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Monte Carlo study of self-avoiding walks on a critical percolation cluster
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We present the results of Monte Carlo simulation for self-avoiding walks on a percolation cluster
for square and simple cubic lattices performed very close to the perco1ation thresholds and estimate
critical exponents v and y defined by the disorder averages of the mean-square radius of gyration
and the number of self-avoiding walks, respectively. Our results for v indicate a behavior rather
similar to the self-avoiding walks on fully occupied lattice unlike the large increase in v reported in
the only previous work of this kind by Kremer given for the diamond lattice. Our results for y sug-

gest an increase from the full lattice value just at p, in three dimensions, while in two dimensions
the asymptotic behavior appears to be similar to that of the ordinary self-avoiding walks. We also
consider the possible crossover from fractal to Euclidean behavior and discuss the reasons why no
crossover scaling is observed for the mean-square radius of gyration in the present calculation.

I. INTRODUCTION

This paper deals with a particular case of the efFect of a
quenched disorder in the medium on critical behavior
taking place in that medium. Specifically we treat the
problem of self-avoiding random walks (SAW's) confined
to clusters of the percolation problem on two- and three-
dimensional lattices. This problem is a direct analog of
the problem of a linear-chain polymer trapped in a
porous medium where excluded regions can occur with
the length scales of the order of the persistence length of
the chain. In this work we present the full details of a
previous Letter' by two of us on this subject as well as
some additional results on the aspects of the problem not
discussed there.

Some time ago Harris presented an argument which
states that the presence of impurities in a magnetic sys-
tem can have a nontrivial e6'ect on the critical behavior if
the specific-heat exponent a is positive. The positive a in
principle indicates that the fixed point for the pure sys-
tem is unstable with respect to the quenched impurities,
and thus, the critical behavior for any amount of impuri-
ties is expected to be diA'erent from that of a normal sys-
tem. In the case of self-avoiding walks in disordered
media, one might expect that the straightforward appli-
cation of this argument (called Harris criterion) to the n

vector model in the n ~0 limit ' would apply. However,
as we shall see later„ there are additional complications.

The presence of impurities in a magnetic system im-
plies that the spin interaction between nearest-neighbor
sites i and j, represented by a Hamiltonian with n-vector
spins,

is inactive if either site i or j is an impurity site. Thus for
the inactive bonds, g;, =g;g =0, where g; =0 corre-
sponds to the site disorder or impurity site. In the n ~0
limit or equivalently for SAW, this implies that a walker

is allowed to visit only randomly distributed nonimpurity
sites, and thus, the sites of percolation clusters for a lat-
tice model.

The specific-heat exponent e for SAW is obtained by
the hyperscaling relation d v=2 —cx and becomes, with
the well-known Flory approximation formula for v,

4—d(x=2 8v =

Thus, the critical behavior of SAW's on a randomly di-
luted lattice would be expected to be di8'erent froID that
of ordinary SAW's for any amount of disorder for d (4
according to the original Harris criterion. Chakrabarti
and Kertesz obtained the critical behavior similar to
that of classical random walks (v= —,', y = 1) by applying
n ~0 limit to the existing work on the randomly diluted
ferromagnetic n-vector model. Derrida has also studied
SAW s on random strips and found, similarly, an indica-
tion of a change in the critical behavior even for a weak
dilution. On the other hand, Harris himself argued that
the disorder average is very much trivial and all critical
exponents remain unchanged for any p ~p„where p
represents the concentration of nonimpurity sites and p,
is the critical concentration above which an infinite net-
work appears. Also, a modified analysis of his criterion
indicates that the critical behavior of SAW is not aA'ected

by lattice dilution even though o. is positive. This was
partially supported by field-theoretic renormalization cal-
culations.

More recently Lyklema and Kremer' presented an ar-
gument that the randomness is irrelevant except at the
percolation threshold. They argued based on analytic
calculations that for p & 1 the disorder average of mean-
square end-to-end distance is greater than on the full lat-
tice. In addition, they also presented an argument that as
p~p,+ this behavior becomes singular so that the Flory
exponent v is greater than the full lattice value. This
singularity is claimed to come from the denominator of
the disorder average of the mean-square end-to-end dis-
tance, defined by
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QP(C&) ~pP(p) ~ p(p —p, )~. (4)

Here P(p) is the probability that a given site belongs to
an infinite cluster, and it approaches zero as p ~p,+; put
another way, if p is fixed at p, and N~~, then the
denominator picks up an extra singularity, as a function
of N which would not be present if pWp, . However, this

type of singularity would be picked up by the factor
P(Cz) both in the denominator and numerator. Accord-
ingly the numerator in Eq. (3) may also acquire a similar
singular form at p, which may cancel that of the denomi-
nator. Thus it is not clear that, even in the N —+ ~ limit,
their argument rigorously rules out the equality between
the two Flory exponents. Thus we generally write

Vp V,

where v and v are the Flory exponents on the lattice of
concentration p and on the full lattice, respectively.

Kremer" reported the results of Monte Carlo simula-
tions on the randomly diluted diamond lattice where he
found that the Flory exponent is indeed unchanged for a
weak dilution. On the other hand, as the percolation
threshold is approached (to within about 29% of p, ), a
crossover was found to a new higher value, v —=—', . An

C

agreement with a scaling hypothesis was also reported in
the same reference when this value of v was used. In

C

addition, a Flory type formula was proposed" which
agrees well with the reported results:

3

where D is the fractal dimension of the critical percola-
tion cluster.

