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Algorithm for computer simulations of Aux-lattice melting in type-II superconductors

A. Brass* and H. J. 3ensen~
Institute for Materials Research, McMaster University, 1280 Main Street West, Hamilton, Ontario LBS 4MIC, anada

(Received 19 December 1988)

%'e derive an algorithm for simulating the dynamical behavior of stochastic diff'usive systems.
We use this algorithm to simulate Aux-lattice melting in thin slabs of type-II superconductor
whose thickness is comparable to the penetration depth. The simulations show that the flux lat-
tice can melt at temperatures well below the superconducting transition temperature. In addition
we show that the melting behavior of the flux-line lattice is very similar to that seen in both low-

density Lennard- Jones and hard-disk systems.

The discovery of high-T, superconductors has led to
renewed interest in the thermal behavior of magnetic Aux
lattices. Before the discovery of this new class of type-II
superconductor, melting of the Abrikosov vortex lattice
had only been observed in quasi-two-dimensional sam-
ples. ' However, recent experiments on bulk compounds of
high-temperature superconducting material exhibit a
melting transition in the vortex lattice. In this note we
describe an algorithm which can be used to simulate the
dynamical behavior of magnetic vortices at finite tempera-
tures in thin slabs of type-II superconductors. %'e use this
algorithm to examine the phenomenon of flux lattice melt-
ing in a superconducting slab of thickness d, d being com-
parable to the penetration depth, X. The external magnet-
ic field is normal to the surface of the slab. The restriction
to the case d = X, reduces the computational eA'ort consid-
erably. In the two-dimensional (2D) limit, d «X, the vor-
tices interact via a logarithmic potential which can only
be handled using some form of many-body simulation
whereas the 3D potential decays exponentially at large
distance. In the 3D limit, d»X, the Aux line bending can-
not be neglected and one is faced with the complex task of
simulating a large number of interacting vortex lines. In
the thin slab case considered here, we use the 3D potential
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In the most general case, the force on the vortices can be
written as

F =F, , +F,,p+Fd, (2)

where F, , is the force on a vortex due to the surrounding
vortices, F,,~ models the interaction of the vortices with in-
homogeneities in the superconductor, and Fd is the
Lorentz force on the vortices due to an applied electric
current through the superconductor. The total force on a
vortex at r; due to the interaction with all the other N, ,

vortices in the system is

for straight vortex lines.
It is well known that vortices obey a diA'usive equation

of motion

F avxz Tfv =0,
where F is the total force on a vortex, a is the magnitude
of the Magnus force, and g is the viscosity. Solving for
the velocities, and adding a stochastic term, g, to model
the interaction of the vortices with a heat bath, we obtain

F, , (rp ) =(Np/Str X )(1 —b) I g (rz/rz) [K~(reed(1 —b)/X) —J2tcK~(r jtcJ2(1 —b)/X)],j=l

where K~ is a modified Bessel function, &p is the fiux
quantum, b =8/8„ is the reduced magnetic field, tc =X/g,
where g is the coherence length, and r;~ =

~
r; —rI ~. In

this note we will assume that F,,~ is negligible and that no
external current is transported through the sample.

%'e assume the following empirical temperature depen-
dence of the thermodynamic critical field and penetration
depth; H, (t) =K, (0)(1 —t ) and A, (t) =k(0)h/(I —t ),
where t =T/T, . We also assume that the upper critical
field is given by the usual relation H„=J2tcH, . The re-
duced field then satisfies

with a heat bath needs to be calibrated in such a way that
we reach the correct equilibrium distribution at long
times. As in the usual case of a Langevin equation for
particles with an inertial mass, this is done using the
Fokker-Planck equation associated with Eq. (1). Let

P(x, t
~ Xp, tp) =P(X, t tp ~ Xp)

denote the probability that a vortex is found at position x
at time t if it were at position xp at time t p [for notational
simplicity we discuss the one-dimensional version of Eq.
(1) with a =01. P will obey the differential equation

b(t) =a/a„(T) =b(0) (1+I ')/(1 I')—
The stochastic term in Eq. (1) modeling the interaction

8P "
( —1)" a"

[~„P(x,t I x.)],
n= 1 n ~ 8x

(4)
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where

M. =—„g"P(x+g,~lx)dg.1

We can make the connection between Eqs. (1) and (4)
by replacing the M„ in Eq. (4) by the moments as calcu-
lated directly from Eq. (1) to O(dt ). In order to calcu-
late these moments we assume that g; can be expressed as
a Gaussian white-noise function

that the noise term acts with a constant average rate, 1/r,
on each particle. The probability that a given vortex will
have been acted on by the noise term during a time step of
length 5 is p =6/z for 5« r A. s we are using a discrete
time variable we need to find a representation for the noise
term which satisfies Eqs. (8) and (9) (with A replaced by
2kT/il). It is also important that the measured physical
quantities are independent of r. The following prescrip-
tion for the noise term satisfies all the above require-
ments

(g;(r)& =0,
(g; (t / )g/, (t 2) &

=
A 6(t /

—t 2) 6(i —k), (s) g(r) =Bga(r r') y(—rJ)e(p —qj), (9)

where 2 is a constant. Calculating the moments from Eq.
(1),

Mi= —(6'x) = F, M2—=—((Bx) ) =A, (6)1 1 1

yl

and substituting them into Eq. (4) we obtain the following
Fokker-Planck equation:

aP a FP(x, t l
x—o) +— [AP(x, r

l xo)].1

dr 8x il 2 Bx

(7)
The value of A can be obtained by demanding that

P(x, l xp) ~exp[ —(1/kT)U(x)],

where U(x) is the total potential energy of the vortices at
r =~. Substituting Eq. (8) into Eq. (7) we finally obtain
the result A =2k T/ q.

