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In the framework of the Ginzburg-Landau theory, we derive and discuss the relation H B
=4tr(Fk;„+2Fy,g ——,

'
F;„h,m), which should be useful in numerical calculations of magnetic prop-

erties of type-II superconductors.

I. INTRODUCTION
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and the average field energy
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In this Report we derive the following identity:

H 8 =4n'(Fk;„+ 2Fy~g
—

2 F;„yo~), (l)
which holds in the Ginzburg-Landau approximation for a
superconductor in a homogeneous external magnetic field
H. This identity relates the external field, the average
magnetic field

The term F;„h, is nonzero only for inhomogeneous sys-
tems with position-dependent material parameters and
will be discussed at the end of Sec. II. The total micro-
scopic field B(x) includes the externally applied field and
the Geld generated by supercurrents.

Our relation (l) can be considered as a virial theorem
in the sense that it as well as the standard virial theorem'
are a consequence of invariances under a transformation
of the length scale. The relation is probably of no practi-
cal use for the interpretation of experiments but can be a
helpful tool for calculating magnetic properties of type-II
superconductors. In fact, we discovered this theorem
while trying to improve the accuracy of the numerical cal-
culation of the magnetization curves of inhomogeneous
superconductors.

Before deriving Eq. (l) we will first review some basic
facts of the Ginzburg-Landau theory that will be impor-
tant. We start from the Ginzburg-Landau free energy
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Variation of hF with respect to the fields A(x) and A(x)
leads to the Ginzburg-Landau equation and the equation
for the supercurrent. We will not need these equations in
the following and refer the reader to standard textbooks
for notation and details. Obviously, the absolute
minimum of the free energy (5) is the field-free state,
B=curlA=O, which is not of interest here. In order to
describe a superconductor in the presence of an external

field, one has to abandon the unrestricted minimization of
(5) and impose constraints on the fields 6 and A. We use
the constraint of fixing the average magnetic field B. The
constrained minimum of hF is now a function of B, and
standard thermodynamic arguments yield the external
field as the derivative of h,F with respect to B,

H=4. "F .
BB
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The vector notation in (6) is unconventional but self-
explaining.

In the following we implement the averaged magnetic
field by imposing what will be called "periodic boundary
conditions. " In a perfect, infinite, type-II superconductor
these boundary conditions fix the lattice parameters of the
vortex lattice and lead to Abrikosov's vortex state. " On
the other hand, one can also use this boundary condition
for nonperfect, nonperiodic superconductors with, for ex-
ample, normal-metal inclusions, grain boundaries, inho-
mogeneities in the chemical composition, or other defects.
In this case, the unit cell of our periodic lattice must be in-
terpreted as an artificial supercell, chosen large enough
such that the defect superstructure has no significant
physical consequences. We can finally let the size of the
supercell go to infinity in order to eliminate these ar-
tifacts. The periodic boundary conditions for A and 6
have the form

where N,p is an integer and b, p are the vectors spanning
the face of the cell. Equation (7) together with (8) yields
the Aux through this face quantized in units of the Aux
quantum Co 2+he/2e:

@,p —— A dx =N p@p .
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where b~ are three primitive vectors of the lattice and V is
the volume of the unit cell. Relation (10) is important
since it verifies that the periodic boundary conditions
indeed fix the average magnetic field.

The quantum numbers N,p= —Np also determine the
average magnetic field. By averaging 8 over a unit cell
one finds

A(x+b, ) =A(x)+V@„(x), (7a)

a(x+b„) =a(x)exp i g„(x). 2e
Ac

and depend on the lattice structure, characterized by the
set of lattice vectors b„, and on gauge potentials g„(x) as-
sociated with each b,. The conditions (7) mean that a
translation by a lattice vector amounts to a gauge trans-
formation or, in other words, that the fields A and A are
invariant under lattice translations combined with specific
gauge transformations. Consequently, all gauge-invariant
quantities, such as B(x) or ~A(x) ~, are periodic. The
gauge potentials g„(x) cannot be chosen freely but must
preserve the single valuedness of A and 5,, which implies
the quantization of the magnetic Aux. The single valued-
ness of h, when circling along the edges of a face of a unit
cell requires

2e
[g.(x) +gp(x+ b, ) —g, (x+bp) —gp(x) j = —2+N, p,hc
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II. DERIVATION OF THE UIRIAI. THEOREM

We are now in a position to derive our identity (1). We
first change the length scale by a factor A, ,

x'=x/A, ,

ai(x') =a(Xx'), (i2)

Ai(x') -XA(zx') .

In the following, derivatives with respect to x' will be
denoted by a prime. Substitution of the old variables by
the rescaled ones in the free energy (5) leads to

and introduce a transformed order parameter and vector
potential:
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and changes the boundary conditions to

A (x'+b,') =A (x')+V'q, „(x'),

Wg(x'+b,') =ai (x')exp i g~„(x')
c

ergy term by a factor I/X, and the average field by a fac-
torX .

We next differentiate the free energy with respect to k,
set A, =1, and obtain from BAF/N, =0,

0 2Fkjli 4Ffjgfd+ ' 28 .
84F

The quantum numbers N p are unchanged, but Eq. (10)
implies a changed average magnetic field,

Bi.= —,
' N,pe.pub,'+o/V' =X'B . (i7)

Thus we have shown the following scaling property of the
Ginzburg-Landau free energy: The constrained
minimum of the free energy is unchanged when the kinet-
ic energy term is multiplied by a factor I/A, , the field en-

In calculating dhF/8k we can neglect the X dependence of
4 and A because of the stationarity of hF under variations
of 6 and A. Equation (18) and the thermodynamic rela-
tion (6) together give us directly the virial theorem in the
special case that F;„h, =0.

In the generalized virial theorem (1), the additional
term F;„h,~ arises if the material parameters a, P, and m
of the Ginzburg-Landau theory depend on x. In this case,
a change of the length scale also affects the "constants" a,
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P, and m, and leads to additional k dependences in Eq. (14) that require one to replace a, P, and m* by

aq(x') —= a(kx'), Pi (x') =P(kx'), mq* (x') =—m*(A,x') .

Consequently, the derivative Bt5F/Rat . k =1 has an additional term which we denote by F;„h, .

1
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F;„h, adds on to the right-hand side of Eq. (18), which
leads to the generalized virial theorem (1).

III. CONCLUSION

It is straightforward to derive a more generalized virial
theorem which holds for each single component of 8 and
H. One simply has to scale the three space directions by
diA'erent factors. The less general version (1), however, is
sufficient for most purposes, in particular, if the directions
of the magnetic fields are known from symmetry con-
siderations. It is also straightforward to generalize the
virial theorem to anisotropic superconductors and to tem-
peratures outside the Ginzburg-Landau range.

An obvious application of the theorem is the evaluation
of the applied field H for a given averaged total field. The
most costly part of such a calculation is the determination
of the equilibrium magnetic field 8(x) and order parame-
ter h(x) at fixed average field, either by solving the
Ginzburg-Landau equations or by other means. The stan-
dard calculation of the external field from Eq. (6) requires

doing the costly part at least 2 times in order to numeri-
cally get the derivative of the free energy with respect to
the average field. Formula (1), on the other hand, re-
quires nearly no additional calculations, since all the need-
ed quantities are already available from a single deter-
mination of the equilibrium field and order parameter,
and allows one to avoid the often error inducing process of
numerical differentiation.

The Ginzburg-Landau. equations have been extensively
studied, and the virial theorem (1) can easily be derived

by common arguments. Hence, it is possible that this
theorem can be found somewhere in the literature, al-
though we do not know where.
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