This has been supported in two dimensions by two-
parameter, small-cell real-space renormalization stud-
ies, ' ' where a renormalized fugacity of each step is
written as a function of two different statistical weights, a
probability of occupation p and a fugacity of each step E.
The random fixed point at p =p* ( ( I) and K =K* is
found unstable with respect to the nonrandom fixed
point, and thus, the renormalization flows are away from
this point. This result is strictly opposite to that suggest-

(R'(C)&= +P(C )(R'(C )& QP(C ), (3)
CN

where ( ) denotes the average over all SAW's on a
given disorder configuration and . denotes the average
over the disorder configurations, and P(C~) is the proba-
bility of having a disorder Cz which supports at least one
¹tepSAW on it. Since the critical behavior of SAW's
is governed by asymptotically long walks and since such
walks can exist only on the infinite cluster, it appears that
we need to consider only the walks on the infinite cluster.
(Note, however, this remains an unproven assumption
and the consideration of successively larger but finite
clusters may be necessary. ) In this limit, thus, the denom-
inator is proportional to the probability to start a walk on
the infinite cluster;

ed by the original Harris criterion, and in addition, the
Flory exponent obtained from these renormalization
studies agrees well with Eq. (6). (We do note that the in-
stability referred to above' ' results from the fact that
the recursion relation for p is made independent of E, and
thus it is actually built into their method from the start. )

However, the numerical agreements seem to have been
accidental: In the Monte Carlo evaluation of v, there

C

was an elementary error in the data analysis" as was
pointed out in a recent Letter. Due to the failure in tak-
ing proper account of the mixing of two different loga-
rithmic scales, the Flory exponent was significantly
overestimated. A similar mistake was also made for the
concentrated chains. While the Flory exponent of such
chains is expected to assume the classical value (v=0. 5)
for a chain concentration e +0.25, the corrected result
appears to become about 0.55. This indicates that the
chains used in that simulation (N =50) are probably not
long enough to estimate the exponent v by the method
used there. In the case of the reported agreement with a
scaling hypothesis, a critical examination of their own
data suggests that their conclusion was also not fully sub-
stantiated, as will be discussed in detail below.

Unfortunately this incorrect value —', has been referred
to as the only numerical estimate of v for a number of

C

years. Since the full lattice value of v is about —', , the large
difference was believed to be a numerical evidence that
the critical behavior of SAW at p, is different from the
full lattice. However, after correcting for this error and
otherwise using the same method of analysis, their data
would yield an estimate for v of about 0.62 or even less,

C

which makes the previous claim based on this particular
numerical evidence essentially useless. Thus it seems
very desirable to perform a high precision numerical
simulation and proper analyses for this problem, which
we have attempted to undertake in this work.

In this paper, we present the results of our Monte Car-
lo simulation for SAW's performed on the site percola-
tion clusters both for square and simple cubic lattices.
This work is the detailed and extended version of a previ-
ous study (on v only) by two of us. ' We study the critical
behavior of SAW's placed on the infinite cluster. In par-
ticular, we focus on the exponent v and y for such walks

defined by (R~) -N ' and G~ —p Nr ', respectively.
To our best knowledge, our result of v on the square

C

lattice is the first numerical measurement of the Flory ex-
ponent of SAW's on a diluted lattice in two dimensions,
and the estimates of y both for square and simple cubic
lattices are also the first calculations using Monte Carlo
simulations for this problem.

The exponent y for the number of SAW's averaged
over all clusters was proved to remain unchanged by Ly-
klema and Kremer even at p, . ' ' ' In principle, this
proof was given for ¹tepSAW's on all clusters includ-
ing those that do not support any ¹tepSAW; this could
be done for y because the number of SAW's on such a
cluster, zero, is well defined unlike the mean-square dis-
placement of X-step SAW's. If we consider only the clus-
ters that support at least one ¹tepSAW, however, the
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disorder average Gz now acquires a normalization
denominator just as in Eq. (3). Still, if p is fixed at some
value above p„ the denominator is not singular in N and
thus y is unchanged. However, as p —+p,+, both the
denominator and the numerator of the expression G&
may acquire extra singularities in a similar way to those
in Eq. (3) which may or may not cancel. In other words,

y by this definition may or may not change at p, from the
undiluted value.

This paper is organized as follows. In Sec. II we
present our Monte Carlo data performed for square and
simple cubic lattices. We present our raw data for the ex-
ponents v and y defined by the disorder averages of
mean-square radius of gyration and number of SAW's,
respectively. In Sec. III we describe the possible cross-
over of SAW's from fractal critical behavior to a Euclide-
an behavior. We first analyze our percolation cluster for
p close to percolation thresholds and show that our walks
are fully confined to the fractal region of clusters. We
then use our present Monte Carlo data to test for the pos-
sibility of crossover scaling. In Sec. IV we discuss and
summarize the results. Details of our Monte Carlo
methods are presented in the Appendix.

II. MONTE CARLO RESULTS
FOR THE EXPONENTS v AND y

We have studied SAW's on the percolation cluster by
standard Monte Carlo simulations using the Hoshen-
Kopelman algorithm' developed for percolation and a
simple, unbiased sampling method' for SAW's.

We generate the site-percolating incipient infinite clus-
ter, defined as the cluster which spans the cell of I lat-
tice sites along all coordinate directions. After identify-
ing such a cluster, any two opposite edges or faces are
connected by the periodic boundary condition for the
purpose of performing SAW's on them. Our cells are of a
linear size L where L =100 for square lattice and 50 for
simple cubic lattice. While these values are not large,
they are sufFicient for our purpose as we demonstrate in
the Appendix.

We focus our study for p very close to p, (within 0.1%)
unlike the previous study on the diamond lattice" where
the value of p closest to p, was still about 29% (of p, ) off.
Our values of p closest to p, are p =0.59273 on the
square lattice and 0.312 on the simple cubic lattice,
where the best currently available values of p, are
0.592745+0.000002 (Ref. 19) and 0.3117+0.0003 (Ref.

20) for square and simple cubic lattices, respectively. In
addition we have also performed some simulations of
SAW's for p =0.4, 0.5, and 1.0 on the simple cubic lat-
tice and for p =0.65 and 1.0 on the square lattice in or-
der to compare the convergence behavior in the asymp-
totic limit and to study the crossover scaling. More
efFicient enrichment techniques were also tried, but we
found that such a method tends to produce unacceptably
biased samples in this particular problem as we shall see
below. Details of our method will be presented in the
Appendix.

