Reassessment of critical exponents and corrections to scaling for self-avoiding walks

T. Ishinabe

Faculty of Engineering, Yamagata University, Yonezawa 992, Japan (Received 6 April 1988)

The exact enumeration series of the radius of gyration S_N for self-avoiding walks are analyzed for various lattices in three and two dimensions (3D and 2D) in addition to those of the end-to-end distance R_N and the number of walks C_N using a method newly developed. The estimates of v for R_N and γ for C_N are in good agreement with the renormalization-group calculations in 3D and Nienhuis's analytical results in 2D; the estimates of ν for S_N in both 3D and 2D are somewhat greater than those for R_N. The average estimates of the correction-to-scaling exponent Δ_1 are Δ_1 = 0.48 (3D) and 0.65 (2D) for R_N , and Δ_1 = 1.19 (3D) and 1.06 (2D) for S_N , while Δ_1 = 0.99 (3D) and 0.97 (2D) for C_N .

I. INTRODUCTION

The self-avoiding walk (SAW) on a lattice serves not only as a model of a single polymer chain in dilute solution but also as a test case in the theory of critical phenomena through its identity¹ with the $O(n)$ model in the $n=0$ limit. The mean-square end-to-end distance R_N^2 and the number of N-step walks C_N can be written as²

$$
R_N^2 = AN^{2\nu}(1 + BN^{-\Delta_1} + CN^{-\Delta_2} + \cdots)
$$
 (1)

and

$$
C_N = A'\mu^N N^{\gamma - 1} (1 + B' N^{-\Delta_1} + C' N^{-\Delta_2} + \cdots) , \qquad (2)
$$

respectively. Here ν and γ are leading scaling exponents, and the Δ_i terms are the *i*th correction terms, which also contain analytic ones; μ is the connective constant (i.e., effective coordination number) of a lattice, and A , B , and $C(A', B', C')$ are critical amplitudes.

A mean-field theory' leads to the Flory formula $v=3/(d+2)$ for d-dimensional space. Early numerical estimates³ of ν for SAW's in two and three dimensions (2D and 3D) are almost reconciled with the formula. The renormalization-group (RG) calculations^{4,5} suggest, however, somewhat different values: $v=0.588$ (3D) and 0.77 (2D), while Nienhuis's analytical argument⁶ for the $O(n)$ model gives $v = \frac{3}{4}$ for $d = 2$, which coincides exactly with the Flory value. The assessment of v, γ , and μ from numerical data may be affected by the presence of Δ_i terms, especially the leading correction-to-scaling exponent Δ_1 . Recent series analyses for SAW's in 3D (Refs. 7—11) and 2D (Refs. 8 and 11–16) taking account of Δ_1 , and Monte Carlo techniques^{9,17,18} for larger N have confirmed that $v=0.588$ (3D) and 0.75 (2D). The estimates of γ from similar series analyses for C_N in 3D (Refs. 9 and 11) and 2D (Refs. 11 and 19—21) are consistent with the RG result^{4,5} γ = 1.1615 (3D) and Nienhuis's $\gamma = \frac{43}{32}$ (2D). The value of Δ_1 is, however, still controversial and there is no consensus on it although RG arguments^{4,5} predict Δ_1 =0.47 (3D) and 1.18 (2D). Majid, Djordjevic, and Stanley⁷ and McKenzie²² have estimated Δ_1 in 3D which

is in agreement with the RG result by the use of exact series of R_N and C_N , respectively. Almost the same result has been obtained by Havlin and Ben-Avraham⁸ and Kelly, Hunter, and Jan¹⁰ by exploiting Monte Carlo data. As for Δ_1 in 2D, Djordjevic, Majid, Stanley, and dos Santos¹² and Privman¹³ have estimated the values reconciled with $\Delta_1 = \frac{2}{3}$ from the exact series of R_N , whereas Havlin and Ben-Avraham⁸ and Lyklema and Kremer¹⁴ have found $\Delta_1 = 1.2$ and 0.84, respectively, using Monte Carlo echniques. On the other hand, Guttmann^{11,21} and Rapaport ques. On the other hand, G uttmann^{11,21} and Rapa-
^{15,17} have asserted that there is no need to assume the presence of a nonanalytic correction term, i.e., $\Delta_1=1$ for $d=2$ and 3; Adler²⁰ and Hunter, Jan, and Mac-Donald¹⁶ have obtained the result in favor of it from the analyses of C_N series and Monte Carlo data of R_N in 2D, respectively.

