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Size-dependent properties of two-dimensional solids
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Using Monte Carlo simulations we have found a significant logarithmic size dependence for the
density of defects, the shear elastic constant, and the long-range angular order in two-dimensional
solids close to their melting points. These size dependencies were present for both hard discs and

the repulsive inverse 12th-power potential. Our data suggest that these size dependencies may also
be present at higher densities further from the melting density. Simulations very close to melting

suggest that the melting densities in the literature are incorrect.

I. INTRODUCTION

In this paper we present the results from a series of
computer simulations on two-dimensional solids. The
aim of these simulations was to determine the detailed
physical properties of these systems near their melting
points. For the purposes of this work we accepted that
the melting transition was weakly first order, and we also
accepted the best previous estimates of the melting
points. Our work was confined to stiff potentials. We
have generated very detailed data on the hard-disc (HD)
system and the repulsive-inverse 12th-power (R-12) sys-
tems. ' We will show that it is possible to map these sys-
tems onto each other, thus our results have some degree
of universality for stiff potentials. Our basic aim was to
examine the behavior of these systems near melting with
the goal of shedding some light on the complexities of
simulations in this region of the thermodynamic space of
the systems. Since the results of direct simulations of the
melting-freezing transition tend to point toward a weak
first-order transition, ' we thought it worthwhile to carry
out a fairly exhaustive examination of the solid phase to
see whether our data could say anything, even indirectly,
about the likely nature of the transition. We believe that
a definitive statement about the nature of the transition,
based on computer simulations, must await the develop-
ment of a version of the Monte Carlo (MC) renormaliza-
tion group method which is applicable to particle sys-
tems.

We can easily summarize our results. There are strong
size dependences and novel phenomena near melting in
the systems we have studied. Our data cast considerable
doubt on the validity of simulations of the transition
which do not include at least 16000 particles. Our sys-
tem sizes ranged from 1024 to 16384 particles, and we
were able to carry out MC runs of up to two million
sweeps for these systems. 'We found that both the large
system size and the long runs are essential if the full
range of phenomena were to be revealed. As an essential
first step, we determined the pressure of the systems very
near melting. Except at one density, all our pressure

measurements showed size-independent results —the sys-
tems appeared to be in the thermodynamic limit. At one
density, about 0.5% from melting, we found anomalous
size dependencies for the HD system. These results may
be due to a mislocation of the melting density. They
may also have a more interesting interpretation. Howev-
er, other properties such as the density of topological de-
fects, the shear elastic constant, the particle displace-
ments, and long-range angular order showed strong size
dependencies and anomalous behavior 1% to 2% from
melting. Some of these results have already been ob-
served by Toxvaerd. In most instances we have been
able to make a more thorough exploration of the
configuration space of these systems, and enlarge the data
by simulating larger systems.

Our simulations are conducted at constant temperature
and density using the standard Metropolis MC algo-
rithm. We used periodic boundary conditions. A word
of caution with respect to the simulation of the HD sys-
tem is necessary. For this system, MC moves are accept-
ed or rejected depending on whether two discs do or do
not overlap. Since there are no moves in which the ener-

gy increases, no additional random number is generated
to determine acceptance or rejection. This essential
difference between the HD and other "stiff" potentials
means that a very different and predictable sequence of
pseudorandom numbers is used in the HD system. Ini-
tially, we overlooked the fact and were led astray by long
period correlations in our pseudorandom number se-
quences. We were able to overcome the difficulty in two
distinct ways which are described in the Appendix. For
the HD system we were able to make runs with two mil-
lion sweeps. The code for the R-12 system was consider-
ably slower. For this system we made runs of 300000
sweeps. For both systems the codes were very carefully
optimized for the FPS M64 processors which are part of
the Cornell National Supercomputer Facility. For both
systems we computed the pressure, density of topological
defects, the mean-square displacements of the particles,
and the local and long-range angular order. For the R-12
system we also computed the shear elastic constant.
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In Sec. II we present our data on the pressure. Section
III is devoted to a calibration of the R-12 and HD system
based on the pair-correlation functions. In Sec. IV we
present our data on the density of defects. Sections V
and VI deal with the shear elastic constant and the parti-
cle displacements, respectively. The data on local and
long-range angular order is described in Sec. VII. We
present an overview of our data and suggest directions
for future work in Sec. VIII.
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II. THE PRESSURE

The focus of this paper is on the structural properties
of two-dimensional solids. As a preliminary step, we
present our data on the equations of state of the HD and
R-12 systems. Our aim was to determine whether there
was any appreciable size dependence in the equation of
state and whether these systems were stable over very
long MC runs. For both systems we assumed that the
"conventional" melting densities were correct. For the
HD system we assumed that the melting density was
given by po. =p*=0.912. For the R-12 system, Weeks'
has provided two estimates, p*=1.008 and p*=1.011.
We took p* = 1.01 for our reference melting density.

Table I shows our results for the HD system at two
densities, p*=0.923 and p*=0.942, and for system sizes
of 1024, 4096, and 16 384 particles. The data show that
there is a small size dependence of about 0.1%. Figure 1

shows the control chart for the 16384-particle system at
a density of p'=0. 923. In this system there is a very
small drift of about 0.1% in the pressure over this very
long run. For the two smaller systems there is no drift.
The same conclusions are valid for the R-12 system.
Table II shows the pressure in this system at p*=1.02,
1.04, and 1.06. Again, there is almost no size depen-
dence. Runs were carried out to only 300000 sweeps. In
these shorter runs there is no pressure drift. We will
show later that p'=1.04 is the density in the R-12 sys-
tem, which is comparable to p'=0. 923 in the HD sys-
tem.