The critical exponent v can be obtained from the
Monte Carlo data for the disorder average of the mean-
square radius of gyration. We concentrate on the mean-
square radius of gyration rather than the more common
end-to-end distance since the statistical fiuctuations are
much less of a problem for the former. A possible draw-
back of the radius of gyration is that it contains the
effects of -many small internal distances; however, we
have confirmed that the two measures of chain lengths
show the same trend. Some results for both quantities
are shown in Table I. Our results for v are expressed in
terms of its effective value determined by SAW's of up to
N steps or less, denoted by v&, defined by

X&s„'(C)& 1
(7)% —1 2

'

(s', (C) )+ (s~(C) ) +2 g (s,'(C) )
1 =2

If the correction to scaling for this quantity is of a
power-law nature, then the asymptotic expression for v&
should be

v~ =v+bN +cN '+
where 6 is the leading correction-to-scaling exponent '

and b and c are some nonuniversal constants.
The exponent y can be obtained from the attrition in

Monte Carlo sampling. Since each walk is not allowed to
intersect with itself or to visit the randomly distributed
impurity sites (vacancy), those walks which would form a
closed loop or which are trapped by the impurity sites
must be rejected from the ensemble of random walks.
For longer walks the probability of forming loops or
visiting dead ends is greater, and thus, the rate of survival
decreases as N increases. In fact, the walk suffers such a
high attrition rate in this particular problem that a
significant number of samples were obtained only up to

1/2 1/2
TABLE I. Examples of the radii of gyration (s~) and end-to-end distances (r~) near p, . S

gives the number of starting points with one or more SAW's.

20
40
60
20
40
50

2 )1/Za

3.45+0.04%
5.77+0.09%
7.78+0. 57%%uo

2.76+0.06%%uo

4.24+0. 15%%u&

5.47+0.69%

696 266
207 190

4 854
232 430

15 815
1 225

p )1/2a

9.41+0.05 Po

15.7 +0.22%
21.1 +1.34%%uo

626 627
186 916

4455

'The estimates are quoted with their fractional errors.
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3 (X)
A (N —1)

G~(RW)= lnp' —ln
G~ i(RW)

1+(y —1)—+ (10)

Here p' denotes the connective constant on the infinite
cluster and the ratio G~(RW)/G~ I(RW) is simply the
average number of allowed sites for a S-step RW to ad-
vance on the infinite cluster and, therefore, is indepen-
dent of (or at most weakly dependent on) X. Thus, the
critical exponent y is obtained from the slope of the
in[A (X)/2 (X —1)]versus I/%plot.

Our data for v& on the simple cubic lattice for
p =0.312 averaged over 240 clusters (grouped into six
batches) are compared in Fig. 1 with the corresponding
data on the fully occupied lattice. (This and the two fol-
lowing figures are essentially identical to those in the ear-
lier note by two of us, ' but they are included here for
self-containedness. ) For small N, v~ near p, is greater
than the corresponding result on the full lattice; however,
beyond about %=25 it seems to decrease far below the

%,„=70and 50 for square and simple cubic lattices, re-
spectively. While these values are relatively small, they
are, however, sufficient to observe the trend for the
asymptotic behavior.

The rate of survival is in general proportional to the
number of SAW's divided by the number of unrestricted
random walks (RW's). Thus, we have

A (X)/A (1) cc G~(SAW)/G~(RW),

where A (m) denotes the number of surviving m-step
walks. Thus, using an asymptotic expression for
Gz(SAW), we get

previously reported value of 23 for the diamond lattice.
Since the vz at N =50 is already about 0.612+0.01, we
expect v to be even smaller than this value.

C

We also obtained additional data for p =0.32 for over
400 clusters and found the critical behavior very similar
to that for p =0.312 (not shown). With these data, it
would require an unjustifiable bias to conclude that v is

C

greater than v. In fact our data indicate the v cannot
C

be very different (if at all) from that on the full lattice. If
we accept that the leading correction term is nonanalytic
as on the full lattice, ' this conclusion is even more
strongly forced on us.

Our data on the square lattice for p =0.59273 aver-
aged over 1400 clusters (grouped into seven batches) are
plotted in Fig. 2. The behavior of vz is similar to that on
the simple cubic lattice for a wide range of X: up to about
the 25th step, v& near p, is monotonically increasing, and
beyond that it seems to merge to the full lattice result
suggesting that the Flory exponent is again not very
different from that on the full lattice [with Eq. (5) in
mind].

Figure 3 is a log-log plot of the mean-square radii of
gyration for p close to p, divided by the corresponding
data on the full lattice as a function of the number of
steps N, analogous to a figure in Ref. 11. For the square
lattice, the curve becomes Rat already for X) 30, indicat-
ing that the lattice dilution simply affects the nonuniver-
sal amplitude of the scaling ansatz with the Flory ex-
ponent remaining unchanged. In three dimensions, the
result is somewhat less clear. Although we do not ob-
serve an asymptotic Oat region, the slope of the plot de-
creases, suggesting that X =50 is not long enough to esti-
mate v in this manner. If we estimate v from the slope

C
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FIG. 1. The effective v~ for p =0.312 on the simple cubic
lattice in contrast with corresponding values on the full lattice.
The error bars indicate the standard deviation among the aver-
ages from six batches of data each of which was obtained by
averaging over 40 clusters.

FIG. 2. The effective v& for p =0.592 73 on the square lattice
in contrast with corresponding values on the full lattice. The
error bars indicate the standard deviation among the averages
from seven batches of data each of which was obtained by
averaging over 200 clusters.
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FIG. 3. Ratio of the disorder averaged mean-squared radius
of gyration to the radius of gyration on the fully occupied lat-
tice, (s~(C))/(s~), in log-log scale against N for p =0.59273
and 0.312 for square and simple cubic lattices, respectively.

near N =50, we will get v =0.605+0.01, which agrees
C

reasonably well with the linearly extrapolated vertical in-
tercept in Fig. 1.

These results are consistent with the raw data of the
earlier Monte Carlo work. "As is clear from Fig. 1, even
the value of v& for the fully occupied lattice is still in-
creasing at N=50 steps while it must decrease toward
v=0. 588 asymptotically. Since the full lattice behavior is
already complicated in this three-dimensional case for a
wide range of N, unlike the square lattice case where v&
increases monotonically over a whole range, we do not
know how it affects the slope in Fig. 3 for relatively small
¹ The decreasing trend in this kind of slope was not
taken into account in the earlier work, " although such a
trend was observable in their data. Thus our value men-
tioned above (about 0.605) on the simple cubic lattice
should serve as an upper bound for the correct Flory ex-
ponent v . It is necessary to extend considerably the

C

length of walks in order to estimate the exponent accu-
rately by this method.

