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Holographic gratings are recorded in Pbp 9Lap &(Zrp 65TiQ 35)Q 97503 (PLZT 10:65:35)samples. The
first and second Fourier order of the refractive index amplitude, its phase shift against the periodic

light intensity pattern, and the holographic gain are measured as a function of exposure, grating

spacing, and the electric fields applied during writing and reading. The data are analyzed by a phe-

nomenological theory which allows for bipolar conductivity with nonproportional dependence on

the light intensity and light scattering and a nonlinear dependence of the dielectric and electro-optic

properties on the applied electric field due to the diffuse phase transition of PLZT 10:65:35. The
second-order diffraction efficiency is an asymmetrical function of the reading field and possesses a
minimum. Second-order diffraction is the basis of a new holographic method for the measurement

of the absolute value of the electro-optic coefficient. The conductivity modulation factor ~ can be

determined from gain measurements. Hysteretic behavior of the refractive index amplitudes and in-

homogeneously distributed regions with remanent first-order diffraction can be attributed to polar
microregions.

I. INTRODUCTION

In photorefractive materials holographic recording is
due to a light-induced charge transport. Electrons or
holes are released from filled donor or acceptor centers
upon photoexcitation and migrate by virtue of diffusion,
drift or photovoltaic effect until they are caught by empty
donor (acceptor) centers at sites different from the points
of departure. The resulting space charge density modu-
lates the electric displacement field or the electric polar-
ization, respectively, and via the electrooptic effect also
the refractive index. A well established method for the
investigation of the charge transport is the holographic
method, where a periodically modulated light intensity
with fringe spacing A is used for the investigation.

One of the key parameters for the characterization of
photorefractive materials is E . Roughly speaking, E
defines the maximum space charge field amplitude which
can be achieved in a photorefractive process by infinitely
large diffusion, photovoltaic or externally applied electric
driving fields, if quantities involved in the photorefractive
effect are constrained to be sinusoidally modulated with
grating spacing A. The space charge density amplitude
which can be achieved is limited by the available average
density of fille or empty donors or acceptors (whichever
is smaller). Because a fraction of the space charge densi-
ty has to balance the (bound) polarization charges, the
effectiveness of the charge density amplitude for the build
up of an electric field decreases with increasing polariza-

bility. For a given space charge density amplitude the
pertinent space charge field decreases with increasing
spatial frequency K=2~/A. Hence E increases with
the density of filled and empty donors (acceptors) and is
inversely proportional to the permittivity and K (limiting
the resolution of the material).

For LiNb03 and LiTa03 there are no apparent limita-
tions for the space charge field amplitude by K, for these
materials have low permittivity and are usually doped so
that E is extremely large. The space charge field is
confined by the driving fields of the involved charge
transport processes which may be characterized by the
so-called diffusion field ED, the so-called photovoltaic
field E~h, and the externally applied electric field E„.
The stationary energy transfer between the recording
beams in large external or photovoltaic fields is small, be-
cause the phase mismatch P between the holographic
grating and the fringe pattern decreases with
E,„+E„h.'

In materials with large photoconductivity the restric-
tion of the space charge field, however, plays an impor-
tant role despite a relatively small dielectric constant.
This is the case for KNbO3, Bi,26eO20, and Bi,2SiO2o
(Table I). The large photoconductivity is caused by a
large drift length Lz =p~E„which is comparable to the
grating spacing (violation of quasineutrality). ' This
causes a stationary energy transfer between the recording
beams characterized by the value of the exponential gain
I which increases with E„.

39 9541 1989 The American Physical Society



9542 RUPP, KRUMINS, KERPERIN, AND MATULL 39

Material

TABLE I. Specific photoconductivity (Np~), relative dielectric constant (e), acceptor density N&,
and maximum space charge fields E, of some electrooptic materials at grating spacing 4= 1 pm.

Npw (m V ') N (10 m ) E (10 V m ') Ref.

KNb03
B1)2S102p
Bi»Ge02p
PLZT

0.19X 10-'
1.0X 10
0.84 X 10
1.OX 1O-"

50
56
60
4500

1015
10[5
6X1O"
1018

7
7
2. 1

10

In (Pbo 9Lao &(Zro 65Tio 35)0 97503) (PLZT 10:65:35)
ceramics the defect concentration is large and, as a conse-
quence, the drift length usually smaller than the grating
spacing. Therefore the photoconductivity is small
(Table I). Nevertheless experiments substantiate that the
exponential gain is larger than in the other mentioned
crystals. Energy transfer and difFraction efficiency as
functions of the grating spacing and the applied field can
be described by the dynamic theory assuming that
quasineutrality does not hold.

In the room temperature phase diagram' the composi-
tions PLZT 8—10:65:35are located very close to the cross
over of four different phases, namely the ferroelectric
rhombohedral and the paraelectric cubic phase along in-
creasing La concentration and the ferroelectric tetragonal
and the antiferroelectric orthorhombic" phase along in-
creasing [Zr]/[Ti] ratio. (We disregard here the antifer-
roelectric tetragonal phase suggested by Kumada et al. , '

because the experimental evidence is not convincing. )

Because of this exceptional position it can be expected
that the material will be highly sensitive to small changes
of external parameters. As a consequence PLZT 10:65:35
has a large static dielectric constant e at room tempera-
ture (Table II). This makes PLZT 10:65:35 an excellent
choice for the holographic investigation of space charge
limited fields. In this article we present results on the
phase mismatch between the periodic light intensity pat-
tern and the refractive index grating as a function of the
electric writing field and determine the important materi-
al parameter E . We will prove that it is possible to
exceed E already with moderate electric fields.