For the HD system we have done several long runs at a
density p =0.917. This density is 0.5% from melting
and is thus very much closer to melting than those states
discussed above. We now find a significant size depen-
dence. The pressure for 1024 particles is 7.875 in reduced
units. For a 4096-particle system the pressure over two
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FIG. 1. The control chart for the pressure of the HD system
with 16384 particles and one million sweeps; p*=0.923. Ao is
the area at close packing.

million sweeps has an average of 8.005+0.027. This
difference amounts to 2%. For the 4096-particle system
the pressure changes throughout a two million sweep
run. The change is about 0.5% between the first half and
the second half of the run. Table III shows the details of
this long run. The control chart is shown in Fig. 2. The
pressure has a slow oscillation with an amplitude of about
3%. From the control chart and the data in Table III we
are forced to conclude that we have not been able to
determine the equilibrium value of the pressure in this
system. We will see later that the evolution of the pres-
sure is closely linked to the degree of disorder in the sys-
tem as measured by the density of topological defects.
We have also studied the pressure at this density in the
16 384-particle system. The data are in Table III. The
mean value, ignoring the first 200 000 sweeps, is
7.972+0.007. This value is thus within the error bar of
the value of the pressure in the 4096-particle system,
8.005+0.027. The pressure again tends to drift upward.
The value over the first portion of the run is 7.955, over
the second portion 7.98S, a difference of about O.S%. We
again conclude that we have not found the equilibrium
value of the pressure; the system is still evolving. We can
summarize our results as follows. The pressure in the
1024-particle system is clearly low. We will see that little
di6'usion is taking place, and the system is probably
clamped by the boundary conditions. The pressures in

TABLE I. The pressure in the HD system in units of NkT/Ao and for the densities p*=0.923 and
p*=0.942. Np is the total number of sweeps in the run, N& is the number of sweeps in a block used to
determine the uncertainty in the data, and NR is the number of sweeps which were not included in the
averaging process. N is the number of particles in the system.

0.923

0.942

256
1024
4096

16 384
1024
4096

16 384

10 Np

1000
1000
1000
1000
1000
1000
1000

10 N~

1000
1000
200
200

1000
200
200

0
0

200
200
0

200
200

I' A 0/Nk T

8.117+0.008
8.113+0.004
8.111+0.005
8.120+0.005
8.959+0.004
8.958+0.002
8.963+0.003
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TABLE II. The pressure in the R-12 system at the densities p*=1.02, 1.04, and 1.06 in units of
kT/o. . N, N&, Nz, and N& are defined in Table I.

1.02

1.04

1.06

256
1024
4096

16 384
1024
4096

256
1024
4096

16 384

10 'Np

300
300
300
300
300
300
300
300
300
200

10

50
50
50
50
50
50
50
50
50
50

10

50
50
0
50
50
50
50
50
50
0

Po. /kT

15.193+0.014
15.213+0.008
1S.232+0.009
15.245+0.009
16.625+0.010
16.648+0.008
18.226+0.012
18.212+0.011
18.235+0.003
18.234+0.006

the larger systems have overlapping error bars. Both sys-
tems are still evolving, and we have not been able, to at
least 0.5%, to determine the equilibrium pressure. We
also note the relatively large Auctuations in the pressure
in the 4096-particle system. Instead of being twice as
large as those in the 16 384-particle system, they are four
times as large. This observation strongly supports our
contention that these systems are not in thermodynamic
equilibriun:. Clearly, there must be another mechanism
operating to account for this extra factor of 2. The larger
system seems to be evolving more smoothly. This may be
because the boundary conditions are less important and
thus the interior of the system is less constrained. It is in-
teresting to note that this smoother evolution leads to less
diffusion than in the system with 4096 particles.

III. THE PAIR DISTRIBUTION FUNCTION—
CALIBRATING THE SYSTEMS

The two systems which we have studied have different
interparticle potentials. However, since the inverse
12th-power potential (R-12) is similar to the hard-disc
(HD) potential, it is plausible that one might be able to
find a fairly precise way of comparing the data for the
two systems. We chose to calibrate the two systems by
trying to match the pair distribution functions. For a
system of 1024 particles we can obtain an accurate pair

correlation function out to 15 neighbors. This function
displays the basic character of the positional order. In
Fig. 3 we show the pair distribution function for the HD
system at p*=0.923. Our basic idea was to accurately
match a pair distribution function in the HD system with
a pair distribution function in the R-12 system. We
might then expect that this would lead to a calibration of
the densities of the two systems. Since the potentials are
different, we do not expect to match the functions at
short distances; however, we may expect to match them
at intermediate and large distances. We first computed
the difference in g (r) for the HD system at two neighbor-
ing densities, p*=0.923 and p*=0.942. This difference
bg tells us how much g(r) changes in the reference HD
system when we change the density by about 2%. We
refer to this difference, which we will denote by Ag, as the
reference Ag. Our task is to match the distribution func-
tions in the two systems so that the difference Ag between
the two systems is very small compared with Ag. We
computed the difference between g(r) in the HD system
at p" =0.923 and g(r) in the R-12 system at several
different densities. The R-12 system at a reduced density
of p*=1.04 yields a Ag which is very small compared
with Ag. Figure 4 shows our results. Clearly, we have not
matched very well at short distances, but at intermediate
and large distances Ag is very small compared with Ag.
We therefore conclude that it is reasonable to compare

TABLE III. The pressure in the HD system in units of
NkT/Ao at p =0.917 and for two system sizes. The pressure
is averaged over the number of sweeps shown in the first
column.
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7.910
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7.984
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FIG. 2. The control chart for the pressure of the HD system
with 4096 particles and two million sweeps; p* =0.917.
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FIG. 3. The pair distribution function, g(r), for the HD sys-
tem; p*=0.923.
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FIG. 4. The reference difference hg (solid curve) for the HD
system and Ag (dotted curve) computed from g (r) for the HD
system at p*=0.923 and g (r) for the R-12 system at p*= 1.04.

the physical properties of the two systems at these two
densities. We will see that they are indeed very similar.
However, we must immediately point out that at a densi-
ty of p'=0. 923 the HD system is 1&o from the melting
density; whereas at the density of p =1.04 the R-12 sys-
tem is 3/o from melting. Our successful calibration is
thus telling us that at these rather diferent relate'Ue densi-
ties the pair functions show almost the same intermediate
and long-range order.

