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Contributions from two-particle scattering to the extraordinary Hall effect in Kondo systems
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The contributions of skew scattering to the extraordinary Hall effect (EHE) in Kondo-type sys-
tems have been evaluated by using current-current correlation functions. By using this formalism
we take account of two-electron scattering processes that are neglected in the conventional one-
electron scattering theory of the EHE. We evaluate the correlation functions for dilute Kondo sys-
tems by considering only independent single-site scattering. We find there are two types of contri-
butions to the EHE. Type-I terms come from diagrams in which the energies of the propagators are
held fixed. We find that these type-I contributions reproduce the EHE found by the one-electron
formalism, i.e., the elastic impurity- or potential-scattering contribution; in addition, there is a
spin-scattering contribution which was not previously incorporated in the one-electron scattering
formalism. The type-II contributions come from diagrams in which energy is exchanged between
resonant and nonresonant scattering channels. These contributions to the EHE are new, i.e., they
require two-electron scattering processes, and therefore perforce cannot be accounted for in a one-
electron formalism. We find the type-II contributions to the EHE are as large as those of type I at
low temperatures T ( To, where To is the characteristic energy scale of the single-ion Kondo prob-
lem; at high temperatures T ))To, they are negligible compared with type-I contributions. To ob-
tain the Hall effect we must have scattering in two partial-wave channels whose orbital angular mo-
menta differ by 1fi. To account for the dominant resonant Kondo scattering, we use the Anderson
mixing interaction and consider the local electron is in a spin-orbit-coupled j state. In the non-
resonant channel we consider two-electron charge- and spin-scattering terms whose origins could
be, interalia, the direct and exchange parts of the Coulomb interaction between local and conduc-
tion electrons.

I. INTRODUCTION

The Hall effect is a particularly effective probe of
conduction-electron scattering in Kondo-type com-
pounds. In particular, the extraordinary Hall effect
(EHE) probes the scattering of conduction electrons by
the orbital angular momentum of localized electrons.
The contributions of skew scattering to the Hall effect
have been considered within a one-electron scatter for-
malism. ' While this approach produces the correct vari-
ation of the Hall constant at high temperatures, it is
inadequate at low temperatures, i.e., for T ( To, where
To is the temperature characteristic of the Kondo scale
of energies. There are at least two ingredients that have
been left out in our model calculations. First, there are
contributions from anomalous velocity to the Hall con-
stant; this is also known as the side-jump contribution.
We have evaluated these terms and find they are quite
large in concentrated Kondo-type compounds at low tem-
peratures. The second feature left out of previous calcu-
lations is the two-electron scattering processes, i.e., we
were limited to impurity scattering, because the formal-
ism we used is applicable only to one-electron scattering
processes.

Here we consider the spin-Hip and two electron-
charge-scattering processes neglected in previous ap-
proaches. To incorporate these two-electron scattering
processes we use the Kubo formalism which gives the
conductivity in terms of current-current correlation func-

tions. This formalism has been previously used to calcu-
late the resistivity of Kondo systems. A special feature
of Kondo scattering is the resonant nature of the scatter-
ing for one partial-wave channel of the conduction elec-
trons, e.g. , for Kondo systems with rare-earth ions, the
1=3 partial wave of conduction electrons is resonantly
scattered by the 4f electrons. This selectivity is readily
explained by the Anderson mixing interaction. In the ap-
proximation of considering only spherical mixing, the lo-
cal 4f state mixes or hybridizes only with the partial-
wave component of the conduction electrons that has the
same 1=3 symmetry. When scattering is confined to one
angular-momentum channel there are no vertex correc-
tions, i.e., there are no correlations between the electron-
hole pair excitations of the Fermi sea that produce the
resistivity. Therefore, the resistivity calculated by the
Kubo formalism reproduces that which one finds using
the Boltzmann transport equation with one-electron im-
purity scattering. The additional two-electron scattering
processes present in a complete quantum-transport
theory do not lead to additional contributions to the
resistivity.

On the contrary, we find that two-electron scattering
processes yield important contributions to the Hall effect
in Kondo systems. In particular, the inelastic vertex
corrections which enter the Hall resistivity (conductivity)
make large contributions at low temperatures T( To.
The reason vertex corrections enter the Hall conductivity
is that a priori one must have scattering in channels with

39 952 1989 The American Physical Society



39 CONTRIBUTIONS FROM TWO-PARTICLE SCATTERING TO. . . 953

II. DERIVATION OF HALL CONSTANT

The linear Hall constant is defined as

PH 1 ~H
H='-0 (2.1)

where PH is the Hall resistivity, o.H is the Hall conduc-
tivity, o.

N is the normal resistivity, and H is the magnetic
field. We define the off-diagonal Hall conductivity as

opposite parity in order to obtain the transverse drift
which gives rise to a Hall voltage. ' By using the Kubo
formalism we find that in addition to the contribution
from one-electron impurity scattering there are elastic
contributions to the EHE from spin-dependent scatter-
ing, and inelastic vertex corrections coming from two-
electron-charge and spin-scattering processes. The con-
tributions from two-electron-charge scattering are by far
the largest contribution, and at low temperatures they are
as large as the EHE due to impurity scattering.

In the next section we derive the Hall conductivity due
to skew scattering by using the Kubo formalism. We
evaluate the different contributions to the EHE in Secs.
III and IV. To obtain the variation of the Hall constant
with temperature requires a self-consistent procedure,
e.g. , the self-consistent large-X expansion [or noncrossing
approximation (NCA)]. ' In Sec. V we present analytic
results for the EHE in the limits of weak coupling
T)& T0 and strong coupling at T=O K. In the last sec-
tion we summarize and discuss our results. We stress
that our results are derived on the basis of the single-ion
Anderson model, and the impurity-averaging procedure
we use is applicable to the dilute limit, i.e., we do not
consider interference between scattering at different sites.
Therefore our results can at best be compared to the
EHE in Kondo systems in which the scattering is in-
coherent.

II p(r) = —( T,[J (r)Jp] )

and the current operator is

(2.6)

J~= ——g k~ck~c
m (k, ~)

(2.7)

We take the sign convention e )0, and consider the sys-
tem to have unit volume. Also, we set %=1 throughout
the calculation, and insert it only in our final results. By
placing the current operator in the correlation function
and taking the Fourier transform, we find

II p(co)=—
m (k, g ), (k', g. ')

k kpC(iv )~. , +,
m

(2.8)

II p(iv )=

5„peak

—g Gg(ice„+iv )Gl, (ice„),2e ~1
3m

where

C(iv )= 1 dre (7;[c„(r)c„(r)
0

Xc& ~ (0)c& ~ (0)] )

and P is inverse of the temperature.
In zero magnetic field, the conductivity tensor for a

system of random impurities is diagonal and k k& is re-
placed by —,'k k'. For impurity or single-ion Kondo sys-
tems there is a resonant scattering of conduction elec-
trons by the local electrons in one partial-wave channel.
For this case the vertex corrections which couple the
currents J (r) and Jp vanish, because they are propor-
tional to k k' and odd rank harmonics k —Y&(k) have no
matrix elements in a manifold of definite angular momen-
tum. Therefore, for Kondo systems, the transport relaxa-
tion time reduces to the lifetime of the conduction elec-
trons. The correlation function reduces to

JH,[)—=o.HEX h, (2.2) (2.9)

and the normal conductivity as

JN =o YE, (2.3)

and we find the Hall resistivity by inverting the conduc-
tivity tensor

where Gk is the fully dressed conduction-electron band
propagator and ice„ iv are Matsubara frequencies. By
analytically continuing this expression to the real axis
one finds that the isotropic conductivity in zero field [see
Eqs. (2.3) and (2.5)] is

oH
PH

+N+~H
(2.4)

2e Bf(E„)
0'~ = I dEkn (ek )

3m
k ~o(c.l„cr ), (2.10)

To leading order in the magnetic field we can neglect the
Hall conductivity in the denominator; then we find the
linear Hall constant given by Eq. (2.1).

