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Correlated percolation with long-range interactions
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We study the critical behavior of the q-state Potts model with long-range interactions decaying
asymptotically as -R '"+ ' in the presence of random-T, impurities correlated over large dis-
tances such that the correlations fall o6' as -R ' ', a &d. We find that the renormalization-
group scaling equations have a new fixed point in the appropriate double e, x expansion, where
@=3o.—d and x =a —o.. This fixed point, however, is never both stable and physical.

I. INTRODUCTION

The relevance of long-range interactions for the critical
behavior of various physical systems which can be de-
scribed by the P -field models (e.g., the percolation, the
Yang-I. ee edge singularity problem, and the Ising spin
glass) has been discussed recently in the literature. ' It
is now understood that the long-range interactions decay-
ing at large distances as -R ' + ' are relevant (i.e.,
leading to a new kind of critical behavior) for cr (2 when
the exponent of the correlation function in the presence
of short-range (SR) interactions risa is negative, and for
o &2—ps' if ps~ is positive. A well-known physical ex-
ample is the bond-dilute Ising ferromagnet, which exhib-
its the percolation transition at low temperatures T~O
near the critical concentration of ferromagnetic bonds
p =p, . Stephen and Grest have shown using the replica
formalism that in the case of short-range interactions this
percolation transition can be mapped onto the q-state
Potts model with q =2", where the replica number n has
to be eventually taken to zero, corresponding to the q

—1

Potts limit. Stephen and Aharony have applied a similar
approach to study the crossover from thermal to percola-
tion transition in the presence of various types of long-
range interactions, i.e., dipolar, power-law decaying, ex-
ponentially decaying, and z-spin interactions. In the case
of power-law decaying interactions of the type
-R '"+ ', the quadratic term of the effective Hamil-
tonian which describes the transition at low temperatures
has been found proportional to r+C k, where r=O
determines the mean-field transition, and C corresponds
to the effective range of fluctuations. A more careful
analysis by Aharony and Stauffer (see Ref. 8), indicates
that a third-order term, which leads to a shift in the
upper critical dimensionality, plays an important role in
the limit T~0, similar to the case of short-range interac-
tions. Mean-field arguments and qualitative fluctuation
corrections seem to indicate that the size of the critical
region shrinks gradually with growing range of interac-
tion and eventually vanishes when the number of in-
teracting spins z becomes infinite. In that case, the
whole system represents a single cluster so that the per-
colation transition disappears. Although the precise rela-

tion between the size of the critical region and the details
of interaction is not available, one cannot rule out the ex-
istence of a finite critical region in the case of interactions
decaying as -R '" ', since in the limit tr +2 (—short-
range interactions) the critical region is certainly finite.
It has been shown' that the percolation transition in the
presence of this type of long-range interactions belongs to
a new universality class.

New features are expected when the bond occupations
are independently determined by occupation probabilities
which vary from site to site and are correlated over large
distances (correlated percolation). The usual (i.e., un-
correlated) percolation corresponds to the case of short-
range or 5 correlations between the occupation probabili-
ties. The physical origin of the long-range correlations
with a power-law decay at large distances has been dis-
cussed by Weinrib. The same author has shown that the
bond-correlated percolation can be described by the limit

q ~1 of the q-state Potts model with random interactions
J(R ) correlated over a finite spatial range such
that the correlations decay algebraically, i.e.,
[J(R)J(0)]-R 'd ', a (d. This type of disorder is
relevant for the critical behavior when the range of corre-
lations is such that the generalized Harris criterion
2 —v(d —a))0 is satisfied. However, when the random
short-range interactions J(R) are infinitely correlated in
a subspace of ed dimensions (cd =2+5), corresponding
to the so-called extended defect problem, the absence of a
stable accessible fixed point in a double e, 5 expansion has
been demonstrated by Stolan et al. '

In the present work we consider the critical behavior
of the q-state Potts model with long-range interactions
decaying as -R ' + ' and with random-T, impurities
isotropically correlated such that the correlations fall off
as -R '" ' at large distances R. In the limit q —+1,
this model is expected to describe percolation critical be-
havior of the random Ising ferromagnet with long-range
interactions and correlated bond-occupation probabili-
ties. It will be demonstrated that the renormalization-
group scaling equations have a new fixed point in the ap-
propriate double e,x-expansion (@=3o—d, x =a —o ). It
turns out, however, that this fixed point is not physical in
the entire domain of attraction. This conclusion applies
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equally to the percolation limit as well as to the other
physical realizations" of the q-state Potts model. Thus,
the situation is similar to the case when the impurities
form an extended defect. In fact, we will show below that
in the presence of long-range interactions the results are
independent of the type of impurity correlations.