Before proceeding further we must clarify one point
concerning the R-12 system. The calibration we have
carried out was done with data generated on the T' = 1

isotherm. One might wonder whether such calibrations
can be carried out on other isotherms, or for that matter,
whether we have been especially fortunate in choosing a
particular isotherm. It is easy to see that the calibration
we have carried out has a universal character. This is be-
cause the thermodynamic states of the R-12 system can
be described by a. single variable I". This is the well-
known scaling theorem for inverse power potentials.
For the R-12 system a quantity I can be defined by the
equation

I =(mp') /T' .

The scaling theorem then states that all physical proper-
ties, when measured in reduced units, are a function of I
alone. Thus, the T* and p* variables combine into a sin-
gle variable I . For example, the melting line of the sys-
tem is given by the equation

I =const .

This defines the melting curve in the p*-T* plane. If we
fix T* by choosing an isotherm and then choose a p, we
have then determined I . Thus, the calibration we have
carried out at T*=1 and p*=1.04 tells us that we have
calibrated successfully at some value of I (I =1216.5).
But since the physical properties, including g(r), depend
only on I, we are assured that the calibration will be
equally accurate on any isotherm we choose, provided we
select the correct reduced density. Moreover, since the
value of I at which the original matching was carried out
is known, we can for any different isotherm immediately
compute the p* at which the calibration will be exactly
the same.

We have been able to carry out this matching at two
other density pairs. We find that p' =0.917 (HD)
matches very well with p' = 1.02 (R-12) and that
p* =0.942 (HD) matches well with p* = l.08 (R-12).
Clearly, the density scales in the two systems are related
in a highly nonlinear fashion. We will see that this
method of matching or calibrating the two systems does
allow us to make an almost quantitative comparison of
their physical properties.

IV. TOPOLOGICAL DEFECTS

We have computed the density of topological defects
for both the HD and for the R-12 systems. The defect
densities were determined for systems with N =256,
1024, 4096, and 16384 particles. The techniques for
counting the defects in a two-dimensional system are now
well established. A code, which constructs the Voronoi
polygons, was tested against other codes, and in all our
runs yielded results consistent with the neutrality require-
ment. Tables IV and V give the details of our Monte
Carlo runs. For the HD code we were able to make runs
of at least one million sweeps for each system. The code
for the R-12 system is considerably slower, and we limit-
ed ourselves to runs of 300000 sweeps. In each case we
were able, by block averaging, to obtain an accurate esti-
mate of the error in our computations. The density of de-
fects was defined as the ratio of (2N4+Nz )/N. Here, N4
and N5 are the number of four-sided and five-sided
polygons respectively. N is the tota1 number of particles
in the system. Since the system must be neutral with
respect to defects, 2N4+N~ must equal g;&6N, (i —6).
We have not observed any polygons with three sides. For
the R-12 system we held the reduced temperature con-
stant at T*= 1, and on this isotherm we worked at three
densities, p*=1.02, 1.04, and 1.06. These are l%%uo, 3%,
and 5%, respectively, above the melting density. The
first two of these densities calibrate accurately with densi-
ties in the HD system of p*=0.917 and p =0.923, re-
spectively.

We will focus our attention on (i) a comparison of the
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TABLE IV. The density of topological defects in the HD system at p*=0.923 and p*=0.942. The
symbols N, Np, Nz, and Nz have been defined in Table I.

0.923

0.942

256
1024
4096

16 384

1024
4096

16 384

10 Np

1000
1000
1000
1000

1000
1000
1000

10 N~

40
40
16
16

40
16
16

10 NA

0
0

200
200

0
200
200

10' defect density

6.76+0.59
6.54+0.37
6.73+0.12
7.34+0.13

2.21+0.26
1.99+0.06
2.16+0.01

density of defects in the two systems at fixed N =1024,
(ii) the variation of the density of defects with the particle
density again at X =1024, and (iii) the size dependence of
the defect density.

A. The density of defects

In Fig. 5 we plot the density of defects for the two sys-
tems against a nonlinear particle-density axis. All the
data are for systems of 1024 particles. The purpose of
this plot is to show that when the particle densities in the
two systems are matched in the way we described in Sec.
III, then the defect densities are in semiquantitative
agreement. This is revealed by the two curves following
parallel paths which are not very far apart. It is impor-
tant to notice that there are two matched density scales
for the x axis in the plot. From this diagram we can con-
clude that our matching procedure works well. In other
words, to achieve this calibration we have shifted the rel-
ative densities of the two systems. For example, the HD
system at p* =0.917 matches the R-12 system at
p* = 1.02.

B. Density of defects as a function of particle density

In Fig. 6 we plot the density of defects as a function of
particle density. This figure is of course another version
of Fig. 5. However, since we are no longer comparing
the two systems, we are free to choose a suitable density
scale to reveal the actual dependence on particle density.
Figure 6 shows that in both systems the defect density
follows an exponential law very accurately. There is thus
a very rapid variation of defect density with particle den-
sity. The coefficient of the exponent divers by a factor of
2 between the HD and R-12 systems. It is nevertheless
remarkable that both defect densities decrease with in-

creasing density in an exponential manner. This is the
first time that the defect density has been accurately
determined as a function of particle density. A very re-
markable property of the two systems is revealed by this
plot. When both curves are extrapolated to the melting
density, they intersect. Provided our estimates of the
melting densities are correct, we can conclude that at
melting both systems have the same density of defects.
However, we must recall that all the data shown in Fig. 6
are for a system of 1024 particles. As we have already
pointed out, for larger systems, near melting, we cannot
establish an equilibrium density of defects. More extend-
ed simulation studies will be carried out to investigate
these new equilibrium situations.