In the linear-response regime, transport properties can
be expressed in terms of current-current or two-particle
correlation functions by using the Kubo formalism. The
dc conductivity tensor can be written as

where ro is the isotropic relaxation time, n(e~ ) is the den-
sity of states for conduction electrons, and f is the Fermi
function. When we model the resonant scattering in
Kondo systems, e.g. , for a rare-earth system with local 4f
electrons, by using the single-ion Anderson model, the
isotropic relaxation rate is given as

&0 (Ek~o')= c
I &k I ImGO(E~ )

1
o p= —lim —ImII p(cu) (2.5)

cd I
pf(E„)+O(H ), (2. 1 1)

where II p(co) is the Fourier transform of the current-
current correlation function where
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Go= g G =NfG +O(H ),

I =~N(O)I V„I',

and c is the concentration of Kondo ions, VI, is the An-
derson mixing parameter, G f is the local 4f propagator
in zero field, pf is its spectral function, Nf is the degen-
eracy of the local state, and finally N(0) is the single-
particle density of states for conduction electrons at the
Fermi surface,

N(E)= n(E)
(2.12)

where N, is the number of sites in the lattice. By placing
Eq. (2.11) in (2.10), and evaluating the integral, we find

2 7rN(0)ne
~N

Nf I mc

ne 27.

pf '(0)

(2.13)

where we have defined the mean relaxation time ~ as

2rrN(0)=,NrPf"C
(2.14)

At low temperatures T « To the 4f spectral density at
the Fermi surface is dominated by the Abrikosov-Suhl-
Kondo peak, so that for T =0 K (Ref. 5)

~nf(0)
pf(0) =—sinr (2.15a)

where nf (0) is the occupancy of the local f state at T=O
K. At temperatures high compared to To, it is only the
tail of the Friedel-Anderson charge peak that exists at the
Fermi surface and we have

(2.15b)

where Ef is the position of the f level relative to the Fer-
mi surface.

The Hall conductivity, Eq. (2.2), can be written in
terms of the components of the conductivity tensor [see
Eqs. (2.5) and (2.8)] as

We can now see that the Hall effect exists only when the
expectation values of ( Y'(k) ) and ( Y'(k ') ) are
nonzero. This assumes we have made a random-phase
approximation in averaging C(co) over the positions of
the Kondo ions; see the discussion below. As these are
proportional to integrals over three spherical harmonics,
this occurs only if we consider that scattering occurs in
two channels of opposite parity and differing by one.
Therefore, if the resonant scattering of conduction elec-
trons occurs in the 1 =3 channel, e.g. , for rare-earth Kon-
do systems, then we must consider either the 1=2 or
I =4 channel to obtain a Hall effect. We limit our atten-
tion to the nonresonant 1=2 channel, as most of the
rare-earth Kondo compounds have conduction bands
with far larger 1=2 partial-wave character than 1=4.
As the expectation value (k k& ) exists for k&k' in or-
der to obtain a Hall effect, we immediately note that
there are Vertex corrections to the Hall conductivity for
Kondo systems even though there were none for the nor-
mal conductivity.

To evaluate the correlation function Eq. (2.8) we must
sum over the scattering sites as they enter in the Heisen-
berg representation of the conduction-electron operators
cz(r) and cz(r). We will consider that the Kondo ions
are randomly distributed on a regular lattice and we
neglect (1) interactions between Kondo ions, and (2) the
interference terms coming from scatterings at different
sites. Therefore, we make the random-phase approxima-
tion in evaluating the correlation function C(co), and we
can write

C(co):—N, C, (co) (2.18)

where N; is the number of Kondo ions ("impurities") on
the lattice and C, (co) is the correlation function for one
site. This approximation becomes exact when N, «N„
i.e., in the dilute limit. We continue to use it for
moderately dense Kondo systems as long as the scatter-
ing is incoherent, i.e., uncorrelated from one site to anoth-
er.

The one-site correlation function can be written as

1
C (tv )= g Gk (ice, )G~ (&v +in), )

I Cd I, 1 CO2

XGq ~ (icu2)Gq. ~ (1 vm+Lco, )

o H
=

z ( o'xy oyx ) XI (iv, iso, ,icoz), (2.19)
e2

X
m (k, o. ), (k', o')

—,'(k k' —k k')

X lim —Im (Cco i+0)1 ~ +
co~a CO

x

(2.16)

—,'(k k' —k k')=— 1 1 147Tl
gg I

m —m 0

X YP (k) Y, (k '), (2.17)

where the expression in large parentheses is a 3-j symbol.

We rewrite the Cartesian components of the wave vectors
k, k' in terms of spherical harmonics as

where I /P is the temperature and I is s four-point vertex
function. There are two types of contributions to the
Hall effect which we will refer to as types I and II.

Type-I contributions are those for which there is no
transfer of energy between the electron and hole propaga-
tors. For these we write the correlation function (a two-
particle propagator) as a product of two single-particle
propagators (see Fig. 1). In this case the vertex function
I reduces to the product of two T matrices. To obtain a
Hall effect we must consider that the two single-particle
propagators correspond to conduction electrons in
partial-wave channels of opposite parity, e.g. , 1 =2 and 3.
Therefore we can write the vertex function for type-I
contributions as
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m+ &@

Axe

c, 4j

kyar

cVm+ &

found by using the Boltzmann transport equation. ' Also,
it picks up a spin-dependent contribution when we con-
sider spin scattering in the nonresonant l =2 channel.

The type-II contributions come from vertex correc-
tions with energy exchange between the electron-hole
propagators. (see Fig. 2). As we show in Sec. IV these
terms lead to entirely new contributions to the EHE
which are totally unaccounted for in the semiclassical ap-
proach which uses the conventional Boltzmann transport
equation.

X Tka ka ('vm+'ru2)~~ io (2.20)

where the T'" are the on-shell (elastic scattering) T ma-
trices for the conduction-electron partial-wave channels
l =2 and 3. We use the convention

FIG. 1. The vertex function for type-I contributions. In this
diagram the upper propagator is for the l =3 channel and the
scattering due to the Anderson mixing interaction is described
by the T matrix T&

'
], (ice, ). The lower propagator is for the

nonresonant l =2 channel; the scattering comes from the two-
electron interaction H2 [see Eq. (3.4)] when it is reduced to a
one-electron scattering potential and is described by
T'k~ k (iv +ico2). The cross signifies both scatterings occur at
the same site. Note there are no energy transfers for type-I pro-
cesses, thus the scatterings are elastic cu&=co2. A second dia-
gram with l =2 on top and 1=3 on bottom also contributes to
the Hall constant.

III. EVALUATION OF TYPE-I CONTRIBUTIONS

To calculate the correlation functions [Eq. (2.8) or
(2.19)] needed for the Hall effect we use the Anderson
mixing interaction to produce resonant scattering in one
channel. We will consider local f states, therefore it is
the I = 3 partial-wave channel of the conduction electrons
which are resonantly scattered by the mixing interaction.
For the scattering in the nonresonant l =2 channel we
use a two-electron scattering term. This term could come
from the direct and exchange Coulomb interaction be-
tween local and conduction electrons; however, this de-
tail is not needed, and we merely introduce an unknown
parameter to represent the scattering in the nonresonant
channel. This parameter is determined by fitting to the
data on the Hall constant. '

The single-ion Anderson Hamiltonian for a local f or-
bital in a spin-orbit-coupled j state in the limit of infinite
U (intra-atomic Coulomb energy), together with an addi-
tional scattering term in the nonresonant channels is
given as

Tk', k = «'ITlk &
= Tk k (2.20a) H =Ho+H;„+H), (3.1)

As we show in the next section, this contribution to the
Hall effect reproduces the skew-scattering contributions

kcr

where

0 X k ka ka f Xfmfm
(k, cr) m

(3.2)

i&„'+ i~, C, ~+ C4P~

+mix =
&(p $ ~ka, mCkab fm + H'C'

and

(3.3)

II
I

Wl

(k, o )m;(k', o'), m'
J(k) Y~(k). Y, (k ')

X ( o 'm '
~

a + b s J~ o m ).
X C k'a Cka fm'f m (3.4)

FIG. 2. The vertex function for type-II contributions. The
boson frequency is given as i cob =i co3 —i co, —i v„, and
i co4=i co3+i ~,—i co, . Here, there are energy transfers between
the resonant l = 3 (the top propagator) and the nonresonant
l =2 channel. The solid lines are conduction-electron propaga-
tors Gk, the dashed lines are pseudo-f propagators G, and the
wiggly line is a boson propagator D. The scattering into and
out of the resonant channel comes from the Anderson mixing
interaction [Eq. (3.3)] and the two-electron scattering in the
I =2 channel is described by Eq. (3.4). A second diagram with
1=2 on top and l =3 on bottom also contributes to the Hall
constant.