In a preceding (brief) publication,²³ we have reported a new method to estimate v and γ together with Δ_1 from R_N and C_N series. The estimates of v and γ for the triangular (tri) lattice are in excellent agreement with Nienhuis's analytical prediction while Δ_1 is different beween R_N and C_N : $\Delta_1 = 0.63$ (R_N) and 0.95 (C_N). We have also found that $v=0.755\pm0.001$ and $\Delta_1=1.04$ by applying this method to the series of the radius of gyration S_N ; the Δ_1 value is in favor of the presence of the analytic correction term in contrast to the case of R_N . The estimate of v for S_N is a little but evidently larger than Nienhuis's value; it seems to contradict the commonly believed relation $v_s = v_R$, which is supported by other numerical work $v_S = v_R$, which is supported by other nu-
 v_{S} , v_{R} , v_{R} , and RG calculations.^{27–30} In the present paper we reexamine these results using the exact enumeration series data of S_N newly obtained in addition to the extant ones of R_N , S_N , and C_N for the facecentered cubic (fcc) , 7,9,22 body-centered cubic from to the extant ones of R_N , S_N , and C_N for the face-
tentered cubic (fcc),^{7,9,22} body-centered cubic
bcc),^{25,31–33} simple cubic (sc),^{11,25} tetrahedral (tet),³⁴ and square (sq) (Refs. 11 and 25) lattices; much attention is focused on v and Δ_1 for S_N . We have added S_N terms for the bcc ($N=9-13$), tet ($N \le 21$), sc ($N=11-14$), and sq $(N=16-21)$ lattices and the R_N term of $N=13$ for the bcc lattice to the existing series.³⁵ These series are repro-

duced in Tables IX–XIII; S_N series for the tri lattice and R_N series for some lattices are also given for the sake of convenience. Note that these tables quote the values divided by q , the coordination number of a lattice; the step length is taken as unity.

II. SERIES ANALYSIS

A. Method

Our method to estimate v and Δ_1 is based on the conventional technique of series analysis combined with the finite-size scaling idea of Privman and Fisher³⁶ employing the cancellation of the leading correction term. First we evaluate the two types of ratios:

$$
v_{N,k}^{\text{I}} = \frac{1}{2} N (\rho_{N+K} / \rho_N - 1) / k \tag{3}
$$

and $\boldsymbol{^{8,37}}$

$$
\nu_{N,k}^{\text{II}} = \frac{1}{2} \ln(\rho_N / \rho_{N-k}) / \ln[N/(N-k)] \tag{4}
$$

for $k = 1$ or 2, where $\rho_N = \mathbb{R}^2 \times \mathbb{R}^2$ (or S_N^2). The ratios ($k = 1$) of adjacent terms are used for close-packed lattices while the alternate ratios $(k=2)$ are used for loose-packed lattices owing to the characteristic odd-even oscillation. After forming these ratios, we construct the Neville table for linear, quadratic, and cubic extrapolants of them:

$$
\mathbf{v}_{N,k}^{(r)} = [N\mathbf{v}_{N,k}^{(r-1)} - (N - kr)\mathbf{v}_{N-k,k}^{(r-1)}]/kr
$$
\n(5)

for $r = 1-3$, with $v_N^{(0)} \equiv v_N^{\text{I}}$ or v_N^{II} . We determine the first trial value of v by plotting these extrapolants against N^{-1} and extrapolate to $N \rightarrow \infty$ having in mind the curvature of convergence as a whole together with damping oscillations. Then the estimators³⁸

$$
B_{N,k}(\Delta_1) = \frac{(N-k)^{2\nu}\rho_N - N^{2\nu}\rho_{N-k}}{N^{2\nu-\Delta_1}\rho_{N-k} - (N-k)^{2\nu-\Delta_1}\rho_N}
$$