In the following section the renormalization-group

analysis of the model is presented. In the final section we
give a short summary and a discussion of the results.

II. RKNORMALIZATION-GROUP ANALYSIS
AND RESULTS

We start with the continuous version of the q-state
Potts model in k space' '

r

~=f d g ,'(r—+ck +bk )Q, , (k)Q, , ( k)—
7T f

+f ~ [P(p)Q;;(k)Q;;( —k —p)+wQ;;(p)Q;, (k)Q, , ( —k —p)]
d p

where i =1,2, . . . , q, Q;; are elements of a traceless ten-
sor g; Q;; =0, and the random potential P(k) is assumed
to be Gaussian distributed with zero mean and variance

[P(k)P( —k)]=uk (2)

The quadratic terms proportional to ck and bk (o (2)
represent the cases of short- and long-range interactions,
respectively. When the long-range interactions are dom-
inant, i.e., c=0 in (1), the physically interesting case is
obtained for a =0.. Thus we will set a =0.+x in order to
perform a double expansion in e =30.—d and x =a —o..

By analogy with pure systems' we expect that the
long-range interactions are relevant to the critical behav-
ior for 0. &2 when the exponent gsR of the correlation
function at the short-range fixed point is negative, and for
0- &-2—

qsR if it is positive. In the case of short-range in-
teractions the exponent qsR of the pure Potts model is
given by'

1 (q —2)e
ISR 4 ~o

Similarly, it can be shown using the recursion relations
from Ref. 9 that the value of the exponent gsR at the ran-
dom short-range fixed point for general q is

at the long-range fixed point, we conclude that the
correction terms in the brackets in Eq. (5) are already of a
higher order in e and x as long as 0. &2. Thus we find
that in the presence of long-range interactions the ex-
ponent gLR retains its classical value

9LR (6)

(aj

which is correct at least to O(e, ex, x ) In the. limit
cr~2 and assuming that' e/(o —2)~ —1 as well as
(e+x)/(o —2)~ —1, expression (5) reduces to the one
obtained in the case of short-range interactions as given
by Eq. (4), provided that w and u are at the correspond-
ing fixed-point values.

Having determined the value of the exponent gLR as
given by Eq. (6), we can obtain a set of recursion relations
for the relevant parameters in the case of long-range in-
teractions using the diagrams in Fig. 1 (see also Ref. 9),

r

4 2 2=or —2 3 1 ——w (1 —2r) —2 u(1 r), —5

dl q

2(q —1)@+qx
9sR

3O l9
(4)

0'
'QLR —2 0 2'3'1-- K.-' '

o+1 q 0' 2

Here @=6—d and x =a —2. In case of percolation, ex-
pression (4) becomes negative for x negative or
equivalently when a & 2.

In order to perform the long-range (LR) expansion, it
suftices to drop the term proportional to ck and fix b to
one. Thus, having defined the propagator as
G(p) =(r +p ),we find that the critical exponent g„R
from the diagrams in Fig. 1(a) has the value
[K '=2 'm."~ I (d/2)]:

2

(b)

(cI

6'+ X

0 2
(5)

Assuming further that w and u are of the order O(e, x)

FIG. 1. One-loop diagrams contributing to the scaling equa-
tions for (a) r, (b) u, and (c) u. Dashed line with a cross carrying
the momentum k represents uk
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dw 5 2 3=
—,'ew+2 3 1 ——w +2 3uw,

dl '
q

dQ =(e+x)u+2 u +2 3 1 ——uw6 2 6 2

dl
(9)

where @=3'—d and x =a —o, as already stated. The
fixed points of these equations are listed in Table I along
with the corresponding scaling exponents A,„, X&, and A, 2

for three relevant operators.
The stability of a fixed point under the

renormalization-group transformation requires that all
scaling exponents associated with the physically relevant
perturbations, e.g. , A,

& 2 in our case, must be negative.
Therefore, according to Table I, the Gaussian and the
pure fixed point are stable with respect to the presence of
disorder when A, z =x+@ and A,z=x +@/(3—q) are both
negative. On the other hand, when A,z, A, z are positive,
the corresponding fixed points are not stable and disorder
is relevant. To leading order in e and x we have

FIG. 2. Regions of stability of the fixed points: Gaussian
(6), pure (P), unphysical ( U), and random (R), drawn schemat-
ically for q= l.

