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Asymptotic limit for the thermodynamics of a boson-exchange superconductor
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We establish formulas for the free-energy diA'erence (AF) between the superconducting and
normal states of an Eliashberg superconductor valid in the asymptotic limit k ~ where X is the
mass-renormalization parameter. It is shown that (dF) varies as XcoE times a universal function
of the reduced temperature t=T/T, . Here coE is the characteristic energy of the exchanged bo-
son. The universal function is calculated numerically for finite t & 0.

Stimulated by the discovery of superconductivity in the
oxides' with values of the critical temperature T, now as
high as 125 K, Marsiglio, Akis, and Carbotte considered
the thermodynamics and other properties of an Eliashberg
superconductor for values of T, comparable in size or
greater than the characteristic boson energy co~„. The pa-
rameter co~„was first introduced by Allen and Dynes and
is well defined in terms of the electron-boson spectral den-
sity a F(co) which enters the kernels of the Eliashberg
equations. In their work, Marsiglio, Akis, and Carbotte
carry out calculations somewhat beyond T,/co~„= l. This
corresponds to large cases, as compared with conventional
cases, but still quite finite values of X. Here we wish to
consider the limit of k ~. While this regime is not like-

ly to ever be reached in real materials, it gives particularly
simple results which can help in understanding the large
but finite X region.

The work starts from the Eliashberg equations in the
Matsubara representation for the gap A(ico„) and re-
normalization Z(i co„) at the Matsubara frequencies
ico„=i7rT(2n —1),n =0, ~ 1, + 2, . . . , with T the temper-
ature. They are

t).(ico )
a(ico„)Z(ico„)=xT+), (m —n)

2 z, tz, (1)
m [corn +6 icom
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Z(ico„) =1+ g), (m —n)
m [co'+W' ico ) 't' ' (2)

k(m n) = dco-2a'F(co) co
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If we use for a F(co) a 8 function centered at the Ein-

where, for convenience, we have ignored the Coulomb
pseudopotential p* and where X(m —n) contains the in-
formation on the spectral density a F(co) for boson ex-
change. While the form of Eqs. (1) and (2) were first de-
rived for the electron-phonon interaction, they can still be
used for the exchange of other more exotic low-energy bo-
sons which restrict the Cooper-pair scattering to the Fer-
mi surface. Thus, our asymptotic limit will be approxi-
mately valid in such cases as well. In terms of a F(co), we
have

stein energy co& and of weight A, we obtain

2coFA
X(m —n) =

cop+(co„—co )' (4)

will occur on both right- and left-hand sides, and therefore
cancel. Thus only terms with m&n will remain in the sin-
gle equation for the gap. Referring to Eq. (4) with num,
neglecting co+ in the denominator, and dividing by scop
we get a material-independent equation for the dimen-
sionless gap Z(ico„):

Z(ico„) =7rtT, g
m &n corn con

E(ico ) —(co /co„)E(ico„)
[~m+&'(i~m)l '" (5)

where any Q=Q/ JAcoE and the reduced temperature
t=T/T, . On examination of Eq. (5), we see that all
references to material parameters have dropped out so
that A(ico„) is simply a universal function (f„(t)) of the
reduced temperature t, i.e., A(ico„) =f„(t). In particular,
iteration of the linearized version of (5) yields the critical
temperature T, =0.2584 which is a universal number first
given by Allen and Dynes. Thus, in the asymptotic limit

For m=n, the quantity given in Eq. (4) reduces to the
electron-boson mass-renormalization factor X=2A/co~.
Here we will be interested only in the limit X ~ which
can be achieved in many ways. For example, 4 can be
fixed and co~ taken to go to zero (as we do in our numeri-
cal work). Alternatively, coE can be fixed and A taken to
infinity. Both alternatives are equivalent mathematically.
In the limit X ~, it is justified to neglet the coE term in
the denominator of Eq. (4) for num, provided it is as-
sumed that co~&&2zT. We will return to this condition
later when it will be fully explained. For the moment, we
proceed. On substituting Eq. (2) into Eq. (1) to get a
closed equation for the gap, we note that a term of the
form
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the critical temperature is

T, =0.2584 JAroE =0.183rop JX. (6)
1.4

To calculate the thermodynamics in the asymptotic lim-
it, we need to know the free-energy diference between su-
perconducting and normal state AF(t), which is given in
terms of the 6,'s and Z's by the Bardeen-Stephen formula

a2(i to„)1+," —1, (7)
~n

where W(0) is the single-spin electronic density of states
at the Fermi energy. From Eq. (5), it is clear that the
square-root factor in (7) is independent of X as it depends
only on Z (iro„). Further, the superconducting-state re-
normalization factor can be written as
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H, (T) =J8~~F and ~C(T) =T
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(10)

Direct calculation of g(t) as a function of reduced tem-
perature yields H, (t) and BC(t) The results of. our nu-
merical calculations are given in Fig. 1. Instead of g(t) it-
self, we have chosen to plot h, (t) (the reduced thermo-
dynamic critical magnetic field) defined by

and its normal-state value Z is obtained from Eq. (8) by
setting h(iro ) equal to zero in the last two terms on the
right-hand side. We note that for both Z and Z, the
second term depends on X and hence on material parame-
ters, but the last term does not since E(i~o ) is universal.
On inserting Eq. (8) into Eq. (7), it is clear that the k
dependence in Z and Z cancels so that the expression in
the large parentheses is material independent, leaving us
with a free energy that scales similar to T, because of the
presence of an overall factor of T; and so

h,F A

W(0)
g(t) —= , XroEg(t), —

where g(t) is a universal function of reduced temperature
T/T, . This function, which is independent of material
parameters, can be calculated from the universal equation
(5) for A(iro ) and from the free-energy diA'erence (7)
noting that A. , which still appears explicitly in both Z and
Z, cancels in the combination needed in formula (7).