Both for square and simple cubic lattices, the end-to-
end distance itself (and equivalently the radius of gyra-
tion) for p (1 is in general greater than that on the full
lattice, in agreement with the analytic argument referred
to in the previous section. '

In order to observe the correct asymptotic behavior,
we attempted to extend the length of walks using the
standard enrichment method on the square lattice. We
will not discuss the details of this method here as they are
well known. However, we found that this method ap-
pears to give biased samples for our particular problem at
least in two respects.

First, enrichment does not seem to give the correct ex-
ponent y. %"hile the simple sampling method produces a
sharp straight line in the plot of in[A (N)/A (N —1)]
versus 1/N ag we will see later, the result of the enrich-
ment method seems to be rather dependent on the num-
ber of trip. ls in each stage, unlike on the full lattice.
(Note that the number of surviving walks of this method

0.15

O.lP-

Q.05-

o.o I

0 50 75

FIG. 4. The distributions of the radius of gyration for N =25
and 45 using simple sampling and enrichment technique. The
distribution function was obtained for each starting. point and
averaged over all starting points with equal weighting.

does not decrease monotonically; however, the ratio from
two consecutive steps must provide a consistent behav-
ior. )

Second, the distribution of the radius of gyration ap-
pears to be significantly shifted from that obtained by
simple sampling. We obtained distribution functions of
the radius of gyration P(s ) by Monte Carlo simulation
using both simple sampling and enrichment methods for
N =25, 45, 65. For the enrichment method, we chose the
length of each stage to be ten steps and the number of tri-
als to be seven in each stage. Our data for N =25 and 45
are shown in Fig. 4. For N =25, two curves overlap
nearly completely showing that the two methods are con-
sistent for the first few stages, while for N =45 a
significant shift is already apparent. We found for N =65
the discrepancy to be even greater than this (not shown).
It is obvious that both methods produce similar results
for the first few stages where the two methods are not
very different anyway.

These observations appear to emphasize the relative
importance of an unbiased sampling and thus, restrict
further extensions of this type of numerical calculations
for this problem due to the requirement of prohibitively
long computing times, even with today's fast computer
systems.

Our data for a simple cubic lattice of the function
defined in Eq. (10) versus 1/X are shown in Fig. 5. For p
above p„e.g. , p =0.4 and 0.5, data show parallel lines
with a slope 0. 166+0.01, indicating that the critical ex-
ponent y is well defined and is unchanged for weak dilu-
tions in agreement with theoretical expectations. ' '
For p =0.312 our data indicate a nontrivial slope over a
wide range of N obtained in our simulation. [For
p =0.32 we also obtained a similar result (not shown). ] If
we calculate the exponent y from this slope, we will ob-
tain



9566 SANG BUB LEE, HISAO NAKANISHI, AND Y. KIM 39

-0.0 -0.05

-Q.l-

p=l.o
~ ~

~ ~ ~
~ ~ ~ ~~~~OO+ ~ ~ +

p=0.5
~ ~~tyO ~ ~ ~~ ~ ~ ~ ~ ~ ~ ~

p=0.4.

-Q.l0-

I

~ -O.l5-

p=1.0
~ ~ ~

~ ~~~ 0

p=0.65

-02-

p= Q.3l2

~ ~
~ ~ ~

~0 ~ ~ ~ 0 ~~ +lyO

~ ~

~~ ~~ ~ ~ ~ ~ ~ ~~ ~ ~ ~
~O ~

~ ~

~ ~

-0.20-

0 ~ ~
~ ~ ~ ~

~eh ~~
ze ~

p=0.59273
~ ~

~ ~
~ ly ~ ~

Op ~ S ~1
~ ~

-03 l I

80 40

N

l0
-0.25 I 1

80 40
r

20 lQ

FIG. 5. Function 1n[A(N)/A(N —1)] in Eq. (10) plotted
against 1/X for various values of p for the simple cubic lattice.
An asymptotic slope of each plot gives y —1 for a given p.

FICr. 6. Function In[A(N)/A(N —1)] in Eq. (10) plotted
against 1/N for various values of p for the square lattice. An
asymptotic slope of each plot gives y —1 for a given p.

y = 1.40+0.02
C

(3D),

which is significantly greater than the full lattice value
(=——', ).

Corresponding data for the square lattice are shown in

Fig. 6. Unlike the case of a simple cubic lattice, the plots
for p =0.592 73, 0.65, and 1.0 in this figure are all paral-
lel indicating no change in y even at p, . Our estimated
value of y near p, is

y„=1.33+0.02

which is very close to the full lattice value (=- —', ).
Our result for y on the simple cubic lattice is rather

surprising in view of the theorem proven by Lyklema and
Kremer' that, if y is defined using averages over all clus-
ters, then it remains unchanged at any dilution. ' ' '
However, this definition is somewhat unnatural since
even the clusters which do not support a X-step SAW are
included for that X, as we discussed earlier. With our
present definition of y using the averages only over those
clusters supporting at least one S-step SAW, the ex-
ponent y should not change for p )p„but what happens
at p, remains unclear. Still, in view of our conclusion on
the exponent v, we would normally expect y to remain
unchanged even there. This could actually be the case
even though we seem to obtain a different value of y at p,
for two possible reasons.

First, as stated before, since the length of walks for
which enough samples were obtained in our simulation is
not very large, our data do not rule out the possibility of

a slow crossover to the full lattice result for X much
larger than X „obtained in our simulation. Second, our
data are obtained from just the inj7nite or percolating
cluster. If this average is different from that over all clus-
ters (including the Pnite or nonpercolating clusters as
long as they support at least one ¹tepSAW), then this
could also explain the discrepancies.

In general, the contributions from nonpercolating clus-
ters are expected to diminish more slowly in three dimen-
sions than in two as X~~ because the mean size of the
clusters is more slowly decreasing in three dimensions
when p is away from the percolation threshold. This re-
sult is also expected from numerical observations: for the
square lattice, the number of occupied sites on the span-
ning cluster is over 78% of all occupied sites, while for
the simple cubic lattice less than 36%%uo are on the infinite
cluster indicating that there are more small clusters in
three dimensions. Thus, in order to observe a correct
asymptotic behavior explicitly, we again need to extend
the length of walks considerably. We believe this part of
the problem deserves much further study.