Azo =2—v(d —a) . (10)

When the right-hand side of Eq. (10) is positive, we ex-
pect according to the generalized Harris criterion a
crossover to another fixed point which is controlled by
the disorder (see Fig. 2 for the case q=1). It turns out
that to the right of the solid lines in Fig. 2 only the un-
physical fixed point is stable. However, the correspond-
ing fixed point value u U in this entire region is negative,
in contrast to the physical meaning of the parameter u,
which allows only positive values. In a similar way, we
find that at the random fixed point both scaling ex-
ponents I,, 2 listed in Table I are negative within the
shaded area of Fig. 2 where, in turn, uz is negative, thus
rendering this fixed point unphysical. Therefore, neither
the random nor the unphysical fixed point is accessible in
the physical systems described by model (1) when the
pure and the Gaussian fixed points are unstable due to
the presence of disorder. The absence of a stable accessi-
ble fixed point could be interpreted as a smearing of the
percolation transition in the presence of disorder. Below
we will show that the same conclusion applies to the
phase transition at a general value of q.

The scaling exponents of two relevant operators at the
random fixed point (see Table I) are

where g=x/e and

D(g)=36(3 —q)g +12(9—2q)g

+4q —12q +33 . (12)

Both exponents A, i z in Eq. (11) are real for q&2, while
they can be either real or complex for q) 2. In the latter
case the equation D (g) =0 has two real roots at

[2q —9+(2q —3)+(q —2)], (13)
1

63—
q

so that D(g) &0 for gz&g&g&. Thus, for q&2 both scal-
ing exponents given by Eq. (11) are real and negative as
long as D (g) & (3—2q) . Consequently, one of the opera-
tors becomes marginal when the following condition is
satisfied:

TABLE I. Long-range fixed points and the corresponding scaling exponents to leading order in e and x. D (g') is given by Eq. (12)
in the text, and /represents the ratio x/e. The remaining symbols are 8' =2 3 w* Kz, U =26u Xz, R*=4or, and f =3—2q.

Gaussian

Pure

Unphysical

Random

Fixed
point

8'*=U*=R *=0
q; U*=oE

3
R = (q —2)e/(3 —q)
m*=O; U*= —(&+x)

R *= —2(e+x)

W*=(2e+3x)q/f
U* = [e+{3 q)x]/f—
R =[2(q —1)e+qx]/f

A,„=1/v

o.+ 2
3 q 2

6+x0
2

2E 3x

e 1+ v'D(g)
2 3 2q

6'+ x
x+

3 q

—3(@+x)
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D (g) =(3—2q)

Equation (14) has two real roots, i.e.,

(14)

gI = —
—,
' and g,'=— (15)

3

Note that for q & —,
' one has gz & g, whereas gz &gi for

q & —', . Thus, for g between g,
' and gz and q & 2, and simi-

larly when 2 & q & 3 and for g within the two intervals
(gz, gz) or (g„g', ), both scaling exponents A, i 2 are real and
negative, while for g between gz and g, they are complex
with negative real parts, implying that the random fixed
point is stable for all values of g between gz and g', . These
regions of stability are shown in Fig. 3. On the other
hand, we find (cf. Table I) that at exactly the same values
as given by Eqs. (15), i.e., for g=g', and g=gz, the fixed-
point values of the parameters wz and uz change their
signs (assuming e& 0) so that at least one of them is nega-
tive in the region between gi and gz. The negativity of
one of the parameters wz and u& in the entire region of
stability of the random fixed point leads to the conclusion
that this fixed point is not accessible in any physical sys-
tem described by model (1), since w must be a real, and u

a real and positive parameter.
A formally similar analysis can be done for q & 3 (see