C. Size dependence

The size dependence of the density of defects in the
Lennard-Jones (LJ) system has been studied by Tox-
vaerd. Our data are in qualitative agreement with his,
although we have studied larger systems. Our data for
both the HD and R-12 systems are shown in Fig. 7. Here
we have plotted the density of defects versus the loga-
rithm of the size of the system. At the high densities of
p* =1.06 for the R-12 system and p*=0.942 for the HD
system there is no significant size dependence. At the
lower densities, about 1% from melting, both systems
show a significant size dependence. For the R-12 system
at p =1.02 there is a very clear logN dependence. The
HD system shows an approximate logN behavior. We
need to study a still larger system to confirm this logN be-
havior. This size dependence is similar to that observed
by Toxvaerd. Clearly, it must be taken into account in
any theory or simulation study of the melting
phenomenon. One plausible explanation is that it is relat-

TABLE V. The density of topological defects in the R-12 system at p*=1.02 and p*=1.06. The
symbols N, Np Ng and N& have been defined in Table I.

1.02

1.06

1024
4096

16 384
1024
4096

16 384

10 'Np

300
300
300
300
300
200

10 NB

50
50
50
50
50
50

10 NE

50
0

100
0
0
0

10 defect density

9.64+0.21
10.92+0.35
11.88+0.29
2.60+0.07
2.75+0.02
2.79+0.04
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ed to defects unbinding very near melting. However, it
may also be related to the logarithmic increase in the
mean-square amplitude of the lattice displacements (see
Sec. VI). We have also computed the density of defects in
the HD system at p" =0.917, about 0.5% from melting.
The data for the 1024-particle system have already been
displayed in Fig. S. During a one million sweep run this
system did not show any appreciable drift in the density
of defects. However, the density of defects shows appre-
ciable drift for the 4096-particle system. In Fig. 8 we
show the control chart for a two million sweep run. The
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FIG. 5. The defect density as a function of particle density.
All the data are for systems with 1024 particles. The density
axis shows the calibrated densities for the two systems. The
data for the HD system are shown by the continuous curve, that
for the R-12 system by the dashed curve.
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FIG. 6. The defect density for the HD and R-12 system as a
function of particle density, hp=p —p, where p is the melt-
ing density. All the data are for systems of 1024 particles. The
data for the HD system are shown by the continuous line, those
for the R-12 system by the dashed line.

density of defects shows fairly large oscillations over
500000 passes, and it has increased by about 50% over
the course of the run. The system is clearly becoming
disordered. It is not possible to quote a meaningful num-
ber for the mean number of defects in this size system
when it is so close to melting. Figure 9 shows the control
chart for the defect density in the 16 384-particle system.
Again, there is a clear drift upward, of about S0% in the
density during the run, and again we cannot quote an
equilibrium value for the defect density. A comparison
of Figs. 8 and 9 shows that the fluctuations in the defect
density are much less in the 16 384-particle system when
compared with the 4096-particle system. However, the
reduction is much larger than expected from the theory
of thermodynamic Auctuations, a factor of 4 instead of 2.
We saw exactly the same phenomenon in the pressure
fluctuations at this density. We again remark that the be-
havior of the fluctuations in defect density as a function
of system size tells us that these systems have not reached
thermodynamic equilibrium.

It is interesting to compare the control chart shown in
Fig. 8 with the corresponding control chart for the pres-
sure Fig. 2. In both the 4096- and 16 384-particle systems
there is a remarkably close correlation in the behavior of
the pressure and defect density. This correlation tells us
that the variation of the pressure is closely linked to the
disorder in the system, as measured by the defect density.
We believe that as the disorder increases, we have more
close encounters of the hard discs which leads to an in-
crease in the pressure. Conversely, when the disorder de-
creases, there are fewer close encounters, and the pres-
sure drops. This remarkably simple explanation rests, of
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FIG. 7. The size dependence of the density of defects. Shown
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system at p* = 1.02 (0) and at 1.06 (A).

FIG. 8. The control chart for the density of defects for 4096
particles and two million sweeps; p* =0.917.
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FIG. 9. The control chart for the density of defects for 16384
particles and two million sweeps; p*=0.917.

FIG. 10. The size dependence of the shear elastic constant p.
The data are shown as follows: (A) R-12 at p* = 1.06; () R-12
at p*=1.02; (b, ) LJ at p*=0.937; {0)LJ at p*=0.929. The LJ
data are taken from Ref. 3.

course, on the fact that the pressure in a hard-disc system
is proportional to the pair distribution function at con-
tact. If we can understand the evolution of the disorder
in the system, we will be able to explain the evolution of
the pressure.

We end this section with the remark that the HD sys-
tem at this density may in fact be slowly melting. We
base this observation on the fact that during these long
runs the disorder is slowly increasing. If the system is
indeed slowly melting, then the conventional melting
density of 0.912 is incorrect.