In the holographic literature the compositions PLZT
X:65:35with x )9 are usually regarded as simple nonpo-
lar quadratic materials. ' ' Because of the diffuse
phase transition this is strictly speaking not correct and
some other authors ' are well aware of this fact but
do not draw any consequences of it. Among the peculiar-
ities which are important for holographic investigations
are nonlinear dielectric properties which lead to an elec-
trooptic response which is not quadratic in the applied

electric field but involves at least fourth-order contribu-
tions. ' Therefore our data are analyzed by a
phenomenologic theory of the photorefractive effect
which takes into account to a certain extent the nonlinear
dielectric properties, a nonlinear relationship between
conductivity and light intensity and bipolar conductivity.
Furthermore, we strictly utilize the space charge polar-
ization concept instead of a space charge field concept
and take advantage of the polarization electrooptic effect
which remains in contrast to the electric field induced
electrooptic effect quadratic.

The first- and second-order Fourier components of the
recorded refractive index amplitude are studied as a func-
tion of the reading and the writing field. It has not been
realized up to now that the second-order Fourier com-
ponent gives us an easy access to interesting material pa-
rameters. The holographic gain I is measured as a func-
tion of the external electric field and of the grating period
A.

II. PHENOMENOLOGIC THEORY OF
THE PHOTOREFRACTIVE PROCESS

In order to bring out the main issues of our considera-
tions more clearly we use the following simplification
justified by our experiments:

(1) The ceramic is periodically illuminated in a tvvo-
beam interference set up (Fig. 1). The grating vector K
and an eventually applied electric field are parallel to the
z axis. Vector quantities which occur in the charge trans-
port equations are directed parallel to the z axis. All
quantities depend periodically on the z coordinate. The
dependence on the y coordinate is weak and enters the
transport equations merely as a parameter. We will
suppress therefore the y coordinate in the argument of all
field quantities and treat for a given y value a one-
dimensional model. If there is no light scattering or ab-
sorption, the periodic light modulation is given by

I(z) =Io[1+M (z)]=ID[1+m cos(Kz) ],

TABLE II. Static dielectric constant e for PLZT 10:65:35.

4.0
4.5
4.8
5.05
8.0

v (Hz)

10
0.1

10

T( c)
25
25
25
room temperature
25

Condition

aged
thermally depoled
thermally depoled

Ref.

44
45
44
36
46



39 HOLOGRAPHIC INVESTIGATION OF. . . 9543

tioned contributions, i.e., also the pertinent light intensity
modulation is negligibly small. Furthermore, we investi-
gate only contributions with 0, K ai|d 2 K experimental-
ly. Thus in the lowest approximation scattered light acts
in our case merely as a light background and is taken into
account by

polarization
dire ction

Q ppllecl
voltage

FIG. 1. Sketch of the coordinate system and the experimen-
tal setup for holographic recording and measurements of the
gain I . For determination of the phase mismatch Pg(K) the
sample which is mounted on a translation table is shifted along
the z-axis by a piezoelectric transducer. The shift by an amount
Az corresponds to an external phase shift $=2vrhz/A. The
distraction efticiency g+l is measured with the beam intensity
I+ lo blocked off and g, vice versa.

where Io =I+i+I, is the average intensity, M(z) the
modulated portion and m =2"t/I+, I, /Ip the modula-
tion degree. For simplicity of notation we have omitted a
phase shift Pl depending on the y coordinate. If the dy-
namic read-write process is explicitly considered, we have
to remember that this additional phase shift must be in-
cluded for all periodic functions which follow.

(2) In case of absorption Io decays with y. This obvi-
ously influences the dynamics. But as m remains un-
changed, absorption will be disregarded here, because we
intend to consider only the stationary state in the follow-
ing. Effects due to a modulated absorption constant are
discussed later.

(3) If the two writing beams and (elastically or
quasielastically) scattered light beams interact, a rather
complex interference pattern may result. We will assume
here that the intensity scattered into some arbitrary
direction is small compared to the intensities I+, andI, of the two writing beams, but that the integral (sum)
of the intensities scattered into all directions may be
large. Three contributions iri the Fourier transformed in-
tensity pattern of some plane y =const can be classified
according to their spatial frequency: (i) The intensity
Fourier component with spatial frequency 0 is the in-
tegral of all beams, i.e., is equal to I+,+I,+I„where
I, is the integral (sum) of all the scattered beam intensi-
ties. (ii) The Fourier component with spatial frequency IC
is mainly due to the writing beams. Besides their intensi-
ty Fourier component 2+I+iI i, other contributions
with spatial frequency K are negligible. (iii) All other
spatial frequencies are generated by the interaction of the
scattered beams with each other or with one of the writ-
ing beams. Their intensity Fourier component is propor-
tional to the square root of the product of their intensi-
ties. As we have assumed small scattered intensities in a
particular direction, the pertinent Fourier component of
the intensity pattern is small compared to the first men-

VD (z) =p(z),
Vj(z) =0,

(2)

(3)

where V denotes the derivative with respect to z, D(z )
the dielectric displacement, p(z) the space charge densi-
ty, and

k~T
j(z)= [o (z)+ o„(z)]E(z).+ V[o „(z)—cr~(z)]

(4)

the current density. Here o.~(z) and o „(z) are the partial
conductivities for p-type (positive) and n-type (negative)
charge carriers, respectively, E(z) is the electric field,
kz T the thermal energy, and e the unit charge. We have
used the Einstein relation, we assume that. the mobility is
not spatially modulated and take notice of the experimen-
tal result that the photovoltaic contribution does not play
any role for PLZT 10:65:35.~

(5) The photoconductivity o ~h of PLZT for a constant
illumination with intensity Io is either of n-type, ' ' p-
type, ' ' or both contributions nearly balance each oth-
er' (so-called compensated bipolar conductivity). The
electronic or ionic dark conductivity cad is usually
neglected in the evaluation of holographic experi-
ments. ' ' ' Using the values O.d=3X10 ' 0 'm
and o ~h/Io =8 X 10 ' 0 ' W ' m of PLZT 9:65:35,'
we have adlo h=4% for In=10 Wm z (the order of
magnitude used in our experiments). As no data for
PLZT 10:65:35 are available to us we are not sure that
dark conductivity contributions can be neglected. They
will therefore be retained in our analysis. Holographic
theories are based on the assumption that the photocon-
ductivity is proportional to the light intensity, while a
sublinear relationship o.„h= AIz with 0.5 x 1 and a
constant of proportionality A has been proven experi-
mentally. As the discussion of the microscopic origin
of the charge transport mechanism is still not settled, we
postulate that the expressions

o~(z)= —,'oo(1 —o )[1+a M(z)+p(z)/eX ],
o.„(z)= —,

' oo(1+o' )[1+lr„M(z) —p(z) /eX„], (5b)

I (z) = In[1+M(z)]+I, =Io[1+m cos(Kz)]+I, ,

(lb)

where Io, M(z ) and m refer to the two writing beams as
defined above. For volume scattering it is understood
that Io decays exponentially with y and I, increases corre-
spondingly.