Fig. 3), although we expect that at some critical value

q =q„which is close to three, ' a first-order phase tran-
sition takes over in the pure Potts model. In particular,
the pure fixed point becomes unphysical for q) 3. In this
case there are two disconnected regions along the g axis
where the random fixed point is stable. In particular, k, 2

are real and negative for g, & g& gi and for gz & g& gz,
while they are both complex with negative real parts for
g& gz and for (&(&. However, in this case ui, &0 for
g& gz, while wit &0 for g & gi, i.e., there is no connected

w —w
( 4+b4r)3 ( 4+bgc)2 (16)

where on the right-hand side are the fixed-point values of
the corresponding parameters at the random fixed point
given in Table I. Thus, these equations are satisfied if we
set c *=0 and b *= 1, as we have assumed above. At the
long-range random fixed point we find that the new pa-
rameter c is governed by the scaling exponent A,, [defined
via c (l) =c (0)exp(A, ,I)], which is given by

E+X
A, =o —2 — 8(o)C 2

with

(17)

I —+1 I"
2 2

I (o+2)
0 0X —+ ——1
2 2

—+1
2

Hence, for cr &2 we have that A,, is negative, leading to
the conclusion that the short-range interactions are ir-
relevant to the critical behavior for this range of values of
O.

region where both parameters are positive. For negative
values of e, at least one of the eigenvalues in Eq. (11) is
positive for all values of q, so that the random fixed point
is unstable.

In deriving the above results we have assumed that the
short-range interaction term in (1) can be ignored com-
pared with the term representing long-range interactions.
The validity of the long-range expansion for cr & 2 can be
justified by retaining both terms in the Hamiltonian. '

Then a fixed point of the corresponding recursion rela-
tions can be determined by the following expressions:

III. DISCUSSION AND CONCLUSIONS

I

A

FICx. 3. Regions of stability of the random fixed point drawn
for e&0 in the (q, g) plane (g=x/e). The scaling exponents of
Eq. (11) are real and negative within the single-hatched area,
and complex with negative real parts in the cross-hatched re-
gions. Both parameters u& and m& are positive only in regions
A ( g,' & g & 0; q & —,') and B ( g & g,'; —,

' & q & 3 ).

The absence of a stable physical fixed point for model
(1), which has been explicitly demonstrated here within a
double e,x expansion to leading order, applies both to the
case of percolation (q ~ 1 ) as well as to other realizations
for q) 1. Obviously, a different interpretation of this
conclusion is needed in these two physically different situ-
ations. The absence of a stable physical fixed point in the
presence of disorder for q) 1 might reAect the existence
of a first-order phase transition occurring in the pure
Potts model due to the presence of instantons, which ap-
pear in the resummation of the perturbation series to all
orders. ' A first-order phase transition certainly occurs
for q) 3, where the pure fixed point also becomes un-
physical. This problem does not exist in the limit q —+1,
where the transition is second order in the pure Potts
model. '" Thus, our results can be interpreted as a smear-
ing' of the percolation transition due to the long-range
correlations in the occupation probabilities.

It should be noted that our conclusions are also applic-
able to the case of extended defects in the presence of
long-range interactions. In that case the correlation
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function of the random variable P(p) will be given by'

[P(p)P(k)] =u 5' '(p +k)5 (p
~~

), (19)

cal value, i.e.,

ll

—2 —o (21)

where d =3o.—e is the dimensionality of the system,
while ed =o.+x is the dimensionality of the defect. The
anisotropy of correlations in general leads to two
different exponents

g~~
and g~ along and perpendicular to

the direction of the defect, respectively. In particular,
the diagram which contains the defect line [see Fig. 1(a)]
contributes to rli only, while the bubble in Fig. 1(a) con-
tributes equally to both

g~~
and g~, and its contribution is

identical with the first term in the brackets in Eq. (5). We
find

(20)

Therefore, in analogy with Eq. (5) we may conclude that
to linear order in e and x both exponents retain the classi-

thus rendering the recursion relations isotropic as in the
present model. In fact, in the presence of long-range in-
teractions the fractal dimensionality of the percolation
cluster, which is defined as dF=d —P/v, is independent
of the range of correlations in the occupation probabili-
ties. We find that dF =(d +o )/2 at the long-range fixed
point, in contrast to the case of short-range interactions
with algebraically decaying correlations, where one has
dF =

—",, +d /2 —a /22 at the random fixed point.
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