In this limit of infinite U an auxiliary or slave boson has
been introduced in the mixing term to keep track of the
occupancy of the f level. We note no bosons enter the
two-particle interaction H2 because it does not change
the number of f electrons. To obtain a contribution to
the EHE we must explicitly consider the dependence of
the mixing interaction Vk on k and m when the local
f orbital is in a spin-orbit-coupled j state. When we
make the approximation of spherical symmetry for the
mixing interaction, we scatter that part of a plane wave
which has the same symmetry as the local state it is mix-
ing with, i.e.,
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X g Y('" (k)
m'

For cerium l =3 and j =
—,', we find

Vk = ( —1)' + &24~i VI,.
7

3

o. —m

X'V Y '(k).
m& o. —m '

ml

( kjm ~ko ) =( —1)' '~ + &4~(2j +1)i '

I —,
' j

(3.5)

(3.3')

Also, the Hall effect occurs in the presence of a magnetic
field. The dominant effect of the field will be on the local

f state, and we include this in the local f propagator
G f

~ (iro, ). It is this field that makes G f
~ dependent on

the orbital indices m and m'. When we choose the direc-
tion of the magnetic field as the axis of spatial quantiza-
tion for our states, the propagator is diagonal in m, and
the T matrix describing the scattering of conduction elec-
trons in the resonant channel due to the mixing interac-
tion [Eq. (3.3)] is given as

Tk 0 kiT'( ',~1) X Vkcr, m Vk cT m'', m (~~1)

3 5
2

5
2

(3.6)

To obtain the T matrix in the nonresonant channel we
take the expectation values of the f-electron operators in
the two-particle scattering interaction [Eq. (3.4)]:

(3.7)

and

m—= gmnf

To first order in the coupling constant J(k), the scatter-
ing matrix is

(2) J (k)
tk~ ko ~ Yz(k). Yz(k') P (a +berm)nf 5

IC m

J(k)
Yq(k) Y2(k')(anf +berm )f), , (3.8)

S

where

nf= gnf

Here nf is the number of electrons in the f level, and m

is, to within gpss (p, ~ )0), the magnetization. As we

show later on when we obtain the full T matrix to all or-
ders in the charge scattering, the exchange constant is
complex; therefore we represent it in general as J(e).
From Eq. (3.8) we note that while these are spin-
dependent terms they are not spin-flip terms o'&o. .

When we place these T matrices in the correlation
function [see Eqs. (2.19) and (2.20)] and if we consider iso
tropic band propagators, i.e. , Gk (c)=Gl, (E), we find the
contribution to the Hall conductivity [Eq. (2.16)] from
this diagram (see Fig. 1) is given as

4~i 24moH(1)=
z
Im, —

~ N; g (anf+bcrm )
m v6 mi, )n2, m

3

3 3 5
2 1 1

1
~ m3 m2 ~ m3, m m' 0

4

X f '
[Y,""(k)]*Y',"'(k)Y, '(k) f ' Y',

"
(k )[Y, (k )]*Y- '(k ) Z iV ~2k), .

1 1—g G(, (tao, )Gq (rv +ice, )G(,. (ice()G(, (iv +ice, )G f (i~()J(iv +ice, )~
cu- 0 M rn

I Cu(

(3.9)

We have replaced the sum over k as an angular integration and a sum over the magnitude k By evaluating the in
tegrals over the spherical harmonics and by recoupling the 3-j symbols, we find

3 5
2

m3 m g —m
m ) 1' 2'

'3
2

g (a +ho m )nf
2 3.

Im, m4
f dQ), [Y, ' (k)]*Y~ '(k) Y( (k) f dQ„Y, '(k ')[Y2 '(k')]*Y(™(k ')

v'6
(anf G, —

,', bmGO —,', bmG2 )——
v'6

G, (3.10)
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where

G„—= g 00(m)G (3.11)

and OD(m) are rth-rank polynomials whose traces, except for r =0, are zero; e.g. , for j=—,', Oo =1, Oo =m, and

Oo =3m ——", . By placing this in Eq. (3.9) we find

2

o~(1)=-
~ g [ Vq[ kk'Im lim ——g G k„(i~, )G~ (iv +ice, )Gq (ice, )G~ (iv +ice, )

4977 m N p ~, co 0 co 13

X G (i co, )J(i v +i co, ) ~
.

m
(3.12)

where we have defined the concentration c —=A, /X, . The sum over the Matsubara frequencies has been evaluated in a
manner analogous to that given in Ref. 3. %'hen we consider the type-I diagram v ith the l =2 and l =3 reversed we
obtain a second contribution which is identical to the first. Thus the total contribution from type-I diagrams to the
Hall conductivity is

2

S

Im[G& (c)GI," (c)iG(c)]Im[Gk (c)G& (c)J(c)], (3.13)

where G (c) is the retarded propagator.
In the case of single-ion Kondo scattering, i.e., in the dilute limit, the spectral functions for the conduction electrons

are 6 functions:

ImG~" (c,)= —~r6(c —c„) .

We evaluate Eq. (3.13) in the dilute limit as shown in Ref. 3, and find

(3.14)

287rc c
t

i2 j dc
49 m2X ro(cI,. )ro(c& )6(c—

c& )6(c —
c& )Im[G(c)J(c)], (3.15)

where the relaxation time is given by Eq. (2.11). We re-
place the sums over k and k' by integrals and take the
temperature low compared to the Fermi energy so that
we can approximately replace the derivative of the Fermi
function by a 6 function at the Fermi surface 6(c, ). This
approximation is valid for T & To and for T =0 K; how-
ever, it should not be used for 0( T ( To. By evaluating
the integral in Eq. (3.15) we find that the contribution to
the Hall conductivity from type-I diagrams in the dilute
limit is

o„(I)=,
~ V, ~'kF2lm[G(0)J(0)] .

49 m'X,
(3.16)

For a band of free electrons we use n (0)= 3n /2EI;,
where n is the number of conduction electrons per unit
volume and spin direction, kF =2mEF, n (0)=N (0)N,
[Eq. (2.12)], and AN(0)~ V& ~

=I . Finally, we find

2

o H(I) = I Im[G(0)J(0)] .
49~ m

(3.17)

By using Eqs. (2.1) and (2.13), we find the Hall constant
from type-I contributions in the dilute limit is

RH(I)= —Im[G(0)J(0)] .
3 mc I

49m ne fg H
(3.18)

Note we have inserted A to obtain the proper units for the
Hall constant.

To first order in the two-particle scattering, J(0)—:J is

real, and the contribution to the Hall constant is

RH(I ) = — I J anf(p, /H)
49 7Tne A

b+
12

(x~gus)(7po+ ,'p»-
(3.19)

J,„N(0) pzRg" ( I ) = — 1+—,', —p;„,14, "
I o go~

(3.20)

where we used bJ:—J„,po=Nfpf, and p;,„=o.~' [see Eq.
(2.13)]. For the linear Hall constant we can neglect pz as
it is proportional to H . Then we find the temperature
dependence of the spin contribution from type-I diagrams
to the linear Hall constant is completely given by the sus-
ceptibility and normal resistivity.

The on-shell (elastic scattering) T matrix for the non-
resonant channel to all orders in the charge scattering
and first order in the spin scattering is'

where p, ———ImG, (0) are the spectral densities of the
functions Eq. (3.11) and y is the magnetic susceptibi»ty.
The charge- (impurity-) scattering contribution which is
proportional to a is identical to that previously found by
using the Boltzmann equation if we set nf =1.' The spin
(exchange) contribution is new. By using Eq. (2.13) it can
be written as



958 %EI GUO AND PETER M. LEVY 39

I 7t2( Ck )

Ta, k' ' = e sin[gz et,
n(E& )

X 1 — moe ' ' sin[gz(e&)]
2

X Y~(k). Y2(k ')6 (3.21)

where R„—:ReG„(0). This expression is identical to that
previously found. ' The spin-or exchange-scattering con-
tribution to the linear Hall constant is given as

1 J„
Rgqja( I )

1 ea mc I
AN(0)ne fi gpti

where J,„=bJ, g2 is the phase shift in the nonresonant
channel, and A2 is the half-width of the virtual bound
state formed by the charge scattering. ' When we use this
T matrix instead of Eq. (3.8) we make the following re-
placements:

J(k)-~ — e ' sin[gz(k)],
N(e1,. )

Xsin gz(pocos2g, +R„sin2gz) . (3.24)

When we write the normal resistivity [see Eq. (2.13)] as

Po mC I
Piso irN(0)ne A'

(3.25)

and define R;,, in a similar way with R0 instead of P0, we
find

anf ~1 (3.22) xRg'"(I) = —— sin g2(p, „cos2g2
7 A2 gag

R charge(I)
49 ~N(0)ne'e H

X sing2(p, cosgz+R, sing2), (3.23)

b~ — e ' sin[g2(k)] .
2

By placing these in Eq. (3.18) we find that the charge
scattering gives a type-I contribution to the Hall constant
of