III. FRACTAL TO EUCLIDEAN CROSSOVER

Recently we have seen some studies" ' which pro-
pose generalized homogeneity for functions such as the
mean-square end-to-end distance of the SAW's on ran-
domly diluted lattices and study the crossover scaling
from fractal to Euclidean behavior. Since the percolation
cluster can be represented as a fractal up to the coher-
ence length g, where
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Pc

Pc

pere

with v „, being the percolation coherence length ex-
ponent, one normally expects that for (Rz ) «g, a walk
feels a fractal substrate structure and at (Rz) —g it
crosses over to a Euclidean lattice behavior. Therefore
the crossover region is defined by

(12)

or equivalently

%fp —p, I

' —1 . (13)

In particular, a natural crossover scaling ansatz for the
end-to-end distance in this case would be

«' & =x 'f(alp —p, I
'),

where

const, as x ~0,f (x)=
.x as x —+~

(14)

(15)

This type of scaling function was first proposed by Kre-
mer, " and more recently, by Roy and Chakrabarti and
by Kim from the nodes-links model 2 of a percola-
tion cluster. All these works assumed that the critical be-
havior right at p, is different from that on the full lattice.
Reference 11 in particular made a numerical study of this
ansatz and reported good agreement with their Monte
Carlo data. In this section, we analyze this problem in
detail. First, we will show that our own Monte Carlo
data obtained close to p, fall well within the fractal re-
gime and thus do not show such a crossover behavior.
Next, we consider additional data away from p, to study
the possibility of scaling as in Eq. (14). Third, we
reanalyze the data of Ref. 11 in the same way to show the
apparent absence of the proposed scaling form, and fina-
ll, we discuss some alternate forms of crossover scaling.

using the best known values of v„„„v„„,(d =2)=—', (ex-
act) and v~„,(d =3)—=0.88, g/go+-=2X10 and 5X10
for square and simple cubic lattices, respectively. Thus,
assuming that. the amplitude go+ is of order unity, we
have a coherence length =1—4 orders of magnitude
greater than the contour length of walks.

To confirm this in another way we measure the extent
where a percolation cluster shows its fractal features. We
have plotted on the log-log scale the number of occupied
sites M(r) on the infinite cluster in the circle (sphere for
d =3) of radius r whose center is set on every starting
point of SAW's. We expect at r-g the slope of such a
plot to increase from a fractal dimension D to a spatial
dimension d. This break point should appear at
r-g &R,„ if our observation is indeed a crossover. Vs-
ing the method described in the Appendix, we obtained
the results as shown in Fig. 7. This figure clearly indi-
cates that no such crossover occurs over the range of
r & L /2. Here L is the linear dimension of the cluster we
have chosen in the simulation and is 100 and 50 for
square and simple cubic lattices, respectively.

We believe that a slight decrease in the slope near the
edge in each plot is due to the underlying finite-size effect
associated with the free boundaries. In fact such a finite-
size effect exists at every point in the figure and results
in our measured fractal dimensions near p„
D =1.88+0.005 for d =2 and 2.50+0.005 for d =3 to
be very slightly smaller than the theoretically expected
values. ' For @=0.32 on the simple cubic lattice, data
also show a straight line for a wide range of r, however
with the slope (-=2.75+0.005) significantly greater than
the expected fractal dimensionality D —=2. 52. ' This
seems to indicate that the cluster for p =0.32 resembles a
fractal of somewhat different fractal dimension for a cer-
tain extent of length scale, and presumably, this might be
a reason that the critical behavior for this value of p was

A. Absence of crossover in our data near p,

Our data observed in Figs. 1 and 2 appear somewhat
similar to a crossover from one universality class to
another as occurs in some problems in critical phenome-
na. Thus the basic question we can ask is, did such a
crossover distort our conclusions on the asymptotic value
of the exponent v? In order to answer this, we will first
see if the walks generated in our simulation indeed
reached the crossover region where we expect (Rz ) -g.

If our observed behavior in Figs. 1 and 2 is indeed such
a crossover, we would expect at least R,„)g where
R,„ is the longest end-to-end distance ( &X,„)obtained
in our simulation. On the other hand, if R,„«g, then
the walk would be fully confined to a fractal region of the
cluster and, thus, would be expected to show a fully disor-
dered critical behavior. We believe that the coherence
length of the clusters generated in our simulation is con-
siderably longer than the end-to-end distance of SAW's
we obtained in our simulation. Rough estimation gives,

2 3 4 10 20 30 50

FIG. 7. The number of occupied sites M(r) on the infinite
cluster within the circle (sphere for 30) of radius r plotted
against r.



9568 SANG BUB LEE, HISAO NAKANISHI, AND Y. KIM 39

B. Test of crossover scaling from our extended data

We have also studied the proposed scaling form of Eq.
(14) with our present Monte Carlo data for the simple cu-
bic lattice. Since an asymptotic behavior of the end-to-
end distance is in general similar to that of the radius of
gyration, the same scaling form should also be valid for
the radius of gyration as well. We thus studied the scal-
ing function of the mean-square radius of gyration
in large and small limits of the scaling variable

x=N)p —p, [

"' ".
Our data for the simple cubic lattice plotted on the

log-log scale are shown in Fig. 8. Figure 8(a) is for the
trial value of v =0.59 assuming that the Flory exponent

remains unchanged for any p (in agreement with our ob-
servation). Since (sz ) ~ N for N ))1, this graph is in
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FIG. 8. Function f(x) in Eq. (14) plotted against the pro-
posed scaling variable using our Monte Carlo data. (a) is for the
choice of v =0.59 and (b) is for v =0.612. Solid lines are in-

&c &c

tended for visual aids.

not very different from that for p =0.312 as we discussed
before.