= $B + (\Delta_2/\Delta_1)CN^{\Delta_1-\Delta_2} + \cdots$ (6)

are constructed; the second equality follows from substitution of Eq. (1). The curves $B_{N,k}(\Delta_1)$ as a function of Δ_1 for different N intersect at a point close to correct Δ_1 if v is known and $|C|$ is small enough compared with $|B|$;³⁶ approximate values of Δ_1 and B can be estimated simultaneously for the trial ν . We perform the transformatic $\rho_N^* = \rho_N/(1+BN^{-\Delta_1})$ using the result to eliminate the singular term. Similarly, the improved ν is estimated from ρ_N^* series. Thus we get the reliable estimates of v and Δ_1 by repeating the above procedure several times. v is estimated
external times.
expected times.
 nHy from the es-
 p_{N-k}

We can also estimate Δ_1 (and A) similarly from the estimators¹³

$$
A_{N,k}(\Delta_1) = \frac{N^{\Delta_1 - 2\nu}\rho_N - (N - k)^{\Delta_1 - 2\nu}\rho_{N - k}}{N^{\Delta_1} - (N - k)^{\Delta_1}}
$$

= $A + (\Delta_2/\Delta_1 - 1)ACN^{-\Delta_2} + \cdots$ (7)

if the exact ν is known. We shall rely mainly on Eq. (6) since reliable values of Δ_1 and B are necessary in order to get the accurate v from R_N and S_N series.

B. End-to-end distance

We will estimate critical quantities for R_N by employing the method described above. Figure ¹ illustrates the first plots of $v_{N,2}^{(r)}$ ($r=1$ and 2) obtained from the alternate ratios $v_{N,2}^{\text{II}}$ against N^{-1} for the tet lattice. We get the estimate $v=0.593\pm0.004$ considering the slight downward tendency of convergence for the linear extrapolant as $N^{-1} \rightarrow 0$ together with damping oscillation with the interval of four successive terms. The similar plots for $v_{N,2}^1$ suggest $v=0.592\pm0.004$; the estimate of v will mean the value obtained from $v_{N,k}^{\text{II}}$ hereafter unless otherwise stated since in most cases there exists no significant difference between these two schemes. Using the trial value $v=0.593$, we have $\Delta_1=0.78$ and $B=-0.244$ from the intersection of $B_{N,2}(\Delta_1)$ curves for different N. The improved estimate of v is obtained by performing
the transformation $\rho_N^* = \rho_N/(1 + BN^{-\Delta_1})$; we get $v=0.5885\pm0.002$ as our final estimate after repeating such a procedure three times. Some terms in the corresponding Neville table of $v_{N,2}^{(r)}$ ($r=1-3$) for ρ_N^* are given in Table I; $v_{N,2}^{(1)}$ and $v_{N,2}^{(2)}$ converge to a constant value with damping oscillations of period four, from which (mainly from that of $v_{N,2}^{(1)}$) the error limit is estimated. Figure 2 shows $B_{N,2}(\Lambda_1)$ curves for $N=17-22$ for rigure 2 shows $B_{N,2}(\Delta_1)$ curves for $N = 17-22$ for
 $v=0.5885$; the successive average $\overline{B}_{N,2} = \frac{1}{2}(B_{N-1,2})$ $+B_{N,2}$) is employed in place of $B_{N,2}$ to lessen the oddeven eftect for a loose-packed lattice, but we omit the bar in $\overline{B}_{N,2}$ and $\overline{A}_{N,2}$ hereafter. We get $\Delta_1=0.53$ and $B = -0.244$ although the intersection is somewhat dispersed in this case. The corresponding $A_{N,2}(\Delta_1)$ curves are given in Fig. 3; almost the same value of Δ_1 and $A = 1.442$ are estimated. We take $\Delta_1 = 0.53 \pm 0.06$ as our final estimate; the error limit is determined by taking into account that of ν in addition to uncertainty of the intersection. Similarly, we have $v=0.589\pm0.002$ and $\Delta_1 = 0.50 \pm 0.1$ for the bcc lattice while $v=0.5910\pm0.0006$ and $\Delta_1=0.44\pm0.05$ for the sc lattice.