(4) Only the stationary state is treated, i.e., all time
derivatives are zero. We proceed from the basic equation
system:
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hold for the partial conductivities [which are naturally
not observed separately but enter Eq. (4) as sum and
difference]. Here oo=oz+o. ~h is the total conductivity
for constant total average illumination with intensity
ID+I„and & the conductivity type factor as defined in
Ref. 27. Its values range from & = —1 for pure p-type
conductivity over & =0 for exactly compensated bipolar
conductivity to o'=1 for the case of pure n-type conduc-
tivity. The phenomenologic constants K and K„ take the
possibility into account that the partial conductivities are
not directly proportional to the light intensity. The
phenomenologic constants eN arid eX„ensure that the
space charge field amplitude is limited by the finite densi-
ty of photoactive Aaw centers. The latter effect has been
revealed recently to be the most important effect for the
development proces~ of thermally fixed gratings.

In order to illustrate the meaning of K and K„ let us
consider the limiting case o = —1 of dominating hole
conductivity and neglect p(z)/eN (possible for N ~~
or K~O). Then o(z)=o.&+2(I(z))'. Using Eq. (lb) in
the small modulation approximation we get

o (z ) =(o q+o p|, )[1+x(1+I,/Io )

X (1+o.
q /o h) 'M(z )],

E(z)=E(0)+—'[E(K)e' '+E(2K)e ' '+c c ], . .(6)

where o.
h
= A (Io+I, ) is the average (unmodulated)

photoconductivity and we easily identify

=xz(1+I, /Io ) '(1+o ~ /o'zh)

where x is the exponent for p-type photoconductivity.
The effective conductivity modulation factors K and K„
are smaller than 1 due to three possible reasons, (i) a sub-
linear dependence of the photoconductivity on the light
intensity, (ii) dark conductivity, and (iii) light scattering.
The values for x are expected to be between —,

' and 1, i.e.,
the difference is not large. Then a detailed calculation
shows for v &v„ that only some corrections of minor im-
portance result only for the case of nearly compensated
bipolar conductivity. We feel that it is not justified to
present the resulting elaborate formula to the reader and
assume in the following that Kp K K which simplifies
our results considerably.

(6) The fundamental fields E(z), p(z), and I(z} are
nonlinearly related via the material quantities j(z) and
D(z ). But all fields are periodic with fundamental spatial
frequency K. We are interested in effects of first and
second order and truncate adequately all Fourier series
which appear in our calculation. For the convolution
only the largest terms are taken into account. Two exam-
ples will show how we proceed and which notation we
use:

V(o (z )E (z) ) = —,'iK [o (0)E(K}+o (K)E (0)]e' '

+iK[o (2K)E(0)+—,'o (K)E(K)

+o(0)E(2K)]e ' '+c.c. .

Here E (0) and o (0) denote the Fourier coefficients
E (K =0) and o (K =0) and "c.c." the complex conjugate
expressions. The solution for the first-order Fourier com-
ponent only is popularly called the small modulation ap-
proximation. Its validity is discussed e.g. , by Hall et
al. It is necessary for materials with quadratic elec-
trooptic effect to consider also the second order Fourier
component in order to explain some surprising results ob-
served by diffraction experiments at the second order
Bragg angle.

(7) An electric field E~ which is applied to a sample
with platelike geometry at the beginning of holographic
writing induces a constant polarization P~ as long as the
sample is still free of space charges. After recording the
sample has the periodically modulated polarization P(z ).
Unfortunately there is no linear relationship between po-
larization and electric field for PLZT 10:65:35 because
the room temperature range is affected by a diffuse phase
transition. ' But we can take advantage of the fact that
the nonlinearity is small for PLZT 10:65:35which allows
the approximation

E~+ t &EDP (K)= ~m coy(E~)—
1+E~/E ~

—sE~/E, (9)

Here ED =Kk~ T/e is the diffusion field,
—11+& 1 —&

Eqq = epe(Eii, )K +2'„2eX (10a)

and

1+CT

Eq, = eoe(Eii, )K
2eN„

1 —cr

2eX
(10b)

are the maximum space charge field amplitudes, and
e(E~)=1+y(Eii, ) is the field dependent relative permit-
tivity.

For the second-order solution we obtain

E(P(z))=E(Pii )+ [P(z) Pii, ] . —aE
~w

The nonlinearity enters to a first approximation only via
the field dependent susceptibility coy(Eii, ) = 1/
(BE/BP)z, where eo denotes the vacuum permittivity.

w

The Fourier series of the fields and the approximated
expression for the convolution are inserted into the
Fourier transformed Eqs. (2)—(5) and rearranged accord-
ing to equal powers of exp(iKz). The first order solution
of the polarization amplitude is given by:

E'
1+ ——&

Eq~ E,P (2K) = —
—,'amP (K)

(1+4ED /E q 2iEii, /Eq )(1+ED/Eqq iEii, /E )
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In Eq. (11) we have terms with e.g., 2EL, /E d instead of ED/E d in the denominator of Eq. (9) because for the
second-order K has to be replaced by 2K, ED by 2ED, E d by E d /2, and E, by E, /2.