We also note that no walks starting from the center of
cluster reach the boundary of the cluster for %~X,„
both for simple cubic and square lattices and thus,

,„&l. /2 « g. Thus we confirm for our values of N, „
the walk is fully confined to the fractal region and no
crossover from a disordered critical behavior to a pure
full lattice behavior can possibly exist in our data near p, .

principle similar to Fig. 4 in the asymptotically large X
limit except that the horizontal scale is changed;
N~N~p p—, ~

"" . Thus, as was discussed in Sec. II,
since N =50 is not long enough to observe an asymptotic
limit, our data for p =0.312 and 0.32 in this figure do not
show the correct limit of scaling in the x «1 region.
Since the observed value of effective v& is 0.612+0.01 up
to N, „=50, the asymptotic value of v~ (=0.59) would

c
be too small to observe the correct x «1 behavior up to
our values of X „even for p considerably greater than
p„' however, we expect our data for each p to eventually
show a flat curve if we extend the length of walks
sufficiently. In practice, however, it would be difficult to
observe a correct asymptotic behavior in this kind of
figure even for a relatively large N by Monte Carlo simu-
lation. Recent work indicates that, for X over 2000
steps on the full lattice, the observed effective Flory ex-
ponent is just about 0.593, while theoretically the best
known value is 0.588.

Figure 8(b) is for the trial choice of v~ =0.612 which is

identical to our observed value of effective vz at X =50.
Assuming that the length of walks is sufficient to observe
an asymptotic behavior (despite our earlier observation),
we try to examine the possibility of data collapsing.
Since some of our values of p are extremely close to the
best known p„and since the contour length of the walk is
relatively short, data are far apart for each given p, and
thus, it is rather difficult to visualize the degree of data
collapsing in our case. (Notice that the horizontal scale
is broken in two places. ) An asymptotic straight line
drawn for each given p is for a visual aid. For this value
of v, data seem to show correct x ~0 limit, i.e.,cf (x) =const for x «1; however, the prefactor seems to
depend upon p. Thus, the data do not seem to scale in
this limit. (Note that we only need to consider N))1
since an asymptotic behavior of SAW's for each p is ex-
pected only in this limit. )

For x )&1, since walks are not long enough for p close
to p„oui data for p =0.312 and 0.32 do not reach this
region. We, instead, use the Monte Carlo data for
p =0.4 averaged over 130 clusters and for p =0.5 over 80
clusters to observe this limit. The data for these values of
p show parallel straight lines with nonzero slope for
X))1 but do not seem to collapse onto a single line even
in this limit. The absolute slope of these lines is less than
the expected value of 2(v —v) =-0.048 (with the present

c
choice of the trial value of v ), which indicates that our

cN,„, even for p relatively larger than p, (N,„=100for
p =0.5), is still not long enough to reach the asymptotic
limit. This has been already observable in Fig. 8(a),
where the plots for p =0.4 and 0.5 were not flat for large
N when scaled with v =0.59.

c
Thus, in both limits, the scaling function shows the

correct limit with the choice of v =0.612; however, the
c

data do not seem to collapse onto a single curve. Al-
though a proper asymptotic limit has not been reached
yet, our data in Fig. 8(b) seems to be suggestive of the ab-
sence of such a crossover scaling. We have in addition
studied the possible scaling form with the previously re-
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ported value" of v~ =—'„but we were not able to obtain

the correct x ~0 limit where the data should become Hat.

C. Reanalysis of Kremer's data for crossover scaling

We have also reviewed the same scaling ansatz with
Kremer's Monte Carlo data" and plotted them in Fig. 9.
Figure 9(a) is for Kremer's original choice of v (=—', ) .

Although these data have previously been claimed to
scale with this value of v, our plot indicates that this

C

choice is too large to observe a correct x —+0 limit, in
agreement with our observation from our own data. Fig-
ure 9(b) is plotted for a test value of v =0.635 which

&C

shows the correct x~0 limit, but data do not seem to
scale. Also this value of v does not seem to give a

C

correct slope in the x ))1 region. While an asymptotic
slope 2~v —

v~ ~

=0.16 for this choice of v is expected, a
C C

measured value is less than 0.14, indicating that the
length of walks used in his simulation is also not long
enough. (Note that he used N, „=70 for p =0.75 and
0.85.)

Thus even Kremer's own data do not exclude the possi-
bility that the slope for the x ((1 region goes further
down in the asymptotic limit of N~ ao. In fact, this is
already seen in Fig. 9: for p =0.55 indicated as circles in
both (a) and (b), the slope calculated between the last two
points (N =30 and 50) is less than that of the first two

D. Alternative crossover scaling possibilities

Beyond these numerical difhculties, we may note that
there can exist at least several other equally plausible
crossover scaling ansatz if the crossover scaling indeed
exists: e.g. , we can replace v in Eq. (19) by v and write

C

(Z') =N'g(Nlp —p, l

""' ), (16)

where g (x) should behave as
2( v —v)

~C
. x as x —+0,

points (N =20 and 30), and thus, in the large N limit,
even v =0.635 may not seem to result in the correct

&C

x —+0 limit of scaling function if the length of chain is
further extended. Thus, the data collapsing for his mea-
sured value of v seem also accidental.

C

One important point we should mention here is that if
we choose a higher v, then the slope in the x ))1 region

C

will generally become (negatively) greater up to a certain
extent, and thus, the gap between any two asymptotic
parallel lines will become smaller [see Fig. 9(b)]. For an
appropriate choice of v, we can artificially make any

C

two sets of data fall on a single line; however, this does
not indicate a scaling of data since this value of v does

not necessarily produce a correct x~0 limit and since
this does not guarantee the third set of data for different p
to fall on the same curve. For our data for p =0.4 and
0.5, this seems to occur for v -=0.62.

C

-0.2 const, as x~ ~ . (17)

-02

-04-

(b) V~=0.635

(a) v&=+3

0 p=0.55
~ p=0.75
~ p=0.85
v p=t. P

op=0.55
o p=0.75

This scaling form would produce the same N dependence
in the disordered and pure limits as those of Eq. (14), but
they are distinct as the p dependence is clearly different if
vp Wv.