+R;,„sin2g2) . (3.26)

For small phase shifts gz —b 2/0 (Et; ) and as N (0)
—1/Ei i we find the reduction is —O(b 2/EF)

We note from Eq. (3.20) that the major modification of
the spin contribution to the Hall constant when we in-
clude the eft'ects of charge scattering is to reduce it by

1

b, ~N(0)

IV. TYPE-II CONTRIBUTIONS

The vertex function for type-II diagrams is found from Fig. 2 to be

I z(i v, , i'alai, i &oz) = —g D(i re, —i tci&
—iv„) g G (i a13)G,„(iv@3+1ai&

—ice&') Vi*, Vi, «( o m'~H2~cr'm ),
I tcP3 m, m'

(4.1)

where the Vk,„and H~ are defined by Eqs. (3.3') and (3.4), the D (i co„) is a renormalized f or slave boson propagator,
and G (iai„) is a pseudo-f-electron propagator. '' By placing this vertex function in Eq. (2.19) we find that the one-site
correlation function without the coupling constants V& and J is

3

C(2) ( )

I tr& 1, I to)» I CO 3

XD(1C03 1trii 1v„)G, (1C03)G~ (1CO3+1CJ~ ltrii )
n

(4.2)

In Appendix A we have evaluated the sums over the Matsubara frequencies. The ensuing general expressions are
unwieldy and we have immediately considered the case of single-ion Kondo scattering, i.e., the dilute limit, where Eq.
(3.14) applies. We can already see from Eq. (3.9) that the only complex number entering o.

H besides C' ' (ai) is the
imaginary term entering from Eq. (2.17). Therefore we find

lim Im
Gd —+ 0 CO

dE B E dE r
1

p(p' cj
27T' BE

r r —Pp"

X j — —Gk (e)G1, .(e')B(e"—e') A .(c.")A (e"—
F.'+e),

77 Z4f'

(4.3)

where

G„(e)=G„(e)G„"(e), (4.4a)
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that is, a product of a retarded and advanced propagator for the conduction electron, Zz& is the 4f partition function,
and A (c) and 8(c) are spectral functions of the pseudo-f-electron and boson propagators. " In the dilute limit (see
Appendix A) the function Gk reduces to

G„(c ) =2irro( c )5( c —ck ) . (4.4b)

We place the result [Eq. (4.3)] together with the coupling constants Vi, and J in the expression for the Hall con-
ductivity [Eqs. (2.16) and (2.17)], and multiply our result by 2 to take account of a similar type-II contribution where
the role of the l =2 and 3 channels is interchanged. Then we find that the contribution to the Hall conductivity from
these two type-II diagrams is

, ~ 8~ 24~II;I'X,
oH(II) =

m +6 N, m, m', o. , a'
(
—1)

'

~ arm 'la +bs.Jlo'm )

3 5
2

m] o. —m
ml, m2, m3

5
2

3 dn,
m cr' —m' m —m 0 & f

4

X f Y3 '(k ')[ Y2 '(k')]* Y, '(k ') fdc„n(ck )kJ(k) f dci, . n(c„.)k'
4~

—pp"

X — E' 1 —e~' 'j
G& E G& ~

E' a E"—E' W E" W, E"—E'+ E
2& BE,

(4.5)

By evaluating the integrals over the spherical harmonics and recoupling the 3-j symbols we find

f dfli [Y3 '(k)]*Y~ '(k)Y, '(k) f dQ„. Y3 '(k')[Y2 '(k')]*Y, '(k')
m3 m3

m&, m4

3 3 1

—m] m& 0 (4.6)

The matrix elements for the potential- or charge-scattering term are

&
o.m'la Iir'm & =a6,6

By recoupling the 3-j symbols in Eqs. (4.5) and (4.6) with the above condition we find

(4.7)

m l, m2
m] o m m2 o m

3 3 1

—
m& m2 0

1

=( —1)' g (2s+1)(2j+1),3
S)J

3

1

2

1

2

1 S J
0 0 0

5
2

5

2

—m m 0

1 S
2

o. —o. 0 (4.8)

where the expression in curly brackets is a 9-j symbol. By using Eq. (4.8) we sum over m and o in Eq. (4.5) and find
that the type-II charge-scattering contribution to the Hall conductivity is

c e' all'~l' dE
o H "s'(ll) =- dE& kJ k n E& dc& k'n EI,.49~ m X /; k I

i)f (c)
BE,

r r r —Pg"
X E' 1 —e~" ' 8 E"—E' Gj, E G& E' mA E" A„E"—E'+E

7T 7T ~gf

——', g o G„(c)G„(c') g A (c")A,„(c"—c'+c)+ —,', g 0~2'(m) A,„(c")A„,(c"—c'+c)
m

(4.9)

To obtain the linear Hall constant we keep only the leading-order terms in the magnetic field. The field enters the
pseudo-4f spectral functions and energies of the conduction electrons [see Eq. (4.4b)]. To leading order in the field we
find

g G„(c)Gi,. (c')= —,'Gi,. (c)Gi, (c')+O(H ), (4.10a)
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g mA (c")3 (c"—c.'+c)= [A '(c")3 (c"—c.'+c)+ A (c")A '(c."—c.'+c)]+O(H ),
f

(c)Gq (c')= —,'[G &(c)G& (c')+G~(c)G }(c')]+O(H'),

(4.10b)

(4.10c)

(c")A,„(c"—c'+c)= 3 (c")3 (c"—c'+c)+O(H ),1

m f
(4.10cl)

g Oo(m) 3 (c")2 (c"—c'+c) =O(F1 ), (4. 10e)

where

A"= g Oo(m)A

G },.
==- go. "G},. (c), r=0, 1 (4.1 1)

and the 0„"(m) are defined in Eq. (3.11). These quantities have the property that 3 "-H" and G "-H"; therefore to ob-
tain the linear Hall constant we must have either A ' or G ' appear once, while all other quantities are either A or G
Finally we use Eq. (4.4b) to write

g G},. (c)G},. (c')=87r r( o)cr( oc)6( —c c},. )6(c' —ck ), (4.12)

where we drop the spin index on the energy as these functions are in zero field. We will neglect the terms coming from
Eq. (4.10c) as they depend on the polarization of the conduction band which is the order of gpsH/EF. This is consid-
erably smaller than the other part coming from the polarization of the local state which is the order of gp~H/kg Tp,
where k~Tp is the characteristic low-temperature energy scale for the Kondo problem. With these simplifications we
find that the type-II contribution from charge scattering to the linear Hall conductivity is

ne aJ(0)I dc Bf(c) dc'
f( )(1 /3( }) ( )

m N 2-. . Bc.f
rr =Pf

X 8 c.
"—E' A c" A' c"—c'+c. +A' c" A c"—E'+E +0 H

77 Z4f
(4.13)

where we set the conduction electron's density of states n (c) and the nonresonant coupling parameter J(k) equal to
their value at the Fermi surface; these quantities vary slowly over the range of integration. To arrive at the prefactor
we used the same free-electron model as for Eq. (3.16), i.e. , n(0)=3n/2EF, k~/m=2EF, as well as Eq. (2.12),
n (0)=X(0)X,, and ~X(0)}V~ l'= I .

Now, the matrix element for the exchange or spin scattering in terms of 3-j symbols is

(orm'~bs. J~o. 'm ) =( —1)' '"
=,'&5X7b g (

—1) —O. m3 0'

5
2

—m3 m
(4.14)

IIy placing this and Eq. (4.6) in the expression for the type-II Hall conductivity [Eq. (4.5)] we find

cl V}. l
b f dc, kJ(k)n .(c,. )

2w m2

dcX f dc},, k'n (c~ ) f 277

I —pc"f(c f c f( i)(I f3(c' —c})J
c e 1I(c«c')

Bc 77 7T Z4f

X g G},. (c)G~. (c') g A .(c")A,„(c"—c'+c)
CT, O rn, m'

rn l, rr12m 3

m
1

+rn
&

—m —o
(
—1)

3 5
2

3

m[ 0 m m2 D m

3 3 1

mI m2 0

5
2

5 1

2

m m3 m o m3 0

(4.15)

In Appendix B we recouple the 3-j symbols so that the sums over the propagators and spectral functions which depend



39 CONTRIBUTIONS FROM TWO-PARTICLE SCATTERING TO. . . 961

on the orbital and spin indices m and o can be written in their irreducible forms G and A [see Eqs. (3.11) and (4. 11)].
Whereas the highest-rank polynomial to enter the charge contribution was r =2 [see Eq. (4.9)], spectral functions A "up
to r =5 enter the spin contribution to the Hall conductivity. However, to lowest order in the magnetic field we want
r =1 to appear only once, and all other ranks are r =0. Then the integrand in the expression for the spin contribution
[Eq. (4.15)] that is linear in the field is

a g'"( ll )— 1 &5/3[G „(c)G k (c')[A (c")A '(c"—c'+c)+ A '(c")A (c"—c'+c)]
2X3 X7

—
—,'[G 1, (c)G k (c.')+G I, (c)G ~.(c')]A (c")A (c"—c'+c)I .