If the electrooptic e6'ect of PLZT 10:65:35is expressed by electric fields, the relationship is rather complex because of
the influence of the diffuse phase transition and e.g. , fourth-order contribution are involved. This complication can be
avoided by choosing a description in terms of polarization. Then the electrooptic index change is still a simple quadra-
tic function of the polarization in the quasiparaelectric range of the diffuse phase transition:

bn (z)= ,'n—g—3P(z)= ,'—n —g 3[P~+—,'Psc(K)+2PitPsc(K) cos[Kz+Pq(K)]

+ ,' P~sc-(K)f(E~ ) cos[2Kz+Pq(2K)]+ .
j . (12)

In Eq. (12) only terms up to the second order of the Fourier series are considered, terms which are larger than quadratic
powers of Km are neglected, An denotes the modulated refractive index change, n the average refractive index, g 3 the
quadratic electrooptic coefficient (a= 1, . . . , 6, Voigt's notation) for polarization fields, and Pz =P(E~ ) =roy(E~ )E~
the unmodulated portion of the polarization induced by applying an electric field Ez during read out (which may be
different from the field E~ applied during writing of the hologram). The magnitude of the space charge polarization
amplitude is given by

Psc(K) = lP (K) I

=&m ~OX(Eii, )

E2 E2
. 2 - 1/2

+ oED+& +
qd qe

2
ED ED

Ew+Ew E
—Ew& Eqd

( I +ED /Eqd )'+ (Eii /E„)' (13)

and the stationary phase shift Ps (K ) between the funda-
mental component of the pertinent refractive index grat-
ing and the light intensity pattern by

tang (K)=

ED E~ E
& + +&

E~ E, E~E d

1+ED/E d oED/E „— (14)

The second-order Fourier component is characterized by
the function

f«~)=
2EwE

1+2
k3 Eii, +(oED)

2 1/2
02 &EDE~+ 2 4 Ei'i +(oED)'

(15a)

and the pertinent phase shift by

g3
= ( 1+4ED /Eqd ) + ( 2E iv /E, )

The diffraction efficiencies g, at the erst order Bragg
angle 0& and g2 at the second-order Bragg angle 02 are
given by

2(2o EDER
Ps (2K ) =2$g (K ) —arctan

k[Ew+(~ED )']+20&EwEg

(15b)

Above we hav'e used the abbreviations

( 1+ED /Eqd a ED /Eq )

X ( 1+4ED /E d +2&ED /E, ),
g2

= ( 1 +ED /E d oED /E,)—
X (1+4EL, /E d

—2Eii, /&EDE, ),
and

ql, 2=sin (orb, n, 2d /kcosO', ~), (16)

where the primes mark quantities measured within the
sample, d is the thickness of the sample, A, is the wave-
length of the light,

bn, =n g,ffP~Psc(K),

~n 2 ii g ffP sc (K )f ( Eii )

(17a)

(17b)

1+ED fE d+E~/&EDEqe

( I+ED/Eqd ) +(Eiv/E, )2

does not depend on the two-beam modulation degree m,
but on K.

We want to stress here that direct measurement
methods for the stationary phase shift P (K ) are highly
desirable, because Ps(K) depends neither on m nor on ~
[Eq. (14)] and hence not on quantities which depend on
their turn on the y coordinate. While g& is reduced by K

and m as well, the gain coefficient I depends on v(!) but
not on rn. This means e.g. , that materials where the pho-
toconductivity is a sublinear function of the intensity ex-
hibit a lower diffraction eKciency and gain than would be
expected for materials with linear photoconductivity.
Furthermore, diffraction em.ciency and gain will depend
on intensity, if there is appreciable dark conductivity be-

geff gi3sin P+ [g33cos 8 —g»sin 8 ]cos P, and
denotes the angle between the light polarization vector
and the plane of incidence. Note that hn2 and hence gz
depend on the reading field ER because of the function
f(Eg ).

The gain coefficient

4qrhnising (K),
mX

4~n g,~ e~(E ii, )y(E~ )



9546 RUPP, KRUMINS, KERPERIN, AND MATULL 39

cause of the factor (1+os/o. „) '. A further decrease of
g& and I is to be expected for pronounced light scattering
because of the factor (1+I,/Io) '. We are aware of the
fact that we have not taken serious1y into account the
dependence on the y coordinate in a dynamic calculation.
This turns out to be quite difficult for the special case of
PLZT 10:65:35and will remain as a future task. In the
present investigation we want to show that without this
refinement the above theory agrees already qualitatively
with the experiment and quantitatively gives the correct
orders of magnitude. The quantities m and K have then
in the following more the meaning of averages over the y
coordinate or effective quantities.

Some of the experiments require the application of an
electric voltage to the sample. In case of the measure-
ments shown in Figs. 2—4 the planar electrode
configuration shown in Fig. 3(a) has been used. The lines
of equal electric potential are also plotted in Fig. 3(a) and
demonstrate that the electric field is homogeneous over
the gap range. But as pointed out already the electric
field is smaller than for end face electrodes. While for
end face electrodes a voltage of 1 kV across the gap of 1
mm would produce a field of 10X 10 V m ' we have tak-
en into account that only a reduced field of 8.3X10
V m ' results for our planar electrodes.

III. THE EXPERIMENTAL METHOD

The PLZT 10:65:35 samples were produced from the
chemically coprecipitated raw material by hot pressing in
vacuum with a following extended annealing in ambient
atmosphere. The samples are optically isotropic in the
absence of an applied field. The thickness of the samples
investigated ranges from 0.5 to 2 mm.

A detailed description of the holographic measurement
equipment and data on the extinction, the electric polar-
ization as a function of the electric field, and the elec-
trooptic coefficients of the PLZT 10:65:35samples are al-
ready published in Ref. 21. So we restrict ourselves to a
few remarks concerning some differences between the
earlier and the present investigation.