C

This observation again leads us to suspect that the only
reasonable scaling form (if scaling holds at all), would re-
quire v=v . In this case, we may suppose, say, the form

C

in Eq. (17) with

a, as x~0,
g x (18)b, asx~~ .

where a and b are some constants with a )b. This kind
of saturation of a scaling function is not new and can be
seen, e.g. , in the problem of surface magnetism with sur-
face magnetic fields. Our observation for the Flory ex-
ponent is not inconsistent with such a scaling form al-
though neither our present data nor Kremer's data" ap-
pear to probe a suSciently asymptotic region, and thus it
has not been confirmed numerically yet.

-0.5
00 0.5

I

I.O l.5 IV. SUMMARY AND DISCUSSIONS

log~[NIp —
p, I

' '~ j

FIG. 9. Function f(x) in Eq. (14) plotted against the pro-
posed scaling variable using the data in Ref. 11 for (a) vp 3

and (b) v~ =0.635. Solid lines are intended for visual aids.
C

Based on extensive Monte Carlo simulations performed
much closer to p, than the only previous work of this
type, " we have estimated the critical exponents v and y
for SAW's on randomly diluted square and simple cubic
lattices. Our observation for v for the simple cubic lat-
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tice is very different from that previously reported in Ref.
11 from Monte Carlo results on the diamond lattice and
also, v for the square lattice is very different from those
for SAW's on some two-dimensional geometrical fractals
where exact Flory exponents are known. While new
higher values of v were obtained for various fractal lat-
tices and also higher, v was reported previously for
the randomly diluted diamond lattice, " our results are
rather similar to that on the full lattice, or, if diff'erent at
all, the difference seems to be much smaller than previ-
ously suggested. " These results are also different from
those of free random walks and from those of so-called
true self-avoiding walks (TSAW's) on the critical percola-
tion cluster, where sharp changes in v to the new lower
values (v —=0.35 in 2D and v —=0.27 in 3D) were ob-

C C

served.
A crude argument that explains why the critical behav-

ior of SAW's may be different from that of TSAW's (or
RW's) may be as follows. In general the lattice dilution
seems to affect the random walks mainly in two different
ways. Since the percolation cluster generated near p,
contains many singly connected (red) bonds, the walk is,
in many cases, allowed to grow locally along only the
particular direction of the bond if the particular site lies
on such a bond. On the other hand, in some cases, the di-
lution effectively traps the walk and induces the self-
intersections or inimediate returns (backscattering). The
overall disorder average of the former effect seems to
favor larger end-to-end distances than on the fully occu-
pied lattice, while the latter effect favors shorter end-to-
end distances.

For the TSAW's and RW's where both effects exist, the
disorder average of the end-to-end distance is in general
shorter than that on the full lattice, and thus, the latter
effect seems to dominate the end-to-end distance. For the
SAW, on the other hand, if the walk is trapped by its pre-
vious path or by the diluted sites, it must stop and the
whole sample must be discarded. Thus only the former
effect seems to remain, which results in longer end-to-end
distances than on the full lattice. However, since the par-
ticular elongated walks that pass through many singly
connected bonds may more easily visit the dead ends and
stop growing, the probability of survival of such walks
should be relatively small. Thus the average occurrence
of such effective elongations does not seem to increase
sumciently rapidly as the walk grows. We surmise that
this may be the cause of the value of the Flory exponent
being similar to the full lattice one.

We have also estimated the critical exponent y on the
square and simple cubic lattices. While a similar result to
that on the full lattice is observed for all p ~p, in two di-
mensions, a new considerably higher value was indicated
at p, for the simple cubic lattice. This observation may
suggest that a clear distinction should be made in the
statistics of SAW's between the average only over the
clusters which support at least one SAW of a given length
and the average over all clusters, where in the latter case
the exponent y is known to remain unchanged even at p, .
(The possible distinction between using only the infinite
cluster even for finite X and using the average over all
clusters supporting ¹tepSAW's is yet another matter. )

We do caution, however, that the maximum number of
steps for which enough samples were obtained in our
simulation is not sufficiently large to observe an asymp-
totic behavior accurately, and thus, we do not exclude the
possibility of a slow crossover to the full lattice result for
X much larger than that we obtained in our simulation.

In regard to the question of fractal-to-Euclidean cross-
over possibly creeping into our data near p„we have per-
formed extensive analysis of the size of the fractal region
in our simulation. Through this analysis, we have con-
cluded that the walks generated in our simulation are ful-

ly confined to the fractal region of the percolation clus-
ters both for square and simple cubic lattices. This can
also be confirmed by considering a recently observed be-
havior of TSAW for the same value of p as the one used
in our simulation for the square lattice. The effective vz
defined in Eq. (12) for such walks shows a sharp decrease
far below the full lattice value (=—,') at the same p, and
thus, the fractal region seems relatively wide at least for
the square lattice case.

We have also studied the possibility of crossover scal-
ing in the radius of gyration based on our Monte Carlo
data from a broad region around p, . We, however, did
not observe any evidence of data collapsing for a given
scaling form in Eq. (14) in disagreement with a previous
study. " One possibility that would be suggested is that
the percolation threshold is not a special point for
SAW's. For example, if the lattice dilution simply
changes the connective constant (@~pe,) for SAW's for
all p including p„we would expect the disorder to be ir-
relevant. If this were indeed the case, our observation for
the Flory exponent would be in disagreement with the
real-space renormalization-group studies and apparently
also with our observation for y for the simple cubic lat-
tice (assuming no slow transient effects). One possible
way we can reconcile these discrepancies would be that
the difference of the Flory exponent between disordered
and pure cases is just too small, and it would be virtually
unobservable by Monte Carlo simulation, or otherwise,
the two different fixed points give the same Flory ex-
ponent although the critical behavior may be different.
In the latter case, however, we would normally expect the
crossover scaling to hold in a way similar to Eq. (18) near
the percolation threshold and in the asymptotically large
N limit. Our data do not seem sufficient to observe this
kind of scaling, and we leave this part of the problem to a
future study.
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APPENDIX: MONTE CARLO METHOD

In this appendix we discuss some details of our Monte
Carlo method whose data are displayed in Fig. 1 —9. Our
simulation method consists of two parts: (i) generation of
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a percolation cluster and (ii) generation of SAW's on a
percolation cluster.

