin d dimensions:

tained from C, = —T9 F,/BT:
d k 1

2~)' (a+k')'
a~I

d k 1
d

(2~) ~ (a+ k ~) 2

1 2I' dk 1

~ (2~)' [~(T) -'+I ']'

(2.11)

(2.12)

F[y,A] =„d'x al yl'+ l P I yl"+ IDyl'
where the temperature-dependent penetration depth is
given by X =Rot ' . After some algebra, we obtain

2
2d/2+ ~

—d (2.13)

+ (Vx A)
8z

2 d

IDyl'—= g g I

—iq&„y; I'.
i =1 p=l tlxp

(2.3)

(2.4)

where the Ginzburg-Landau parameter K =X/g. This re-
sult is valid for both type-I and type-II superconductors in
the presence of zero external magnetic field.

a(T) =&(T) =aol T —T, I
(2.S)

We work in the Coulomb gauge V A=O. The thermo-
dynamics is obtained from the partition function

Z= DADye (2.6)

In order to examine the Gaussian fluctuations about
mean-field theory, we minimize F[y,A] and expand to
quadratic order in the fields; after a gauge transformation,
we obtain for the fluctuation contribution to the free ener-

r

F=J"d x (Vy, ) —2ay, +m A + (VxA)
8z

(2.7)
where the tilde denotes the fluctuation in a quantity about
its mean-field value. The "photon mass" m& is given by

12=
g~~(T)'

(2.8)

Here, y—= yi+ iyz, q =2e/Ac, e is the electronic charge, c
is the speed of light in vacuum, P is assumed to be a
temperature-independent constant, and e is related to the
order-parameter correlation length g by

III. MICROSCOPIC THEORY

An = —Tg ln[G '(q, iso„)G (q, ia~„)l .
co„,q

(3.1)

Here, 6 is the propagator for the fluctuation in question,
6 is its bare value in the absence of interactions, and the
frequencies are given by co„=2znT, where n is an integer.
Converting the summation into an integration, we find

An interesting feature of the calculation presented
above is that the result is obtained solely from the static
properties of the fluctuations. This might appear to be in
conflict with the results of standard many-body theory
calculations of fluctuations in quantum systems such as al-
most ferromagnetic Fermi liquids or superconductors
near T, . ' In these calculations, fluctuation contributions
are expressed in terms of frequency integrals of the spec-
tral density of excitations, and accordingly, one might ex-
pect that dynamical properties of the fluctuations would
enter into the calculation. In other words, the fact that
the plasma frequency, co~&&T might lead one to expect
that charge fluctuations are suppressed, thus freezing out
the phase as a dynamical variable.

To investigate this point in greater detail, and to show
why this is, in fact, not the case, we start from the usual
result for the fluctuation contribution to the thermo-
dynamic potential

Performing the functional integral in Eq. (2.6), and
identifying the most singular terms in F near T„F„we
find that

de Im ln[G '(q, iI)G (q, co )]
—M 7t co/T

(3.2)

F, = —
—, T—2+In1

T. & T, .
a+k

(2.9)

F, = —
—, T gln. —1 7L'

2a+k'

——, T—gin1 T& T, .
k k2+g —2

(2.1O)

The most singular terms in the specific heat, C„are ob-

This expression gives the fluctuation contribution to the
thermodynamic potential in terms of finite frequency
properties of the fluctuations. In the case of transverse
electromagnetic fluctuations in a superconductor, the fluc-
tuation propagator at long wavelengths has a pole at the
plasma frequency of the metal, cop = (4xn, e /m ) '~,
where n, is the total electron density, and m is the mass of
the electron. m~ remains finite as T T„and therefore
one might expect that there would be no singular contri-
bution to thermodynamic properties in this limit. Since
m~ is typically much greater than T„electromagnetic
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effects would effectively be frozen-out.
This argument neglects the fact that the critical behav-

ior arises from frequencies co((T. Thus, we may take the
classical limit of Eq. (3.2),

dco Imln[G '(q, ctt)G (q, ro)]
critical TX~

q tr M

(3.3)

Since at high frequencies G '(q, co)G (q, co) tends to
unity, it follows that lnG '(q, co)G (q, to) obeys a
Kramers-Kronig relation, and therefore, one may write

(~&)«iti«i = —&Z»lG '(q, O)G'(q, O) 1 . (3.4)
q

This is just the n =0 term in the summation of Eq. , (3.1),
namely the only term which arises in the purely classical
treatment of Sec. I.

The fallacy in the physical argument given at the begin-
ning of this section, which indicated that electromagnetic
effects would suppress Auctuations, is the incorrect as-
sumption that all of the spectral weight of 6 lies at the
plasmon pole. This is not the case, because there is a cut
in 6 which arises from the low-lying excitations such as
electron-hole pairs associated with the normal fluid in a
two-Auid model. These local charge Auctuations do allo~

the phase to relax. If the normal fluid is neglected, then
G '(q, O) cx: (q +co„/c )/T, while if the response of the
normal fluid is taken into account, the corresponding re-
sult is G '(q, O) tx (q +X )/T. As before, it is the vari-
ation of k as T T, which gives a singular contribution
to the thermodynamic functions. In conclusion, we see
that there is no conAict between the two ways of calculat-
ing the Auctuation contribution to thermodynamic proper-
ties, provided that one properly takes into account the
low-frequency behavior of the spectral density in Eq.
(3.3).
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