A grating with spacing A=2. 7 pm is recorded by two
beams of equal intensity I&o and I &0 with light wave-
length A, =488 nm. The beam diameter is larger than the
distance between the electrodes in order to illuminate the
sample homogeneously. After termination of the record-
ing process the phase shift P is registered by two
methods, which give analogous results. In the first one
the sample, which is mounted on a translation table, is
shifted along the z coordinate by means of a piezoelectric
transducer (Fig. 1). ' This imposes an external phase
shift l( which is 2rr, if the crystal is displaced by A=2. 7
pm. The transmitted intensities I+, and I, change
thereby sinusoidally according to

I+, I+, =+sin(/+Ps) —.

The second method for the determination of Ps is the
micr ophotometric method described already else-
where. ' The diffraction efficiency q is calculated ac-
cording to

diffracted intensity7l=
diffracted intensity + transmitted intensity

The notations g, and g2 refer to I9, and 02, and q+, and

, is used instead of g, if we want to differentiate be-
tween the intensities I+ &

and I, diffracted while
shutters block the beam intensities I+,o and I &0, respec-
tively.

The process of stationary energy transfer is character-
ized by the exponential gain factor

1 I+ j.I+ )0r= —» I )oI

writing of the grating

1.6-

1m2

shifting of the grating

04-
Ew-+1.25X10 VfYl E =+125x10 Vm

C)
l

09-
11-

Ew=o Vr -'

F =0 Vm-'

ER--+1.25x10 V ni-'

ER=-1.25x10 V m "

1.6 '

1.2

09—

OU- I+1

Ew=-1.25~10 Vrn '
ER =-1.25~10 Vm '

6 12 18 2A

0 3K
2

exposure lot(10 Jm 2) external phase shift i(i(rad)

FIG. 2. Four exemplary experiments (A. =488 nm, A=2. 7
pm) which show the change of transmitted intensities of the
recording beams Il and I, during the recording process with
applied electric field E~ and during the phase shift experiment
with an external phase shift g and apphed electric field Es. The
phase shift for the large electric field of 1.25X10 Vm ' ap-
proaches a/2.

IV. THE PHASE MISMATCH Ps(X )

AND THE PARAMETERS & p Eqp p AND Eqp

At first glance it seems to be natural to start holo-
graphic investigations of a refractive index grating with
the determination of the diffraction efficiency. But a
short inspection of the Eqs. (13), (16), and (17) should tell
us that it will be quite frustrating to extract any useful in-
formation (e.g., o, E „and E z) from the efficiency mea-
surements by themselves. One reason is that we need g,z
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V) u) g~
O0
~gH

-S 0
Ew (10 Vm ")

4.0-
0.3
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0.1

3.0-
E

C)

I

0 0.02 0.04 OQ6
- 30

2.0-
C
U

UJ

2.0

1.0- 1.0

I

0.5 1.0 1.5

FIG. 3. (a) Geometric dimensions and distribution of equipo-
tential lines of the sample used for the measurement shown in

Figs. 2—4. Sample thickness is d =0.5 mm and gap between the
electrodes is 1=1.0 mm. (b) Experimental dependences of the
phase mismatch between the holographic grating and the fringe
pattern on the electric writing field (A. =488 nm, A=2. 7 pm).

and the nonlinear relationship P(E) for the calculation of
b,n from the diffraction data. The main problem in
PLZT 10:65:35,however, is the unknown parameters K.
Because of depolarization by ordinary scattering and
strong light-induced scattering ~ decays along the y
direction. Additionally, the conductivity is not propor-
tional to the light intensity. For PLZT 10:65:35
0 ph ~ I ' and hence x =

—,
' has been observed. The

value seems to depend somewhat on external parameters
and the sample preparation. As it is rather difficult to es-
timate ab initio the effective value for ~m correctly, we
study the phase mismatch Ps as a function of the exter-
nally applied writing field Eiq first and evaluate Eq. (14).

For this purpose several gratings are written with the
same grating spacing, wavelength, recording time (I =10
min) and with an exposure sufficient to reach the station-
ary state (=2.4X10 Jm ), but with an externally ap-
plied voltage varying from 0 to 2.0 kV which corresponds
to fields up to 1.7X10 Vm

When the recording experiment is finished, always the
same voltage (1.5 kV) is applied for reading (This is only
a cosmetic provision, because we utilize direct methods
to determine the phase shift. The refractive index change
must only be large enough for detection. ) The intensity
difference between the two coupling beams at the end of
the recording and at the beginning of our shifting experi-
ment is proportional to sining(K) and will be denoted by
BI(gs ). Subsequently the grating is shifted with respect
to the standing light interference pattern. Because of
beam coupling the intensities of the transmitted beams
change sinusoidally as a function of the external phase
shift g according to Eq. (19). From the record we deter-
mine the maximum intensity difFerence AI(qr/2). It is
denoted b.I(n. /2) because it corresponds to a total phase
shift g +P s(

K)=sr/2 Then t.an/ (K)=c/(1 —c )'~ is
calculated from the ratio c =b I( Ps ) /EI ( ~/2 ). A
representative experimental run is shown in Fig. 2. For
E~ =0 only the diffusion mechanism contributes to the
holographic recording process and P (K}=sr/2 is ob-
served. For small external electric fields E~ (2.5 X 10
V m ' the phase mismatch decreases, passes a minimum
at E~=2.5X10 V m ' and increases again approaching
asymptotically Pg(K) =sr/2 for large electric fields [Fig.
3(b)]. The occurrence of a minimum is corroborated by
several experimental runs.