Our method for the generation of a percolation cluster
is a simple extension of the Hoshen-Kopelman algo-
r.'.thm. ' We will not discuss the details of this algorithm
as they are now well known. We generate the site-
percolating clusters on the square and simple cubic lat-
tices. The choice of the lattice in a given dimensional
space is for programming simplicity, and we believe that
the lattice type has no effect on universal quantities such
as the critical exponents.

We follow a usual algorithm for percolation: pick a
random number between 0 and 1 for each site of the cell
that contains L" lattice sites, and if this number lies be-
tween 0 and p, a given site is filled (undiluted), and other-
wise empty (diluted). We generate the site-percolated in
cipient infinite clusters defined as clusters which span the
cell along all coordinate directions, and after identifying
such clusters, any two opposite edges or faces are con-
nected by the periodic boundaries for the purpose of per-
forming SAW's on them. One complete procedure of
generating clusters for a square cell of 10 lattice sites
takes, when there is no failed attempt, less than 2.5 sec of
CPU time on the Digital Equipment Vax 11/750 comput-
er system.

Since the cluster is not isotropic, and since the center
point of the cell may not be on the infinite (or spanning)
cluster, a walk cannot generally start from the center,
and, thus, we choose the starting point randomly on the
infinite cluster. We then effectively translate this point to
the geometric center of the cell and form a new
configuration by moving the pieces on the edges using
periodic boundaries. After performing this procedure,
the new disorder configuration may look different from
the original one; however, the connectivity is unchanged.
Thus, for any chosen starting point, the eftective disorder
configuration for SAW's depends upon the starting
points, and thus, instead of using only one starting point
per cluster, we choose many different points in each clus-
ter and generate a predetermined number of SAW's from
each starting point. The number of starting points
chosen on each cluster is 500 and 1000 for square and
simple cubic lattice, respectively.

In general, however, since the number of SAW's is
different for difterent disorder, it is necessary to weight
each disorder. Assuming that, for a given disorder (also
for a given starting point), the number of SAW's is rough-
ly proportional to the number of occupied nearest-
neighbor sites to the starting point, say z' (number of
one-step walk is proportional to this), we attempt z'w
walks for each given point, where we used m =200 both
for square and simple cubic lattices. The SAW's are
averaged first for each starting point and then for all
starting points with equal weighting for each cluster. To
carry out a sufficient disorder average, we repeat the
same procedure over many entirely new clusters, the
number of which being 240 for the simple cubic and 1400
for the square lattice. The final disorder average for each
given X is carried out for many different clusters with the
weighting proportional to the number of starting points
for which at least one X-step walk is obtained.

The generation of the SAW's follow the usual simple
sampling method. We assign an equal probability for
each nearest-neighbor occupied site where a walk could
advance when the next step is taken (if the site is empty, a
probability 0 is assigned). We pick a random number be-
tween 0 and 1 and choose the next step as usual. If the
walk makes a closed loop or if it visits the dead end, it
will stop immediately and a new walk will be attempted
from the given starting point. In practice, these were car-
ried out with great efficiency by relabeling every site on
the infinite cluster specifying the number of nearest-
neighbor occupied sites and their positions for each given
point, e.g. , for the square lattice, using the integer arith-
metic with the first four digits specifying the positions of
nearest-neighbor undiluted sites and the fifth digit the to-
tal number of undiluted nearest-neighbor sites.

In practice, since we are not able to generate a true
infinite cluster, we will always be faced with the finite-size
effect. To minimize such an effect, we would like to have
as large a cluster as possible; however, the generation of
large clusters is quite time consuming and thus we must
choose the optimal size of the cluster. In principle, the
finite-size effect on the percolation problem is mainly
caused by many small clusters near the edges (faces for
3D) which are artificially connected to the infinite cluster
because of the periodic boundaries, but which would not
be connected if free boundaries were used. In our prob-
lem, however, since the walk effectively starts from the
center of the cluster, such small clusters do not affect the
SAW's as long as the cluster size is larger than twice the
longest end-to-end distance of the walks we obtain,
R,„((X,„). Thus, we generated many small batches
of data to estimate the length of walks for which we were
able to obtain enough samples in a reasonable amount of
computer time. Unfortunately because of the extremely
high attrition rates, we were able to obtain only up to 70
and 50 steps for square and simple cubic lattices, respec-
tively. For these lengths of walks, we found that walks
never reached the edges of the cluster of size L, where
L =100 and 50 for square and simple cubic lattices, re-
spectively.

We have chosen in each cluster 500 starting points for
the square lattice and 1000 starting points for the simple
cubic lattice. For the square lattice at p =0.59273, each
cluster takes about one minute to generate and to per-
form the above number of SAW's on it on the Cyber205
computer system (without vectorization). Gn Vax
11/750 and Masscomp 5500 (which were used for the
bulk of the data), the corresponding time was about 20
min. For p =0.312 on the simple cubic lattice, it takes
about 2.5 h to construct and perform SAW's on an
infinite cluster on the Vax 11/750 computer system; most
of the time is spent in searching for a spanning cluster.
For p far above p„e.g., p =0.4, and 0.5 for the simple
cubic lattice, and p =0.65 for the square lattice, the com-
puting time for the percolation step would be reduced.
However, the time for the SAW step would be increased
since the longer walks can easily be obtainable because of
fewer singly connected bonds and fewer dead ends on the
cluster. If all computer times were simply added, it
would amount to over 1000 h; of course much of this was
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performed on relatively small computers such as Vax
11/750 and Masscomp 5500.

We have also measured the extent of the region in
which the cluster shows fractal features. We counted the
number of occupied sites on the infinite cluster inside the
circle (sphere for d = 3) of radius r to search for a break
point where a cluster may begin to show a Euclidean
dimensionality. The number of occupied sites I( r) was
measured as follows. We first randomly choose the
center for the cluster and translate the cell boundaries us-
ing a periodic boundary condition so that it does become

the geometric center. After this has been done, we apply
a free boundary condition at the edges and remove parts
of the cluster which becomes disconnected in this opera-
tion. The number of occupied sites are counted inside the
circle (sphere) of radius r, given as r=(g,",n; )' for
any combinations of integers n; =0, 1,2, . . . up to
r =L/2. The final results are then averaged over many
choices for the center and over many disorder
configurations. (Note that in Fig. 5 we displayed the re-
sults only for integer values of r. )
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