V. THK SHEAR ELASTIC CONSTANT

We have computed the shear elastic constant for the
R-12 system at two densities and for systems with
X =256, 1024, 4096, and 16384 particles. The method
we used was the same as that used by Weeks, ' namely
small strains were applied to the system and the resulting
stress was measured in a long MC run. In this way a
linear relation between stress and strain was established.
The coeScient of this relation is the shear constant. This
method was found to be much more accurate then a
direct computation based on the Squire formulas. This
latter method produces data with very large fluctuations.
Figure 10 shows the data at p*=1.02 and p*=1.06.
These densities are 1% and 5%%uo above melting. At 5%
from melting there is no size dependence. However, at
l%%uo from melting there is a very clear logarithmic size
dependence. The shear modulus decreases logarithmical-
ly with system size. This phenomenon was also observed
by Toxvaerd, but was based on more limited data. We
think it plausible that the size dependence is directly re-
lated to the similar size dependence we found for the den-
sity of topological defects (see Sec. IV). We have not
carried out a corresponding study for the HD system, but
plan to do so in the near future.

We have also estimated the size dependence of the bulk
modulus or isothermal compressibility. We need to mea-
sure (Bp/Bp)z, we estimated this quantity by computing
the pressure p at two closely spaced densities. Our data
showed only a small size dependence for the bulk
modulus. The compressibility is related to the Lame con-

TABLE VI. The elastic constants in the R-12 system at

p =1.02. The quantities p, A, , and E are defined in the text, c is
the strength of the R-12 potential, and cr is its length scale.

256
1024
4096

16 384

pa /c

19.94+0.41
19.37+0.33
18.72+0.54
18.34+0.36

(A+@)o /c

72.2
70.4
69.7
67.8

70.8
68.8
66.8
65.4

stants A, and p by the relation

p(Bp/Bp)z. =A, +p .

This relation allows us to directly compute the size
dependence of A, +p. Table VI shows this dependence
along with that for p.

In the Kosterlitz- Thouless-Halperin-Nelson- Young
(Ref. 8) theory of melting, the quantity K. defined by the
equation

re=

p+A,
plays an important role. Melting is predicted to occur
when E reaches the value of 16m. This is a theoretical
result valid in the large X or thermodynamic limit. Our
data on I,+p and p lead to a fairly strong size depen-
dence for K which is also shown in Table VI. This size
dependence carries the clear warning that computer
simulations of the melting phenomena may well be
misleading unless large systems are simulated and great
care is taken to examine size dependence.

It is worthwhile pointing out that the decrease in shear
modulus which we have observed may have a plausible
explanation. In a two-dimensional lattice a free disloca-
tion must span the entire system. This implies that when
the system is stressed, it can readily shear along the dislo-
cation and will then appear to be soft. We must therefore
expect that very near melting, where we observe free
dislocations, we must expect a "softening" of the system.
As the density of these defects increases, we must expect
that the system will become softer and softer. We believe
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that this is the phenomenon which we have observed.
Thus, the logarithmic increase in defect density is very
likely to be the cause of the logarithmic decrease in the
shear elastic constant.

We conclude by comparing our data with those pub-
lished by Toxvaerd. He studied the Lennard-Jones sys-
tem at densities which were about 0.9% and 1.7% from
melting. For systems of up to 1024 particles he also
found a logarithmic decrease as the size of the system in-
creased. His data are shown in Fig. 10. His error bars
are somewhat larger than ours. His data are qualitatively
the same as ours and refer to states which are also of the
order of 1% from melting. We conclude that the two sets
of data are consistent and mutually supportive.

VI. THE PARTICLE DISPLACKMKNTS
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FIG. 11. The size dependence of the mean-square displace-
ment'„(0) HD at p*=0.942; (0) R-12 at p*=1.06. R„„ is the
nearest-neighbor distance.

The displacements of particles from their lattice sites
have been studied in several two-dimensional systems. '
The main result of these studies is that one can clearly see
that the mean-square displacement, ( u ), increases loga-
rithmically with the size of the system. The recent study
by Toxvaerd has, however, shown an important new
phenomenon. When (u ), measured in units of the
near-neighbor distance, reaches a critical value of 0.032,
a diffusion process sets in. The aim of our work was to
study this phenomenon in more detail in order to under-
stand the physical processes which are responsible for it,
and also to determine the conditions under which it
arises. This diffusion process makes it impossible, in
some circumstances, to define an equilibrium value for
(u ) for a given system. Our results are in good agree-
ment with those of Toxvaerd. We have, however, been
able to study larger systems over a wider range of density.
This has added to the body of interesting data and we
have, we believe, been able to establish the physical
mechanism responsible for this diffusion. We believe that
the diffusion phenomena will take place at all densities
for su%ciently large systems. It is unlikely that it is con-
nected to the melting phenomenon.

A. The size dependence of ( u )

As a preliminary step, we present our data on ( u ) for
the HD system 3% from melting, p* =0.942. For system
sizes of 1024, 4096, and 16384 particles (u ) increases
logarithmically with the size of the system. Our data
(Fig. 11) are in excellent agreement with those of Young
and Alder. At this density there are well-defined values
for (u ), and the systems behave as expected. There are
large fluctuations in (u ) in the course of one million
sweeps in the 16384-particle system, but there is no ten-
dency for ( u ) to increase systematically throughout the
run. The mean value of (u ) is 0.032. This is exactly
the critical value suggested by Toxvaerd's work. We will
return to this point later in this section. The same loga-
rithmic size dependence was found in the R-12 system at
a density p*= 1.06 which is 5% above the melting densi-
ty. These data are also shown in Fig. 11. The very close
agreement shown by these two curves again confirms that
our method of calibrating the HD and R-12 systems is
working well. We can thus conclude that at these densi-

ties and system sizes, where no diffusion occurs, the
mean-square displacement increases logarithmically with
the size of the system. However, it is quite possible that
for even larger systems diffusion will occur.