Values obtained in four experimental runs, three with
an applied field in positive and one in negative direction,
are comprised in Fig. 4, where ~E~tangs(K ) ~

is plotted
as a function of E~. From Fq. (14) we have

F 2 t1012 y 2 ~-2) E~, tangg (K ) =a +bEii (20)

FIG. 4. Eii,tang is plotted as a function of E~. The data
were collected by four different experimental runs (A, 0, 0,
and 0, A, =488 nm, A=2. 7 pm, room temperature). For three
of them the field was applied in positive and for one in negative
direction. The insert shows a magnified plot for E~—+0 in or-
der to determine the intercept term. The limiting space charge
field E~ =5 X 10' V m ' is estimated from the slope and
&ED=1X10' Vm ' from the intercept term. The diffusion

field is 0.6X 10' V m

where a =EDo (1+ED /Eqd )/(1+ED /E d dED /E )

and b =[Eq (1+ED/Eqd &ED/Eq ) j . Using
ED=0.6X10 Vm ' for A=2. 7 pm we calculate the
conductivity factor ~&

~

=(&I+4ab —1)/2bED )0.9
from the intercept term ~a~=(1. 1+0.5}X10 Vm ' and
the slope b=(1.8+0.5)X10 mV '. It was not possi-
ble to determine & more accurately because of the bad
reproducibility of different runs and because of the fact
that we do not obtain the same curve for positive and



RUpp, K.R KERp ERIN, AND MATULL 39

for theF' 3(b)]. One reason
sca ttering of the '

bl t vibration du ghift measurements are
s are also expecterecording. Some y

tl constant but dep
s stematic deviations

endd E are not exac y c
w ofb 1 td' vi oE . But this can e n
t iheB s know that e

' t the values of ~a i

urac ~ ecau

conclusive exformer results ' nosee in contrast to
d bipolar photocon-ence for compensate iperimental evidence

y 10:6~:3S at

here E =eN, q/Ke p 0

= —1, it follows from t e qs.

s
'

s ace charge amp
'aeno esd t s the maximum sp

-t e conductivity an eff
e

' '
or X, respective y,n pe e

rit carriers. T en w —1
3o
2X10 Vm

q

1'n th. F ' th' "1
(SX10 rn

for the Debeye screening le gt . o

-6X10. ' Theoretical plots o ~ as
=E =E according to q.Eqe qd q

shown in Ref. 3S.

1.0
I

C
U
C os-

+
C

o.e
C
4P
O

o.4
C0
O
U
I

0.2

1

exposure (10 J' J m-2}

n
&

as a functionion eSciencies g+ &
and q

intermed te saturation va ue an
b h Ththen into an increasing an a

nly very slowly for
arison to the quick initial rise.Ipt ) 1 X 10' Jm in comparison to e

=3 m aildical result for A = p
wn in Fig 6(c) as a function=1 OX10 Vm ' is shown in ig.Egg o

of exposure.

DIFFRACTION EFFICIENCYVI. SATURATION DIF
FIELDAND ELECTRIC READING F

RACTION EFFICIENCYV. DIFFR
DEGREEAND MODULATION DE

DURING WRITING
with A =3.0refractive index grating w'''g

sure I t =2 X 10 m
iffraction efBciencies g,y )

and second order ragg
b h d' b

1' d 1
' fild dE

in field. There y e
isident in direction of the app ie e e

0.8

f $J,'1p I) Ig)']'

0.6
E IF, '. 'Ij

p )ik, p
@%%%I(b)

U
Cfl

E e
Qp

Ch
OJ gpl3 a
0

X
QP

O

S0
E

O

0.4

0.2

2.0 2.51.0 1.50.5

5 J -2)exposure (10 Jm

icro hotographs of the light intensityFIG. 6. (a) and (b) M op o o

e ree at the exit face o e
1.2X 10,

Modulation degre
' ht: Exposure Ipt=0,From left to ng t: x

E = —1.0
m. (b) From left to rigX 10 Vm ', A=2 7 pm.

—1.0X 10 V m ', exposure.75 and —1.
c) A=3 0 pm~ Eg2.4X 10' J m

=1X10 Vm

at the first- pfficiencies g+ &
and

s
The difFraction e c

ith li ht polarizationle t9 are measured wit igorder Bragg ang e
&

a
para llel to the reading field for a m thick amp e

des. In genera a1 difFerence is ob-
c

with end face electro es.
ex osure and large writ-e

'
creases with ong exposure

(Fi . 5). Accor mg o
ra hic'th ' '

holooes along wit in
omessca e

' . " e ative app ie om
henomenon go

e a lied field it is viceand for positive app ie
sa p

intensi
d h h 1all modulate wilight become periodica y m

ctions we identify the average
/2 ith d it

''y n+

1 ih o, (

te An via Eq. 1 . e
r).

t}1
re s mmetrica wi

ther
t that our procedure sugg

we have at e
estsdo so but the fact t a oureasons to do

d'ffe case shown in 'g.Fi . St e itreme
m not very crucial.

f
sma ll and the problem no

attern observe ad t the exit face op

10 V ' [„i ]posure at const
ld at constant expos

b . Th' '
b t

electric fie a
d b

f 'h' 'd"1'"'n d
,Fi . 6b . is'

microphotometric
0

measurements o t e m
e sam le (called contrast ingree m at the exit face of the sarnp e c



39 HOLOGRAPHIC INVESTIGATION OF. . . 9549

applied only for a short time compared to the writing
time. The light polarization is parallel to the electric
field. The refractive index amplitudes are calculated ac-
cording to Eq. (16). This means that the information
about the signs are lost and we get only I

b, n, I
and I b, n2 I.

Our theory predicts [Eqs. (17a) and (17b)] the following:
(1) Not only hni but also b.n2 depends on the electric

reading Geld ER.
(2) Ib,n, I

is a symmetrical function with respect to
Ea =0 (long-known result' ).

(3) Igni I is an asymmetrical function with respect to
Ez =0 (demonstrated and explained here for the first
time).

(4) The first-order refractive index amplitude

8

~ 6-

Ca

E~ = 5.0 i 105Vm 1

bn, (P„)=@PIC, with y = n g,sPsc(K ) (21)

(6) The minimum of b.n2 occurs for an applied reading
field of

1+(&ED/E~)~
2 0i 1+($2oED/g, Ea )

(23)

and the refractive index amplitude at the minimum is
given by

is proportional to the polarization induced by the reading
field.