By using Eq. (4.4b) for the functions G k. [see Eq. (4.11)]we find

G 1, (c)G k (c')=16' rp(c)cp(c')Sic —cl, )5(c' —ck )

(4.16)

(4.17)

With the same simplifications we made in Eq. (4.9) to arrive at Eq. (4.13) for the charge contribution, we find that the
spin contribution from type-II diagrams to the linear Hall conductivity is

2
og'"(ll)= —', c bJ(0)r f "' Bf(c)

Bc

I

rp(c) f f(c')(1—e~" ' )rp(c')

dc" e ~"
X B(c,"—c')[A (c")A'(c"—c'+c)+A'(c")A (c"—c'+c)]+O(H ) .

7T Z4f
(4.18)

RH(II) =—

By combining this with the charge contribution and dividing by the normal conductivity squared, we find that the to-
tal of the type-II contributions to the linear Hall constant [see Eqs. (2.1) and (2.13)] is

t

1 mc I J(0) 6a,
b z dc Bf(c), dc'

f( )(I p( " )) —[( )
49 ne g H Xf 2~ Bc

dc." e
X B(c —c")[A (c,")A'(c"—c'+c)+A'(c")A (c"—c'+c)]+O(H ),

7T Z4f

where we used the relation

(4.19)

rp(c) py(0)

2p~(c)
(4.20)

which is found by comparing Eqs. (2.11) and (2. 14).
To first order in the field,

Ap(c")A'(c" —c'+c)= g m'A (c",H)A .(c"—c'+c,H)
m, m'

=gp~HN&Rp A,„(c",H) [A,„(c"—c.'+c,H)].
Bcm H=0

I

(4.21)

and

A '(c")A (c"—c'+c)=g @KAHN&R p , [ A (c.",H)] A,„(c"—c'+c,H )
a

~~m H=0

where Rp ——g m and c—:gp&Hm. The combination of these entering Eq. (4.19) can be rewritten as

(c")A '(c"—c'+c)+ A '(c")A (c"—c'+c)=gp&HN&Rp [ A,„(c",H)A, (c"—c'+c,H)Ia

m H=0
(4.22)

so we can rewrite the expression for the Hall constant as

RH(II) = —
g @BR pI J(0)(6a —'NJ b )I, —

49 ne'R
(4.23)

where
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I =pI(0) f— Bf(e)
p/ )

(4.24)

There are no analytical solutions for the spectral densi-
ties that are valid for all temperatures, therefore it is not
possible to write down expressions for the Hall constant
of Kondo systems that are valid for all temperatures. In
the next section we evaluate the expressions we derived
for RH(I) and RH(II) in the limits of weak coupling
T ))To, and strong coupling at T=O K.

V. RESULTS

while that for type-I contributions [see Eq. (3.19)] is

f, =
—,', N(0)(n/J, „——', J„),

where we used

Pi 1 y Nfr
0 2gp,

and

(5.6)

In Appendixes C and D we have evaluated the integral
I [Eq. (4.24)] in the limits of weak and strong coupling.
By placing the solution [Eq. (C13)] in Eq. (4.23) we find
that the contribution to the Hall constant from type-II
diagrams at high temperatures is

T1 39 mc I o

49~' 40 ne'g Ef T

NfI
po

The salient difference between the type-I and -II contri-
butions in weak coupling is the factor (To/T) which is
small for Tp ((T.

By placing the result, Eq. (D17), in Eq. (4.23) we find
the contribution of type-II diagrams to the Hall constant
at T=O K is

gpss R o( J~h 24 N/ J,„)T (5.1) R "(0)= 3 mc gPii . 4

2X49 fi I *

where J,h=aJ(0) and J,„=bJ(0).
We immediately note that this contribution is smaller

than that from type I at high temperatures' by (To/T);
therefore for T ))To, type-II contributions are negligible
compared to type I. Also, while the temperature depen-
dence is correct, the precise constant depends on our ap-
proximating the Lorentzians in Eq. (C3) by rectangular
functions [Eq. (C4)], thus this should not be taken too
seriously.

To write the Hall constant as a dimensionless ratio we
use ''

P]Nf
X A + sin[2t13(0)]

7T

X ( J,„—,', N/ J,„), — (5.7)

~n/(0)
t)3(0) =

Nf
(5.8)

where 3 and pi are numbers of order 1 (see Appendix
D). The phase shift at the Fermi surface at T=O K is
given by the Friedel-Langreth sum rule:

RHf:gpa-
piso+

(5.2)

where g is the magnetic susceptibility and p;„ is given by
Eq. (3.25). In weak coupling the susceptibility is given

12

The magnetic susceptibility at T =0 K is ' ' ' '

(gp~ ) sin [r13(0)]
R o

while the resistivity [see Eq. (3.25)] is

(5.9)

(gpss) Ro

k~ T Nf

and the resistivity [Eq. (3.25)] with po=N&I /c& is
2

mc r
2 irN (0)nc fy

(5.3)

(5.4)

The dimensionless ratio for type-II contributions in weak
coupling is

2

(5.5)

mc . 2sin g3(0)1,
~N(0)ne iii

where we used, for T=0 K,

po= sin [t),(0)] .
Nf

(5.10)

P]Nf

f
X ( J,h

—
—,', N/ J,„), (5.1 1)

The dimensionless ratio [Eq. (5.2)] for type-II contribu-
tions in strong coupling at T =0 K is
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while that for type-I contributions [see Eq. (3.19)] is

sin[2r)3(0) ]
2 f ch ip f ex

sin [g,(0)]y, (0)= 6 N(0)
f

(5.12)

where we used

P& 1 gPa
Rosin[2q, (0)]sin'[q, (0)], (5.13)

and neglected the nonlinear contribution from p2.

VI. DISCUSSION OF RESUI.TS
AND CONCLUSIONS

We have extended Luttinger's one-electron theory of
the Hall effect in metallic alloys to take account of two-
electron scattering processes for Kondo-type compounds.
In addition to reiterating the one-electron results we have
found new contributions that are important in the
strong-coupling limit at low temperatures T(T,. The
Kubo formalism which gives the Hall current that is
linear in the electric field has been used to write the con-
ductivity in terms of current-current correlation func-
tions. These functions were evaluated in the dilute limit
where the number of Kondo ions is small compared to
the available lattice sites. To apply this formalism to
more concentrated (dense) Kondo systems, it will be
necessary to take into account (1) interference terms be-
tween scattering at different sites, (2) the interactions be-
tween Kondo ions at different sites, and (3) the renormal-
ization of the conduction electrons due to the Kondo
scattering.

In the present treatment we considered both two-
particle charge and spin scattering in the nonresonant
channel. As charge scattering is much stronger than the
spin, we evaluated the type-I contributions to the extraor-
dinary Hall effect to all orders in this scattering [see Eqs.
(3.23), (3.24), and (3.26)]. For the type-II contributions
we limited ourselves to vertex corrections that are first
order in the nonresonant two-particle charge and spin
scatterings. In a future development it would be useful to
extend this to all orders in the charge scattering by using
a ladder approximation for the four-point electron-hole
vertex function entering the type-II contributions (see
Fig. 2). Finally, we limited our investigation to the con-

tributions from skew scattering; we are presently using
the Kubo formalism to evaluate the anomalous velocity
or side-jump contributions to the EHE. These terms
have been evaluated by using Luttinger's one-electron
theory, and have been found to give important contribu-
tions to the EHE at low temperatures. ' As we have
found that two-electron scattering processes lead to new
and important contributions due to skew scattering, we
anticipate that the anomalous velocity mechanism will
also contribute new and equally important contribu-
tions.