8. Diffusion at intermediate densities

We have shown that the HD system at p*=0.923
matches well with the R-12 system at p*=1.04. This
matched pair of densities lies between the higher densi-
ties, at which we have just reported, and those much
closer to melting. We find that the displacements of the
particles are very similar in the two systems at these
matched densities. The 1024-particle systems are mar-
ginally stable against diffusion. Some diffusion appears to
take place, but then for a very large number of passes
(u ) remains relatively constant. This is observed in
both the HD and R-12 systems. For the next largest sys-
tem the picture changes (Fig. 12). We now have a fairly
continuous difFusion process in which (u ) increases
steadily in value from about 300000 sweeps onward. In
the earlier period of the run, ( u ) remains relatively con-
stant. We notice that even in the initial stages of this run
( u ) was at least equal to, if not greater, than Toxvaerd's
critical value of 0.032. We have obtained similar, but
more limited, data for the R-12 system. For a 300000
sweep run the system behaved in a very similar manner.
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FIG. 12. The control chart for the mean-square displacement
for the HD system, 4096 particles, one million sweeps at
p* =0.923.
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The value of ( u ) rapidly rose above the critical value of
0.032, and diffusion set in —although in an irregular
fashion. For our largest systems of 16 384 particles
diffusion set in rapidly, and (u ) reaches much larger
values by the end of the run.

magnitude than the MC diffusion in the Quid phase. We
have carried out a simulation in the HD quid at a density
of about 0.1% before freezing. In this very dense Quid
the MC diffusion takes place about eight times faster than
in the HD solid 0.5% before melting.

C. Diffusion near the melting point

We now turn to our data very near melting. For the
HD system this is at p*=0.917, for the R-12, p*=1.02.
These are a pair of matched densities. At these densities
diffusion sets in very early in our MC runs. Even the
1024-particle systems show significant diffusion; it is no
longer a marginally stable system. In less than 10000
sweeps (u ) reaches the critical value of 0.032; diffusion
sets in and continues thereafter. Figure 13 shows the
con'. rol chart for 4096 HD particles and a two million
sweep run. The value of (u ) for the R-12 system after
300000 sweeps lies on this curve as shown in Fig. 13.
This agreement again supports our conjecture that when
we have matched densities by comparing the pair distri-
bution functions, then the systems will have very similar
properties. In Fig. 13 we also show the control chart for
(u ) for two million sweeps for the 16384-particle sys-
tem. The value of ( u ) for the R-12 system (not shown
in Fig. 13) after 300000 passes in this size system is again
very close to the value in the HD system. In this large
system diffusion sets in almost immediately and continues
in a very smooth fashion. It is interesting to compare the
evolution of (u ) as shown by the two curves in this
plot. Clearly, the larger system shows a Inuch smoother
evolution. However, the smaller system actually shows,
on the average, a greater diffusion rate; (u ) reaches a
value about 30% larger in the smaller system. The rather
uneven evolution of (u ) in this system is very clearly
correlated to the behavior of the pressure and defect den-
sity shown in Figs. 2 and 8, respectively.

It is interesting to note that although we see apprecia-
ble MC diffusion near melting, it is very much smaller in

D. The critical value of ( u )

Our data strongly confirm the suggestion put forward
by Toxvaerd —namely, that when (u ) reaches the criti-
cal value of 0.032, diffusion will set in. Toxvaerd was, of
course, observing real time diffusion using molecular dy-
namics; we are observing MC diffusion. We do not be-
lieve that this diffusion is directly related to melting. For
example, we see substantial diffusion over one million
sweeps in the 16384-particle HD system at p*=0.923
which is 1% from melting. The control chart for the
number of defects for the same run shows no increase in
the number of defects. We thus conclude that the
diffusion is not leading to an increase in the disorder in
the system. In Fig. 1 we showed the control chart for the
pressure for the same MC run. As we have already
pointed out, there is only a very small drift in the pres-
sure during this long run. Thus, the system is not becom-
ing more disordered, and it is certainly not melting. As a
final demonstration of this, we show in Fig. 14 a plot of
the positions of approximately 1600 of the particles in the
16384-particle system after approximately one million
sweeps. The particles are still very well ordered even
though they have moved on the average by nearly half of
the near-neighbor distance. A well-defined triangular lat-
tice is present. In Fig. 15 we show a corresponding plot
for the dense Quid phase p*=0.879. A comparison of
Figs. 14 and 15 clearly shows the high degree of triangu-
lar order in the solid phase. It is fairly easy to discover
what has happened during the MC run in the solid. Fig-
ure 16 shows a plot which reveals which particles have
moved from one lattice site to another. Very clearly
long-chain or very-long-ring motions have taken place.
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FIG. 13. The control chart for the mean-square displacement
for the HD system for two million sweeps at p* =0.917. System
sizes are 4096 particles (solid curve) and 16384 particles (dotted
curve). The double triangle symbol shows the value of the
mean-square displacement at p*= 1.02 for the 8-12 system with
4096 particles after 300000 sweeps.

FIG. 14. A snapshot of approximately 1600 HD particles
taken from a configuration of 16384 particles. The snapshot is
taken after approximately one million sweeps at a density
p* =0.923.
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FIG. 15. A snapshot of approximately 1000 HD particles
taken from a configuration of 16384 particles after 300000
sweeps at a density p* =0.879.

In these motions particles move from one lattice site to
another without inducing appreciable disorder in the sys-
tem. This diffusion we see is the consequence of the hop-
ping of particles from lattice site to lattice site, involving
large and small rings of particles. It is interesting to note
that at this density diffusion is not taking place
throughout the system but is confined to 1ocalized re-
gions. Very similar motions have been seen in the hard-
disc system by Alder, Ceperley, and Pollock" and in the
two-dimensional Coulomb system by Choquard and
Clerouin. ' We believe that when (u ) is sufficiently
large, gaps open up between the near-neighbor ring of
particles, and this allows motion from one site to another.
If (u ) is small, then each particle is always surrounded

by a near-neighbor ring which never fluctuates enough to
allow the central particle to escape. If this suggestion is
correct, then MC diffusion and real time diffusion will set
in at any density in the solid provided (u ) is above the
critical value. Since we know that before diffusion sets in,
(u ) increases logarithmically with system size, we be-
lieve that at any density ( u ) will always exceed the crit-
ical- value of 0.032, provided the system is large enough.
We saw in subsection (A) that for 16 384 particles and a
density of 0.942 the system had just reached, but did not
exceed, the critical value of (u ). A crucial test of this
argument is to simulate the HD system for 64000 parti-
cles at this density p*=0.942. At this density we predict
a value of (u ) =0.039 which exceeds the theoretical
limit.