(5) For the second-order refractive index amplitude we
have

bn2(P~ =0)=—,'yp (K) . (22)

0 2

ER (10 Vrn')

F1@.8. The refractive index amplitude Ib, n2 I is an asymme-

trical function of the electric reading field Ez. The different

writing fields applied are given in the figure and arrows indicate
how the electric field was increased and decreased. The position
and heights of the minimum shifts with increasing writing field.

(1)—(3) are evidently correct.
The statements (4) arid (5) can be drawn upon to deter-

mine in principle the absolute values of the space charge
polarization,

An2(E~;„)=hn2(E~ =0) w

Ql+(pi&ED/giEg )

(24)

Psc(K ) =4P~ b, n ~(0) /b, n i (Pit ),
the effective electrooptic coefticient,

g,&=4bn2(0)/n (Psc(K))

(25)

(26)

The refractive index amplitudes Igni I and Ibn2I are
shown in Figs. 7 and 8, respectively. The predictions

Ew=5ax10 Vm'

I

C)

C

2-

with no further input data than the relationship between
P and E besides the determination of the value hn, (Pit )

for any arbitrary applied electric field E& and
hn2(EIt =0) by holographic means. But also the P-E re-
lationship can be obtained from Fig. 7, if the slope of
An, (E„) which is proportional to Pit is plotted versus
E„. Then only the dielectric constant e(Ez =0) is neces-
sary in order to determine the proportionality constant.
Note that even the slim-loop behavior of the hysteresis
curve of PLZT 10:65:35 including remanence is fairly
well resolved by the slope in Fig. 7, if the writing field is
chosen large enough. The simple but powerful method
outlined above can be applied not only for PLZT
10:65:35but for all photorefractive materials with quad-
ratic electrooptic eff'ect.

=0

0 2

E„(10 Vm')

FlCs. 7. The refractive index amplitude Ib, n& I is a symmetri-

cal function of the electric reading field Fz. The different writ-

ing fields applied are given in the figure and arrows indicate how

the electric field was increased and decreased.

A. A new holographic method for
absolute measurements of I,&

Gratings are written holographically with an exposure
of 4.8X10 Jm and with an electric writing field

E@,=+5X10 V m ' applied to a 1.9 mm thick sample.
Reading out at the first order Bragg angle with the same
reading field Eit =Eii, yields i7, (Eit )=0.21, while the
di6'raction e%ciency at the second order transition is
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determined with EIt =0 yielding rI2(0)=2. 1X10 . In
both cases /=0, i.e., a light polarization parallel to the
applied field has been chosen. With the help of Eqs. (16)
and (25) we obtain from these values Psc/PIt =0.12.
From the results of Ref. 21 we have Pz =0.027 Cm
Then via Eq. (26) the effective electrooptic coefficient
g,&=0.026+0.002 m C is calculated. The electrooptic
coefficient is in agreement with the value obtained by the
conventional polarization optic method. '

B. Minima of hn2(E+ ) and their relation
to characteristic material parameters

8-

C
c3 4-

A. =4,0 p. m

Using ED =0.6X 10 V m ' and E~ =5 X 10 V m
we calculate with the help of Eq. (23) for Eii = 1, 2.5, and
5 X 10 V m ' that minima should occur for
E&;„=—1.1, —2.6, and —5. 1 X 10 V m '. Experi-
mentally we find Ez;„=—1, —2, and —6X 10 V m
The comparison is quite satisfactory and corroborates
again that the maximum space charge field E is in the
scope of our applied electric field for our PI.ZT 10:65:35
samples (e.g. , for E ))ED, Eii. the result would be

E~,„=—,'Es). In—principle ~o ~
can be determined

from the ratio of the refractive index amplitudes
bn2(E~, „)/bn2(EIt =0) (though it is not possible to
distinguish by measurements of b,nz(Es;„) between
electrons and holes, because of E, cc o for o =+1).
However, the measurements are not correct, possibly be-
cause of erasure during read-out and because of a hys-
teretic behavior at larger electric fields.

C. Impact of polar microregions
on the erst-order diffraction efticiency

If the grating is written with large writing fields (this
refers e.g. , to the curve for Eii,=5 X 10 V m ' in Fig. 7),
then there is no reading field where b,n, (E~ ) becomes
zero. Especially the observed remanent diffraction for
Ez =0 is not predicted by the theory outlined above. If
we examine the light distribution across the diffracted
beam profile, we find a granular, inhomogeneous pattern
for Ez =0, awhile the beam proNe is as expected homo-
geneous as long as Ez is different from zero and large
enough. If the sample is heated, the remanent diffraction
disappears, but reappears when the sample is cooling
again to room temperature. There is only a small
efficiency loss by this procedure so that several heating-
cooling cycles can be performed before the diffracted
beam becomes too weak to be observed. In opposition to
this, gratings erased with incoherent light can no more be
recovered.

From the ratio of the diffraction efficiencies arcsin
(i)',

~~

)/arcsin(r)', ~ ) for polarization parallel and perpen-
dicular to the reading field the ratio g33/g»=2 is mea-
sured for Ez ~0 and g33/g $3 =7 for large applied fields.

0
-10

I

-5
i

0
E~ (10s Vm-'j

ing field is kept constant at Ez =1.0X10 Vm '. The
refractive index amplitude bn, calculated via Eq. (16)
from the experimental data is shown in Fig. 9 for
different grating spacings A. Two features are remark-
able: Firstly, there is a striking dependence on the grat-
ing spacing even in a range, where the writing fields
largely surpass the diffusion field. Secondly, the relation-
ship b,n, (Eii. ) has a maxiinum and b n, becomes smaller
again if electric writing fields larger than 7.5 X 10 V m
are applied.