By comparing the new contributions we found by using
the Kubo formalism to those previously found, " we
conclude that type-II contributions arising from energy
transfers between the resonant 1=3 and nonresonant
l =2 channels [see Eq. (5.11)] are as large as type-I con-
tributions at low temperatures T & To [Eq. (5.12)]. How-
ever, at high temperatures T)& To, type-II contributions
to the EHE [Eq. (5.5)] are smaller than the elastic scatter-
ing type-I terms [Eq. (5.6)] by a factor (To/T) By c. on-
sidering two-electron scattering processes we have also
found spin- or exchange-scattering contributions that
were not previously accounted for. The type-I contribu-
tion to the EHE due to spin scattering is directly propor-
tional to the product of the magnetic susceptibility and
resistivity, i.e., f ',

'"
( T) =const. However, as the spin

scattering is an order of magnitude smaller than charge
scattering, this proportionality will be masked by the
temperature-dependent ratios f&~(P'( T) coming from
charge scattering. Indeed, the experimental data on the
EHE in Kondo-type compounds can be parametrized in
terms of tuo diff'erent parameters f, ( T & To) and

fz( T„h & T & To), over limited ranges of temperatures. '

We reiterate that in their present form our expressions
for the EHE are applicable only to dilute Kondo systems.
We are presently evaluating the role of two-electron
scattering processes in the anomalous velocity contribu-
tion to the Hall effect. '-' Once this is completed we will
be able to compare the results of the two contributions
(skew scattering and anomalous velocity), which are
based on our impurity-scattering model, to experimental
data on dilute or impurity Kondo systems. In the future
we plan to extend our results to dense Kondo systems by
incorporating some features mentioned earlier that have
been neglected in the present treatment. Then we will be
able to compare our results to concentrated Kondo-type
compounds.

APPENDIX A: TWO-PARTICLE CORRELATION FUNCTION

Gg (iaaf, )Gk (i', +l'v„)G„.(icd )Gk (icop+iv„)r' ' (iv„,i', , ico2)

The two-particle correlation function for type-II diagrams [Eqs. (2.19) and (4.2)] can be written as
2

1C' ', (iv„)= (Al)

where the vertex function I ' (i v„,i'&, ico2) is defined as

(1 lvc(, lcoo2) = g D (1co3 Leo/ I v„)G~ (tco3+tro2 —
tro& )G~ (tco3)

f 603

The sum over complex frequencies can be expressed in terms of a contour integral as follows

(A2)
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I '„' (iv„,ico, , ico2, )= — f e 'D(z —icoI —iv„)G (z+icoi —ico, )G (z)
Z4f I 27Tl

l dc. p,e ~'[D(c ic—o, i—v„)G (c+icoz i—co, )A (c)
4f TT

+D{c—i co2
—iv„)G (c.—icoI —i co2) A (c)

—G (c+icoz+iv„)G (c+i co+i v„)8(c)] .

We define

y I(i Co, , i Col +i v„)= —g Gk (iCo2)GI, (i Co.z+iv„)1 .(iv„,i Co, ,i Co2)
1CD&

g PI (I Col, ICoI +IV„,ICoz, lCoi+I V„) (A4)

By using the contour-integral representation, the y function is

y I(i co„icol +i v„)= —f .f(c')[PI (i col, i co&+i v„,c'+i6, c'+i v„) PI (ic—ol, i co&+iv„,c' —i 6, c'+i v„)
27TI

+PI (I Col, l Col + I V„,c I V„)c +16) PI (I Col, 1 Col + I V„,c I V„,c 15)]

The two-particle correlation function C' ', can be expressed in terms of y, [see Eqs. (Al) and (A4)] as follows:

(A5)

C'".(iv„)=—g G„(ico,)G„(ico,+iv„)y, (ico, , l co, +I''v„)
mill II p CT

I g Pi( I Col, l Col + I V„)
th)

f(c)[Pz(c+i 5, c+i v„)—Pz(c —i6, c+i v„)+P2(c—i v„,c +i5) —Pz(c —iv„,c —i 6)].C

When we analytically continue i v„ to the real axis, we take i v„~co+i 6, and find

C' ' (co) = —.f f(c)[P~(c+i5,c+co+i , 5) P, (c i6—, c+co+—i 5)+P2(c co i 5—, c+—i 6) —
. P2(c co i 5—, c ——i5)],

where

Pz(c+i 5,c+co+i 6) = Gk (c)G„(c+co)y,(c+i5, c +co+i 5),
P&(c—co —i6, c —i6)=Gk (c.—co)Gk (c)yI(c —co i5, c ——i5),
P, (c i5, c+c—o+i5) =Gk (c)Gk (c+co)y, (c—i5, c+co+i6),

(A7)

Pq(c co 16,c+15)=Gg~(c co)Gk~(c)yi(c co 16,c+16)

If one uses this result for C,'„' ~ to calculate the conductivity, one finds an unwieldy expression. To make it manageable,
we consider the expression in the dilute limit.

In the dilute limit, terms like Gk (c)Gk (c+co) and Gk (c)Gk (c+co) go to zero, therefore in Eqs. {A7) only

y, (c—i5, c+co+i5) and y, (c—co —i5, c+i5) need to be calculated. The y function [Eq. (A5)] can be analytically con-
tinued to the real axis, i.e. , set i ~v+coi 5, and for co approaching zero y, (c.—i 5, c+co+ i5) is (see Ref. 14)

lt

y, (c—i5, c+co+i5)l o= f e ~' f Gk". ~ (c')GI, ~ (c')
Z4f 77 7T

—j9(c' —c jX, A {c")D (c"—c')3 (c"—c'+c)
1+e~' (AS)

y, (c.—co —i5, c+i5)~ o=y, (c—i6, c+co+i5)I o .

When we place these expressions for the dilute limit, and for co=0 in Eq. (A7), we find

(A9)
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iC '
(c~ o)

lim Im
CO~0 CO

= Iim —J' d c (c)— (c+co) G„(c)Gq (c)lmy, (c—i5, c+i6)
co~0 2' CO

lt

c 7T 77 Z4f

e P(c' —E j

(c")B(c"—c')A (c"—c'+c) .
1+e~'

This is just the result quoted in Eq. (4.3) when we use the equations defined in Eq. (4.4a).

APPENDIX B: SPIN OR EXCHANGE CONTRIBUTION

(Alp)

In evaluating the spin or exchange contribution from type-II diagrams to the Hall conductivity in Sec. IV, we find the
sum over five 3-j symbols [see Eq. (4.15)]:

Jmcr, m'o' =
ml, m2, mg

ml +m3 m 0
3 3

2

m] (7 —m mp cr' —m'

3 3 1
5
2

5 1

2 2

—m, m& 0 —m' —m3 m —o m3 0 (B1)

Here we show how these symbols are recoupled so that we isolate the dependence of J on each index.
We start by recoupling

1 3 3

m l, m2

—m]

1

2
3 1

2
5

2

—o. m m2 cr' —m'

b1 b c
[b][c] 0 p y p

b, c,p, y

1

2
c 5

2
5
2

1 b c

y m —m'
1

3—
5
2

5
2

(82)

where [b]=—2b + l. As two rows of the 9-j symbol are identical, the sum of the elements must be even, therefore b +c
must be odd. As b =0, 1, it follows that we have the following possibilities:

b=0, c=l
(B3)

b =1, c=0,2 .

Next we recouple the spin indices as follows:

b 1

2
1

2
1

2

a' b' c'

—m3 o —0'
a', b', c', a', P', y

[a'][b'][c']

a' b'
X t pg

c' a' b
b' 1 1

2
1C
2

1

2

0 0y' a' /3
—m 3

/3' cr o —y' (B4)

and the orbital indices in an analogous fashion:

c 5
2

5
2

5
2

5
2

II b II II

y m —m' m3 —m m' [a "l[b "l[c"] . c
5
2

5
2

a" b" c" a" c 1

a" P" y" a" y m3

b lf 5
2

5
2

5
2

5
2

P" m —m y" —m' m' (B5)
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Finally, we sum over the indices m3, P, and y, and find

1 b c
(
—1)'()p

m3, p, y

a' b 1 a" c
a' p —m3 m, a" y

a" a' 1 a"
1 )a' +b+1

o. ' 0 b

a 1

c 1. (B6)

where the term in curly brackets is a 6-j symbol. From the 3-j symbols in Eqs. (B4)—(B6) we find

p' =y' =p" =y" =0, (87)

and it follows that

o,"=a"=0 .