The thermodynamic critical magnetic field H, (T) fol-
lows from hF(T) as does the specific-heat diA'erence
AC(T). Thermodynamics yields

FIG. 1. The reduced critical thermodynamic magnetic field
(solid curve) as a function of reduced temperature t in the limit

The curve has pronounced positive curvature ~ith the
zero-temperature value unclear. The dotted curve is t times the
reduced field h, (t) and shows a finite limit at t 0.

T=T,. From the solid curve of Fig. 1, it is clear that in
the asymptotic limit the reduced critical field looks very
diN'erent from its value in BCS theory. For example,
within BCS, the h, (t) curve has negative curvature at all
temperatures and at t=0 h, (0) =0.576. In contrast, in
the asymptotic limit h, (t) exhibits a large region of near
linear dependence below t =1 and then shows the opposite
curvature bending upward as t decreases. It is still rising
rapidly at t =0.008. This is the lowest reduced tempera-
ture we could handle in our numerical work due to com-
puter time limitations. Consequently, we do not have in-
formation on its zero-temperature behavior. To under-
stand that this is not a serious limitation, we return to the
condition roz «2trT introduced from the very beginning
into our formalism. It can easily be changed, with the
help of Eq. (6) for T, valid in the asymptotic limit, into an
inequality

(12)

which is centrQ to our work. We see now that for any
fixed finite value of t, k must be taken large enough so that
Eq. (12) holds in order that the approximation roz «2trT
be valid. Recalling that

4g(t)
I dHc(t)idt I i=i

I [de(t) jdtlt=| I

which is simply dg(t) normalized to its slope at t =1, i.e.,

H, (t) =42nÃ(0)kroEdg(t)
r

dJg(t)
dt

h, (t), (13)
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we rewrite it in the form

H, (t) =J2zN(0)~. [r/t, (r)] ~
1 de(r)

dt

and

T,
'

3.77 1+117

d
dt y(0) T,

(i6)

Rough estimates of the two universal numbers appearing
above using a single Matsubara gap approximation yield
12 and 84, respectively, instead of 19.9 and 39.2. The
values of jump and slope given by (15) and (16) cannot be
compared directly with the universal BCS values of 1.43
and 3.77, respectively. BCS theory is the weak-coupling
case which is the opposite limit to that considered here. It
is clear, however, that for large k's, both quantities fall
below BCS values. This behavior, which can be taken to
be a signature of the asymptotic limit, is very diAerent
from the conventional strong-coupling case for which the
corrections to BCS theory tend to increase these coef-
ficients over the BCS value. More specifically Marsiglio
and Carbotte find

(i 7)

We see that condition (12) requires I/Jk, t « l. Also, we
note that th, (t) shown in Fig. 1 (dotted curve) is well
behaved even for t 0. Thus, the expression in the
brackets of Eq. (14) is also well behaved in the range
JKt » 1. What we need to remember is that X, must go to
ee before t goes to zero for the condition JÃt» I to be
satisfied.

Our results for h, (t) or th, (t) cover the entire tempera-
ture dependence of the free-energy diff'erence, and so the
specific heat should follow as well [formula (10)l. Evalu-
ation of the jump in hC(T) at T, and its slope give, re-
spectively,

AC(T, ) 19 9
15

) (0)T,
and

where T,/roi„ is the characteristic strong-coupling param-
eter and roi„ is the average boson energy of Allen and
Dynes which is given by

2 '" a'F(co)ln(ro)
dco[g =exp + /~0 M
de (i9)
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Equations (17) and (18) apply only for T,/r01„~0.25.
While both the normalized jump and s1ope go to zero as

~ their ratio remains constant. It is equal to 1.96,
which is to be compared with a BCS value of 2.64. For
conventional superconductors, it is found to be somewhat
greater.

In conclusion, we have calculated the free-energy dif-
ference between normal and superconducting states at any
finite reduced temperature t in the asymptotic limit

The free energy is found to scale similar to WEE~

times a universal function of t which is independent of any
material parameter and which we have calculated numeri-

cally. The formula obtained holds only for Wkt»1 so
that very large values of X, are needed if the low-
temperature region is to be investigated. Our calculations
are based on equations that are independent of X and
therefore, universal. The normalized jump and slope at
T, of the specific heat were also computed and found to be
proportional to I/k with material independent constants of
proportionality. While the asymptotic limit is not likely to
be reached in real systems, it nevertheless gives informa-
tion on how a very-strong-coupling superconductor is like-

ly to behave.
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