VIII. HOLOGRAPHIC GAIN

For fields larger than 2X10 Vm ' the gain depends
nearly linearly on the external electric field and rises with
increasing grating spacing (Fig. 10). Our results agree
with the results of Butusov et al. , if we take into account
that the polarization electrooptic coefficient as well as the

3
PLZT 10/65/35

0
E

-4

FIG. 9. The refractive index amplitude ~b, n,
~

vs the electric
writing field E~ for different grating spacings A and constant
reading field E& =1.0X 10 V m

VII. SATURATION DIFFRACTION
EFFICIENCY AS A FUNCTION OF
THE ELECTRIC WRITING FIELD

-2.0 0 1.0

externally applied electric field (10 Vm 'I

2.0

The diffraction efficiency q, at saturation is investigat-
ed as a function of the writing fields E~, while the read-

FIG. 10. Holographic gain I vs external electric field for
different grating spacings (A=488 nm, Iot =2.4X 10 JI ).
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the sample would induce a transition to the paraelectric
state also for these regions, but they stabilize again on
cooling. This concept is in accordance with our observa-
tions (Sec. VI C). The ratio g33 g]3 depends sensitively on
the structure of the material, too, and should be different
for regions in the ferroelectric and paraelectric phase. In
fact an appreciably lower ratio has been measured for the
case where remanent diffraction at 0] prevails (Sec. VI C).
%'ith increasing electric fields the regions in the paraelec-
tric phase can take part in the diffraction process via the
quadratic electrooptic effect. Finally they will largely
overcome the contribution of the ferroelectric regions.
Another possibility for the different ratios are regions
with clamped electrooptic effect.

DifFering difFraction efficiencies il+]&il ] have already
been extensively studied and observed by Knyazkov and
Lobanov. One explanation given is the Borman
effect. This means that the planes of high light in-
tensity of the interference pattern of the transmitted and
diffracted beams coincide more or less with the maximum
scattering planes depending on the direction of the in-
cident beam. %"e doubt that the usual Borman effect will
account for the large difference observed because the
modulation of the absorption is too small in PLZT
10:65:35. More successful is a second model proposed by
Knyazkov and Lobanov which is based on the fact that
holographic scattering is unidirectional in PLZT and
hence breaks the symmetry of the diffraction efficiency at
+0,. If a direct influence of the oscillating intensities of
the writing beams could be excluded, the observed energy
transfer between writing beams and scattered beams with
the external phase shift would fit the Knyazkov-Lobanov
model.

X. CONCI. USIONS

Holographic resolution in PLZT 10:65:35is limited by
the available donor (acceptor) density and because of the
large dielectric constant of the material. For holographic
applications either further modifications (e.g. , doping,
oxidation/reduction treatments or a different ceramic
processing) or an other composition with better proper-
ties (e.g. , smaller e) should be chosen. From the results
of phase shift measurements N, z =3X 10 m has been
determined which corresponds to a Debye screening
length of lD =1.1 pm. A value la =1.4 pm, however, fits
much better with diffraction efficiency measurements
(Fig. 11). There is no indication on strongly compensated
bipolar conductivity (i.e., & = 1).

The gain is also considerably reduced and becomes rap-
idly smaller with decreasing grating spacing (Fig. 10 and
12). But as the gain is proportional to yiE ccrc /e the
gain becomes larger if compositions are chosen, where
the temperature T for the maximum dielectric constant
is as close to room temperature as possible. As the max-
irnum of the dielectric constant is related to the composi-
tional broadening parameter 5, ' it should be one task of
the future development of ceramic technology to achieve
a small broadening parameter 6. Furthermore, the holo-
graphic gain can be tailored to some extent by a proper
choice of E, which may be interesting for image

amplification. ' It is obvious that for other photorefrac-
tive materials which are used close to the phase transition
temperature and which have as a consequence a large e
(e.g. , e) 10000 for KTN at room temperature and Ba-
TiG~ at 120'C) our comments apply correspondingly.
We want to draw attention to the fact that holographic
results for BaTi03 and other materials with a sublinear
relationship o &h

o:I' (]i' ( 1 ) are usually analyzed by
theories which are based on a linear relationship, i.e.,
v=1, and hence a theory which is based on an essential
wrong assumption. With our phenomenologic theory we
can answer the question posed by Mullen, if there is any
influence of a nonlinear photoconductivity law on holo-
graphic results, in the following way: measurement tech-
niques based on phase shift measurements are not
affected by the nonlinear intensity dependence, but
diffraction efficiency and gain measurements are. As the
factor x is presently disregarded in the analysis of the
holographic results e.g., for BaTi03, results for An& and
I come out by a factor ~ lower than expected. In con-
trast, we cannot confirm the nonexponential decays dur-
ing erasure reported by Mullen (Ref. 42, Fig. 6.8). We
still simply think that /].n =arcsin(&il) is proportional to
exp( t/r) an—d not rt which makes a difference in the
range 0~ lng ~ —1.

Our experimental findings show that the close phase
transition of PLZT 10:65:35ceramics induces nonlineari-
ties which influence the holographic properties. This
favors a theoretical description in terms of electric polar-
ization rather than in terms of electric fields. The
description is qualitatively correct and quantitatively the
disagreement is less than a factor of 2 even in the worst
case. The spatial distribution of polar regions within the
nonpolar phase can be studied by first order Bragg
diffraction.

One of the disadvantages in PLZT 10:65:35 is holo-
graphic scattering. From our experiments we draw the
conclusion that the problem can be reduced by either
writing with diffusion field only (reading with a large ap-
plied electric field and hence appreciable diffraction
efficiencies for read-out are still possible) or by using light
polarized perpendicularly to the field while an electric
field is applied during writing (smaller electrooptic effect).
In both cases we exploit the fact that writing is then
essentially latent.

Second order diffraction is an efficient tool to obtain
material parameters by holographic means. The most
surprising is the possibility of absolute determination of
electrooptic coefficients.
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