By substituting Eqs. (B2)—(B7) into Eq. (Bl) we find

Jm o, m'o'
b, c;a', b', c';a", b "c"

[b 1[c ][a']["'][c'][a"l[b "1[c"]

1 b c
X 3

3 -'

a'

, . b 1

2
c1

2

1

2

b' c' a" b ll

5
2

5

IIc IIa
c

( 1
)a'+b

b
5
2

1 a

1 0

a" 1 a' b' c'
0 0 0 0 0

b II5I I I II IIa b C 2 2

X 0 0 0 m —m 0

5
2

5 IIc
2

—m' m' 0

7
1

2
1 Ic7

o' —a' 0 (BS)

The quantity entering the exchange or spin contribution [see Eq. (4.15)] is

(E"—c.'+c, ) A„(e")G& (E)G~. (E')
m, m', cr, cr'

~ ""'(' —.+.) ~ ""'(' )G '"'((.
)G,"'(. )

b', c', b",c"

where

( —1)"+'+' [&][c][a'][b'][c'][a"][b"l[c"]
b, c;a', a"

1 b c a' b'

X, 3 —,
' -„', , b

c' a"
1 c

b II

5
2

5

2

5

2

5

2

a" a' 1 a' a" 1 a' b' c' a" b" c"
b c 1 0 0 0 0 0 0 0 0 0 (810)

5
2

V
5
2

(r) y ( 1)m —m m 0 m

5

2
b"

m —m 0 1
)b"+ (

b"
—m m 0

and (Bl 1)

and

1 Ic2
1

2
c

2

(B13)

7"1

2

G I.
"'= g( —1) () Gl, a .

To arrive at this result we multipled by

1)m' —cr' —(m —a)
(

1)m'+m+a+a' (812)

1 )c'+ (
o. ' —cr' 0 —o. ' o. ' 0

in order to form the combinations A " and G I,.
"' [Eqs.

(Bl 1)], and finally we noted a'+b'+c'=even to replace
(
—1)''+'' by (

—1)'.
In general

b', c'=0, 1

and (B14)

we used the symmetry of the 3-j symbols to write b",c"=0,1, . . . , 5 .
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However, to lowest order in the magnetic field we want
r =1 to appear once, and all the other r =0. This follows
from the definition of the A '"' and Gk(r) as irreducible
tensors of rank r. They have the property that

A (r)-H"

By evaluating the 3 "and G k"' for r =0, 1 and writing
them in terms of the irreducible tensors defined by Eq.
(4.11), we find

g (0)— ~ g(0)

and

Gk(r)-H" .

(B15)
A '"=V2/(3X5X7)iA "',

Therefore, to obtain the linear Hall constant we want
r =1 to appear once. There are four possibilities. By
evaluating the 3-j, 6-j, and 9-j symbols we find

5

2'X3'X 7&3 X7

and

G (0)— G (0)
k ~2 k

6 "'=&2/3iG '"I
/&

(B17)

and

r =r v'5

2 X3 X7

(B16)
By placing these results in Eq. (B9) we find that the linear
Hall constant due to spin contributions from type-II dia-
grams is proportional to

m, m', o, o'
J ~ ~ A (e"—e'+e)A (e")Gk (e)Gk (c')

2 X3 X7
5/3t [A (c.")A '(e"—e'+e)+ A '(e")A (e"—e'+e)]

XG k(e)G„, (e') —
—,'A (e")A (e"—c,'+e)

X[6k(s)G k (c')+Gk(e)G (ke)]]+O(H ) . (BI8)

This is how we arrived at Eq. (4.16).

APPENDIX C: WEAK COUPLING

In the limit of weak coupling the pseudo-f spectral
function is given as"

A (e)=
(e —e/ ) +I *

and the 4f spectral function is relatively smooth in the
range of integration about the Fermi surface, so that it
can be moved outside the integral. Also the partition—pc~function is approximately given as Z4& =N&e
Therefore, at temperatures high compared to T0, i.e., in
the limit of weak coupling, we find Eq. (4.24) is written as

where

and

sin [g (e)],

&fm
(e) =cot

7T T0

I

I

I

I

I

I

I

To
I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I
I

0

I

I

I

I

I

I

I

I

~fm =~g+~m .

The boson spectral function in weak coupling is"'

B(e)= g f(e& —e)
r

m

N~I
z f(e& —e)+O(H ), (C2)

FIG. 3. The Lorentzians in Eq. (C3) modeled as rectangular
functions. One function is centered about c&, extends to
Ey + Tp and has a height of ~/2 Tp. The other is centered
about c& +x, where x =c' —c. Thus the area of each rectangu-
lar function is normalized to m. in accordance with the definition
for the spectral density A (c) (see Cox, Ref. 7). To obtain non-
vanishing contributions to the integral [Eq. (C3)] w must lie in
the range —2Tp ~ x ~ 2Tp.



968 WEI GUO AND PETER M. LEVY 39

I dE Bf(e) de' . , &~, , ~

de" 0—(~" E—f) f ef+e
e

7T 2'7T BC (e' —e")

H=O
(C3)

The first point to note is that one cannot use the conventional approximation for the pseudo-f spectral function of
letting I approach zero and replacing it by a 6 function. This would make the integral zero. Second, the integral is
large only when c" is close to the center of the Lorentzians, i.e., 8"—cf = I * and when the Lorentzians overlap, i.e., for

f

It is not possible to find an analytic solution for Eq. (C3} by keeping the Lorentzians. Therefore we model them as
rectangular functions of half-widths To (which is approximately I ) and height 7r/2To (see Fig. 3):

(E")= [6[e"—(Ef —To)]—6[e"—(Ef +T o)]} .
2TQ

As we show, this produces very reasonable results in the limit of weak coupling.
By using rectangular functions for the pseudo-f spectral densities, we find

2

[ A (E",H ) A (E"—E'+E,H )]~H o= —
[ [6(x)—8(x —

2To )][5(y —x + To) —6(y —To)]
~~m 0

+[8(x)—8(x+2T )][5(y —x —T )
—6(y+T )]},

(C4)

(C5)

where

and

P=E Ef

When we place this in Eq. (C3) we find that the last integral is

where

[[e ~"g+(E)—g (E')][6(x)—6(x —2To)]+[e ~ g (c)—g+(E')][8(x)—6(x+2To)]}, (C6)
0

(C7a}

As the range of integration in Eq. (C3) for the variable E is limited to T (in units of kii) by [—Bf(E)IBE], and both T and
To are much less than sf, the denominator can be replaced by Ef. When we expand the Fermi function we find g

—(E)
can be approximated as

(C7b)

Then the integral I3 becomes

Bf(E')
C)C

P(x) (C6')

where

and

Q(x) =—[8(x)—8(x —2To )]+[8(x)—8(x +2To))

P(x) =—[6(x)—8(x —2To)] —[8(x)—8(x +2To)],
(C8)
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so that Q(x) is an odd function of x, while P(x) is even. The range of integration for x =c —c is limited by the rec-
tangular functions to —2TD ~x 2T0, while c itself is limited by the derivative of the Fermi function to —T & c ~ T.
As x varies over a very narrow range, we transform the variables c and c' in Eq. (C3) to the variables

C K=X

C +E, =Z

so that

c'=
—,'(x +z),

c= —
—,'(x —z},

and

dade'= —,
' dx dz .

Then the integral Eq. (C3) is rewritten as

r f dx f dz f( —
—,'(x —z))f( —,'(x —z))f( —,'(x +z))(1—e~ )16~'Z'

~ c~ ~'

X [[e ~'f( —
—,'(x —z)) f( —,'(x+z—))]Q(x)

+PT0[e ~'f ( —
—,'(x —z))+f ( —,'(x+z))]P(x)] . (C10}

As the range of integration for x is much less than z at high temperatures, i.e., T0 « T, we can expand the Fermi
functions about x =0, and by keeping the leading terms we find

16 'T'~c~~' f dx f dz f ( —,'z)f( —
—,'z) 1— f( ,'z)—

X( —Px ) 1+
2

—Px f ( —,'z)+ f( —,'z)[1+f (
—

—,'z)] Q(x)

+PT0f ( —,'z)(2 —Px)P(x) (Cl 1)

Q(x) [P(x)] is an odd (even) function of x, and the inteval for x is symmetric. Therefore, we pick up only odd (even)
functions of x in the integrand from Q (x) [P (x)] and find after integrating over x,

T II =—,f du f (u)f (
—u)[f (u)+ f(u)f (

—u)+ f'(u)f (
—u)+ ', f '(u)], —

4~'/c~ /'
(C12)

p TDI

80~'
(C13)

APPENDIX D: STRONG COUPLING

In strong coupling, the pseudo-f spectral functions
have only an exponential tail for c. & E0; for T=O K they
are cut oA' at the ground-state energy ED, i.e. , at T=O
K 8, 11

(c)= sin [il (c)]e(c.—E0),1
(D la)

where il is given by Eq. (Cl). For small but finite tem-
peratures T « T0 we posit

where u =Pz/2. By evaluating the integrals over the
Fermi functions we finally find in the limit of high tem-
peratures T ))Tp,

(c)= ——sin [il (c)]f(ED —c),1 (Dlb)

8""s(c)=Zvr5(c —ED), (D2)

where Z is the renormalization constant for the Kondo
problem, Z =m To/N&I . The continuum part of the bo-
son spectral function is negligible compared to the singu-
lar [Eq. (D2)] in the region c =E0 where there are
significant contributions to the integral I [see Eq. (4.24)].

that is, we replace the step function by the Fermi func-
tion, which at low temperature mimics a "rounded" step
function.