Special care must be taken in deriving the discrete form
of the Gaussian white-noise term in Eq. (1). We assume

I

where j labels the time step, y(rj) is a random number
chosen from a Gaussian distribution of mean 0 and width
1, q~ is a random number uniformly distributed on [0,1],
and e(x) is defined by

1, if x & 0;ex
0 if x&0.

Substituting Eq. (9) into Eq. (5) gives us B =(2d,kT/
) 1/2

Combining all the results described above, and working
in units of

length: lo(r) =t(r) =Io(0)/4 1 —t

energy/length: so(t) =@0/(8x X ) =so(0)(1 —t ),
force/length: fo(t) -+O2/(8+213) =fo(0)(1 —t4)' 2,

time: ro(t) =8m'k da 2+ g2/e02 = ro(0)/(I —r 4) ', (10)

we get the following discretized equation of motion:

n+I

Ip(r)

2kT, 1

d~«) [I+(a/q)']' ' .o(r) p

[1+(a/~) '] -'" —ll+ (~/a) '] -'"
I (r) [1+(q/a) '] '~' [1+(a/il ) '] '~' fo(r) F", (r)

i/2
'

e(p qi)
, 3'y,

where F and F~ are defined by Eq. (3).
The final stage in the derivation of the numerical in-

tegration algorithm is to decide on the sizes of 6, and r.
This can be done by ensuring that the moments calculated
using Eq. (11) agree with those given in Eq. (6) [to
O(d, )]. Two conditions have to be fulfilled;

2kT, fo(0) t,
ro(0) dao(0) f

2kT, f.(O).,(o) d~(0) J.
where f denotes the average net deterministic force on a
vortex. In the program we explicitly calculate the second
moment of the Fokker-Planck equation and check that it
has the expected equiiibrium value.

We have used the algorithm described above to model
the melting transition for a system of 340 vortices with
periodic boundary conditions in a model superconductor

I

with the following set of parameters: x(()) -2, b(p) -p. 1,
a/g =0, 2kT, /dao(0) 0.516 cm 'X2T, /d, where &2T,/
d 10 cm.

We investigated the melting behavior by measuring the
self-diffusion coefficient and the angular susceptibility
function, g6 for the vortices as a function of temperature.
The diffusion coefficient was calculated from the graph of
mean-squared displacement versus time. For large values
of time this graph has a constant gradient, the gradient
being a measure of the self-diA'usion coefficient. ' The
function g6 is defined by

where
2

.=( ~ g—'ge"" ),

and where the sum on l is over all vortices, the sum j is



39 BRIEF REPORTS 9589

2--

0.2 0.4 0.8 1.0

FIG. l. The self-diffusion coefficient {in arbitrary units) as a
function of reduced temperature for the model superconductor.
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FIG. 2. Distribution of the bond-angle susceptibility, g6, for
the vortex system at a temperature t =0.60. Data are shown for
subsystems containing 2S6, 16, 4, and 1 vortices.

over nearest neighbors, nI is the number of nearest neigh-
bors of particle l, W, , is the number of vortices in the sys-
tem, and 01~ is the angle that the nearest-neighbor bond
between vortices I and j makes with an arbitrary axis.
Following the example of Strandburg, Zollweg, and Ches-
ter, ' ' we have used this quantity to examine the system on
different length scales. This was done by dividing the sys-
tem of 340 particles into smaller subsystems and calculat-
ing the average value of g6 for each subsystem. At each
temperature we typically ran 50000 updating steps of the
stochastic dynamics algorithm. We can use this function
to determine whether the bond-angle order observed at
melting can be explained by coexisting patches of solid
and liquid. If this is the case, then the distribution of the
g6 values for sufficiently sma11 subsystems should be given
by a sum of g6 in the solid near melting and the liquid
near freezing.

The value of the self-diff'usion coefficient (in arbitrary
units) versus the temperature of the system is shown in
Fig. 1. It can be seen from this figure that the vortex lat-

FIG. 3. A plot showing the trajectories of the vortices for a
run of 50000 updating steps at a temperature of t =0.6S.

tice melts at a temperature t =T /T, =0.65. Figure 2
shows the distribution of g6 for a variety of subsystem
sizes for t =0.6S. The g6 distributions for the vortices are
very similar to those observed in low-density Lennard-
Jones and hard-disk systems. Figure 3 shows the trajec-
tories of the vortices for the run at t =0.6S for a run of
S0000 time steps. It can be seen from this figure that al-

though large areas of the sample have melted there are
still regions in which the vortices remain localized. This
figure is consistent with the idea of the existence of an in-

homogeneous two-phase coexistence region just above the
melting temperature. As in Ref. 11, we are able to accu-
rately model the g6 distributions functions in the inter-
mediate regime as combinations of the distribution func-
tions in the liquid and the solid. From these results we

conclude that the topological melting behavior of the vor-

tex lattice is analogous to that observed in low-density 2D
Lennard-Jones and hard-disk systems. However, from
these results it is impossible to say whether the melting
transition is first order or Kosterlitz-Thouless-like. '

In suminary, we have developed an algorithm which can
be used to study the dynamical behavior of diffusive sto-
chastic systems. We have used this algorithm to examine
flux lattice melting in a thin slab (d = k) of model type-II
superconductor in which the vortex-vortex interaction is
described by the 3D vortex potential for straight Aux lines.
We see a melting transition in this system at a tempera-
ture well below the superconducting transition tempera-
ture. As long as the flux lines can be considered as rigid
rods the melting temperature will scale approximately
linearly with the thickness of the sample. By examining
the bond-angle correlation functions we have shown that
the topological melting behavior is very similar to that
seen in Lennard-Jones or hard-disk systems.
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