We finally note that the critical value of ( u ), which is
0.032, implies that (u )' =0. 18. This is very close to
the Lindemann value of (u )' in the three-dimensional
solid. There are excellent simulation data which show
that three dimensional solids melt when ( u ) ' reaches
a value of approximately 0.17. The striking similarity of
the critical values of ( u ) ' in two- and three-
dimensional systems is worthy of further investigation.

VII. LOCAL AND LONG-RANGE ANGULAR ORDER

In this section we present a summary of our results on
the local and long-range angular order for the hard-disc
system. Our success in calibrating the HD and R-12 sys-
tems leads us to believe that the R-12 system will behave
in a similar fashion.

A. The local angular order

The local angular order parameter ~g, ~
is defined by

the equation

FIG. 16. A plot of the Monte Carlo motions of the particles
in a HD system with 4096 particles at p*=0.923 during a one
million sweep run. The arrows show which particles have
moved from one site to another. All the other particles have
remained within one lattice spacing of their original positions.

Here nI is the number of neighbors of the central particle
which lie within a circle chosen so that the average num-
ber is six. The summation is over these neighbors and 0~
is the angle between the vector joining the jth particle to
the central particle and an axis of Axed direction.

We have computed this quantity for the HD system at
the densities p'=0. 917, 0.923, and 0.942. The system
size varied between 1024 and 16 384 particles and our
runs were typically of one million sweeps. Our results for
this order parameter are very similar to those for the
pressure which we reported in Sec. II. This is not
surprising as both quantities are local quantities involving
near-neighbor configurations only. For the largest sys-
tem, 16 384 particles, at p* =0.923 there is a small down-
ward drift in the local angular order; this amounts to
0. 1%%uo over one million sweeps. This is almost identical to
the behavior of the pressure at this density. At the
higher density, p =0.942, there is no appreciable drift.
Again, this is identical with the behavior of the pressure.
At the lower density, p*=0.923, the system shows a size
dependence of about O. l%%uo to 0.2%%uo, as does the pressure.
There is no size dependence of this magnitude at the
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higher density.
We now turn to our results at the density of 0.917

which is about 0.5% from the melting density. Both the
16 384- and 4096-particle systems now show larger drifts.
Over one million sweeps the 4096-particle system shows a
downward drift in the local-angular order of about 0.5
percent. A similar drift is observed in the 16 384-particle
system. We clearly have not been able to establish an
equilibrium value for the local order at this density. For
the smallest system of 1024 particles we find a relatively
stable behavior over one million sweeps. There are, how-
ever, large fluctuations about the mean value of the local
order. Again we see that the behavior of the local angu-
lar order is very similar to that of the pressure.

B. The long-range angular order
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This is defined by the equation
2

FICx. 18. The intermediate range order parameters
The symbols are as follows: n =256 is denoted by C', n =64 by

, n = 16 by f. %runs from 256 to 16 384 and p* =0.923.

The symbols nI and 0~ have the same meaning as before.
The summation over I is over all the particles in the sys-
tem. It is believed' that the quantity will be finite in a
two-dimensional solid, and will be of 0 ( I/X) in the fiuid
phase.

At the lowest reduced density p'=0. 917, the long-
range angular order decreases steadily during the course
of a one million sweep run; only for the 1024-particle sys-
tem do we find a stable value. The decrease is about 2%
for the 4096-particle system. This is much smaller than
the increase in the density of defects (50%) during the
course of the same run. Nevertheless, we believe that the
two phenomena are closely related; the increase in the de-
fect density is very likely to be the cause of the decrease
in the long-range angular order. When we turn to the
two high densities p* =0.923 and p* =0.942, we find that
the long-range order is now very stable over one million
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Fl+. 17. The long-range angular order parameter,
l px l' as a

function of system size X. The value of X runs from 256 to
16 384 and p* =0.923.

sweep runs. The downward drifts are now of the order of
0.1% at most.

We have examined the size dependence of the long-
range order at p*=0.923. It will be recalled that at this
density we have found logarithmic size dependences for
the density of defects and the shear elastic constant. Our
data are shown in Fig. 17. The long-range angular order
follows a very accurate logarithmic decay. We can also
look at the angular order at intermediate length scales in
different size systems. For this purpose we define

The symbols nI and 0 have the same meaning as before.
Now the summation over I is over all the particles in a
cell of a size such that the average number of particles is
n. We denote the actual number of particles in the cell by
n. This quantity measures the degree of angular order on
an intermediate length scale determined by n in a system
of size X. We have computed these order parameters for
n =16, 64, and 256 and for system sizes X =256, 1,024,
4,096, and 16384. The data are shown in Fig. 18. All
three order parameters show a logarithmic decay. The
decay is less the smaller the value of n. All the data are
for p =0.923. For the largest system there is a tendency
for the order parameters to drift to smaller values during
the one million sweep run. This suggests that this large
system is slowly becoming more disordered. These re-
sults all point in the same direction. Larger systems are
less well ordered than smaller systems.

These logarithmic size dependences are very likely to
be closely related to those we found for the density of to-
pological defects. Further investigation with larger sys-
terns is likely to lead to a confirmation of these phenome-
na. In particular, we would like to know whether larger
systems at the density of p*=0.942 will show these phe-
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nomena. If sufBciently large systems do show these loga-
rithmic size dependences at this higher density, then we
speculate that they will occur at any density for a
suSciently large system.