The boson spectral function consists of a continuum
part [see Eq. (C2)] and a singular part that gives rise to
the Kondo resonance. '" The latter is a strong function
of temperature and it peaks near the ground-state energy
E0. It appears prominently for T & T0, at T=O K we
can write it as
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1p4f(E)=p, f„,(E)+ g sin [i) (E+Eo)]
f m

(D3)

where I =~X(0)~ V& ~
is the hybridization width, and is

related to the half-width of the Friedel-Anderson (charge)
resonance. To lowest order in the magnetic field,

Thus it will suffice to use only the singular part [Eq.
(D2)].

The 4f spectral function has, in additon to a continu-
um, a part that becomes increasingly pronounced for
T ( To, i.e., the Kondo resonance. For T =0 K we can
write

1 g sin rI =sin r)&+O(H ), (D3a)

where i)3=—r) (H =0). Therefore, the Kondo resonance
in the 4f spectral density of states does not have a term
linear in the field, i.e., it is independent of field up to
O(H ). Finally, the partition function as temperature
approaches zero is

—PEo
Z4f( T) e (D4)

Therefore, we find that in the limit of strong coupling, in
particular at T =0 K, the integral I [Eq. (4.24)] is written
as

I= p (0)
(

af(e)
C)E

I I i gp

pf (&)f f(E')(1 e~—' ')pf '(e') f e ' Z~6(e" —e' Eo)—

X ~sin [i) (E")]f(EO—e")sin [i) (E"—e'+e) jf (Eo —e"+E' —E) '
~Em

By integrating over E" we find

H=0
(DS)

Zpf (0)I= f dc. — f( —E)pf (e)sin [i) (E+Eo)], af(E) —i z

X f de' f(E')f( —e')(e ~' —e ~')pf '(E')sin'[rl (E'+Eo)] ~

Zpf (0)
, (I, —Ig),

H=0

(D6)

where

I, = a
BCm

d e
— f (

—E)pf (e)sin [r),„(E+Eo)]af(E), —i z

BE,

and

X f d E'f (e')f( —e')e )"pf '(e')sin [i) (e'+Eo)] .
H=0

(D7)

I& = de — f ( —E)e 'pf (E)sin [i) ( +eE„)]
a af(E)

~Em BE

X f de' f(E')f( —E')pf '(c.')sin [r) (E'+ED)] .

From the definition of the phase shift rj [Eq. (Cl)],

sin [i) (E+Eo)]
m H=0

1
sin[2i)3(E+Eo)]sin [i)3(e+Eo)] .2 (D9)

Also, from the definition of the 4f density of states [Eq. (D3)] we find, after taking the derivative with respect to e and
setting H =0 in Eqs. (D7) and (DS), that

pf '( E)sin'[i), (E+Eo )]=
sin'[rI, (e+E, ) ]

I
—sin'[r), (e+Eo )]+p„f„,( E )

I, P& TO E —P2TO

0, otherwise (D 10)
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To arrive at this approximation we consider that the Lorentzian is negligible compared to the continuum part of p
when c is several (p) half-widths I * from its center which is at c= Tp. Thus

p) 2Tp= Tp+pI

=T, 1+
Nf

(D 1 1)

Note that we must choose p such that p ] is negative, so that there is a finite density at the Fermi surface. With this ap-
proximation we find that the integrals [Eqs. (D7) and (D8)] are written as

I, = ——f dc — f( —c)si n[2 li(3c+E p)) f dc'f (c'. )
1» o Bf(c) . ~2To

» To ~ 1

I.
o

~2 ~0+I f dc — f( —c) f dc. ' f (c')pf '(c')sin [g (c'+Ep)]
~l O Bc Bm H =0

(D7')

I ~2 ToIb dc
~ 1 ~o

&f(c) . ~~To, 1 Bf(c')
f(c)sin[2i), (c+Ep)]f dc'—

BE, ~& ro Bc

+ f dc — f(c)f dc' ——,si [n2g, ( c+E )p]

P2ro Qf (c) i'2To, 1 gf(c')
~ l To BC Pi To /3 Bc'

(D8')

In all the integrals except one, we directly took the
derivative of the Lorentzian. The one exception occurs
when the integrand does not contain a derivative of the
Fermi function; for this case one can shift variables so
that the Fermi function depends on c. If one adopts
this approach one finds, for T « To and for p ] & 0,

I

However, if we do not remove pf '(c) from the integrand,
and if we do not take the derivative of the Lorentzian we
find for T =0 K,

1 ~2 TOI = ——f dc. ' f ( 'c)si n[ 2i()c)]
J7& ~O

I = fdc'f (c')pf '(c')sin'[q (c'+Ep)]
B~m

Fx =0

~2 To=I dc' c'+c,
—I ln

o
dc sin 2g c

~ 1 ~o

( ~p, + 1)'+ (~/xf )'

1+(n /X/ )'
(D15)

di), (c')
I = —pf '(0) fdc'f (c')sin[2i13(c')] (D13)

where we used

ai) (. )

Bc

ai)„(c )

BE

which follows from the definition [Eq. (Cl)]. At T =0 K
this integral reduces to

p di13(c')I = —pf '(0)f dc' sin[2i13(c')]

0= —pf '(0) di13 sin2i13

= —pf '(0)sin'[il, (0) ]

(D12)

One obtains the same result if one assumes p& '(c. ) con-
stant and removes it from the integrand, i.e. ,

—1.38I (D15a)

Therefore, this one integral is somewhat difficult to evalu-
ate, and we can say its value is —I modulo a factor of or-
der 1. For all the other integrands in Eqs. (D7) and (D8),
a derivative of the Fermi function enters, thus we take the
derivative of the Lorentzian and not the Fermi function. ' "

At zero temperature the integrals in Ib [Eq. (D8')] are
zero, and for the integrals in I, [Eq. (D7')] it suffices to
set the derivative of the Fermi function equal to a 6 func-
tion 6(c). We find, at T=O K,

1 P]ToI.= —
—,
' ~ r' —— r sin[2il (E ) ]

= —
—,
'- I 3 + si [n2 i()Ei)p]

p, N
(D16)

where we took p ] & 0. In this approach we obtain the
same result modulo a factor of order 1, e.g, for large Nf
and ~p, ~=1, we obtain

I = —ln4 I

where the last step follows from Eqs. (D3) when one
recognizes that for c=O, p„„,(0) «I 'sin [i)3(Ep)].

where we used Z = ~Tp /Nf I, and 2 is of order 1 [see
Eqs. (D12), (D14), and (D15)]. We also find that the in-
tegral I [see Eqs. (4.24) and (D6)] in the strong-coupling
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limit at T=O K is

p/(0)
4~ Z

P]cVf3 + sin[2r)3(ED ) ]

A + sin[2rI3(0)]4~'rr* (D17)

(E )=q (0) . (D17a)

This is reasonable, as the contribution of the continuum
to the 4f density near the Fermi surface is negligible [see
Eq. (D3)].

where we used Eqs. (D3) and (D3a) for p&(0), and equat-
ed the phase shift of the pseudo-f electron at Eo to that
of the 4f electron at the Fermi surface e =0, i.e., we set
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i6By taking the derivative i)/t)e t
—[i3f(e+e,„)/t)e]I one finds

a term of order Ije,„. As temperature approaches zero this
term is large. Thus it is meaningless to approximate
I= g mI(e,„), with the first term in the series

m (t)/t)e )Iic.,„)~H=o, because the power series in the
parameter /3e does not conuerge When w. e take the deriva-
tive of the Lorentzian, all is well and the first derivative
su Sees.