VIII. DISCUSSION

We can summarize the results of our simulations rath-
er easily. Our work has been carried out in what appears
to be three distinct density regimes: very close to melting
(O.S% from melting), about 1% from melting, and several
percent from melting. We will refer to these as the low,
intermediate, and high densities. The low-density studies
were confined to the hard-disc system. Here, we found
that we were unable to establish equilibrium values for
the pressure or any other property we studied. The prop-
erties drift over long Monte Carlo runs. We conclude
that either the melting point of the HD system has been
incorrectly located or that the melting of these systems is
more complex than a weak first-order transition.

At the intermediate density, about 1 k from melting,
we found stable equilibrium values for the properties of
both the HD and R-12 systems. At the same time the
larger systems showed very appreciable Monte Carlo
diffusion of the particles. In addition, we found very
significant size dependences in the density of defects, the
shear elastic constant and the long-range angular order.
All showed a logarithmic size dependence which in each
case suggested a loss of order or lack of stability of the
solid phase. We emphasize that these size dependences
were present in what appear to be stable thermodynamic
states in which the pressure shows almost no size depen-
dence.

At the higher densities, several percent from melting,
neither system shows any significant size dependence up
to 16 384 particles, and no appreciable- Monte Carlo
diffusion occurs. However, we now put forward a hy-
pothesis. We suggest that at these higher densities the
same size dependences will be found provided the system
sizes are large enough so that (u ) exceeds the critical
value of 0.032. As we have pointed out for the HD sys-
tem at p* =0.942, the quantity ( u ) has almost reached
this value for our largest system of 16384 particles. We
have established that at this density (u ) increases loga-
rithmically with the size of the system and that our data
are in excellent agreement with the results of Young and
Adler. If we extrapolate our data to the next largest sys-
tem of 6S 536 particles we find a value for (u ) of 0.039.
We thus expect diffusion to set in and a logarithmic size
dependence to appear for the other physical properties.
To test this hypothesis, we plan to make Monte Carlo
runs on systems of 65 536 and 262 144 particles. We have
developed a new MC code for the purpose which will al-
low us to run four or more FPS M64 array processors in
parallel, thus reducing the processing time by a factor of
nearly 4.
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APPENDIX

The standard Metropolis Monte Carlo method for gen-
erating configurations of a hard-disc system requires ex-
actly two random numbers per attempted displacement
of a particle, one for each direction. Thus, for a sweep
through a system of X particles, exactly 2X random num-
bers are needed. Most tests of pseudorandom number
generators check for short-interval correlations, but
correlations over large intervals, such as 2%, can have
serious consequences for a simulation of a solid near
Inelting, as we observed.

All of our systems have X equal to a power of four be-
cause we use fast Fourier transforms for some of our
analysis. The simple linear congruential pseudorandom
number generators, like vRAND in the Floating Point
Systems APMATH libraries which scale their results
modulo a power of two, such as the 28th or 31st, have
striking correlations at intervals of 2", where n is an odd
number in the range 11—15. These can be seen by pre-
paring a map using successive numbers from the se-
quence as x and y coordinates, and plotting pairs which
are separated by 2" in the sequence. The locus of points
on these maps becomes more severely striped as n in-
creases. These are, in fact, the numbers used to generate
the attempted displacements for a single particle in the
HD simulation, so as the number of particles included in
the simulation increases, the attempted moves of a given
particle become less random.

This problem was avoided in two ways. The first way
was to use a scheme of employing random numbers
which is closer to that used by simulations for soft poten-
tials, namely, that each time an attempted move was re-
jected (the energy change for the attempted move had in-
creased), a number from the pseudorandom number se-
quence was thrown away. Thus, the number of random
numbers used for a sweep would be N(2+a), where a is
the acceptance rate. This effectively eliminated the prob-
lem. More recently, the pseudorandom number genera-
tor has been changed to DURAND from the IBM ESSL li-
brary, which, although it is a linear congruential pseu-
dorandom number generator, does not scale its results by
a power of 2. It has been checked for correlations at in-
tervals of 2", and none were found.



9530 J. A. ZOLLWEG, G. V. CHESTER, AND P. W. LEUNG 39

~J. Q. Broughton, G. H. Csilmer, and J. D. Weeks, J. Chem.
Phys. 75, 5128 (1981);K. J. Strandburg, Rev. Mod. Phys. 60,
161(1988).

2B. J. Alder and T. E. Wainwright, Phys. Rev. 127, 359 (1962).
S. Toxvaerd, Phys. Rev. Lett. 51, 1971 (1983).

4D. Frenkel, and J. P. McTague, Phys. Rev. Lett. 42, 1632
(1979).

5H. S. M. Coxeter, Introduction to Geometry, 2nd ed. (Wiley,
New York, 1961).

6G. L. Dirichlet, J. Reine Angew. Math. 40, 209 (1850).
7D. R. Squire, A. C. Holt, and W. G. Hoover, Physica 42, 388

(1968)~

88. I. Halperin and D. R. Nelson, Phys. Rev. B 19, 2457 (1979).
9D. A. Young and B.J. Alder, J. Chem. Phys. 60, 1254 (1974).
' R. C. Ganri, S. Chakravarty, and G. V. Chester, Phys. Rev. B

20, 326 (1979).
"B.J. Alder, D. M. Ceperley, and E. L. Pollock, Int. J. Quan-

tum Chem. Symp. 16, 49 (1982).
' Ph. Choquard and J. Clerouin, Phys. Rev. Lett. 50, 2086

(1983).
N. D. Mermin, Phys. Rev. j.58, 383 (1967).