The first trial value $v=0.593\pm0.002$ is estimated for the fcc lattice (see Table 5 in Ref. 9), but the above

FIG. 1. Ratio estimate of v for R_N from linear (r=1) and quadratic ($r = 2$) extrapolants $v_{N,2}^{(r)}$ for the tet lattice.

$r_{N,2}$ or transformed r_N series for the ternative.				
\boldsymbol{N}	$v_{N,2}^{\text{II}}$	$\nu_{N,2}^{(1)}$	${\nu}^{(2)}_{N,2}$	$v_{N,2}^{(3)}$
14	0.588 600	0.59044	0.612 17	0.68338
15	0.589 580	0.59090	0.62516	0.79711
16	0.588 639	0.58892	0.58433	0.53793
17	0.589256	0.58683	0.573 60	0.47905
18	0.588 635	0.58860	0.58751	0.59387
19	0.589293	0.58961	0.60004	0.65734
20	0.588719	0.58947	0.59295	0.605 65
21	0.589 182	0.58813	0.58185	0.53636
22	0.588756	0.58912	0.58755	0.573 13

TABLE I. Neville table for estimation of ν from the ratios v^{II} , of transformed R, series for the tet lattice.

method is unavailable to the estimation of Δ_1 since $B_{N,1}(\Delta_1)$ curves do not intersect; it seems that $|C|$ is too large in this case. We then take another approach using the power-series expressions in Eqs. (6) and (7); respective plots of $A_{N,k}$ and $B_{N,k}$ as a function of $N^{-\Delta_2}$ and $N^{\Delta_1-\Delta_2}$ for larger N are expected to be linear for suitable Δ_1 and Δ_2 . If we assume $\Delta_2=1$, the values $\Delta_1=0.5$ and $B=-0.155$ are obtained for the trial value $v=0.593$ by examining the linearity of the plots. An improved ν can be estimated recurrently exploiting the transformation $\rho_N^* = \rho_N/(1+B_N^{-\Delta_1})$. Figure 4 illustrates the third plots of $A_{N,1}(\Delta_1)$ for $\nu=0.589$ against N^{-1} for several choices of Δ_1 ; the plots for $\Delta_1=0.4$ and 0.5 display the excellent linear dependence whereas those for $\Delta_1 < 0.4$ are bowed upwards and those for $\Delta_1 > 0.5$ are slightly bowed downwards. The analogous plots of $B_{N,1}(\Delta_1)$ against N^{Δ_1-1} for Δ_1 =0.40, 0.45, and 0.50 are shown in Fig. 5; excellent linearity is also found, especially for $\Delta_1=0.45$. We then have $\Delta_1=0.45\pm0.05$, $A=1.04$, and $B=-0.24$ for the fcc lattice. The slope of the $B_{N,1}(\Delta_1)$ line for $\Delta_1 = 0.45$ yields $C \approx 0.21$; it should be noted that $|C|$ is comparable to |B|. Some terms in the Neville table of $v_{N,1}^{(r)}$ (r = 1–3) for the final series are given in Table II; we take

FIG. 2. Curves of $B_{N,2}(\Delta_1)$ for the input $\nu=0.5885$ in the case of R_N for the tet lattice.

FIG. 3. The same as Fig. 2 but for $A_{N,2}(\Delta_1)$.

 $v=0.5880\pm0.0006$ as our final estimate bearing in mind the trend of linear decrease in $v_{N,1}^{(1)}$ and $v_{N,1}^{(2)}$ with increasing N. These results are compatible with the estimates from a different series analysis by Majid et al .⁷ for the fcc lattice: $v=0.5875\pm0.0015$, $\Delta_1=0.47$, $A=1.05$, $B = -0.286$, and $C \approx 0.25$.

As for $d=2$, we get the estimates $v=0.750\pm0.001$, $\Delta_1 = 0.66 \pm 0.05$, $A = 0.766$, and $B = 0.37$ from the first plots of $v_{N,2}^{(r)}$ (r = 1 and 2) and the intersection of $A_{N,2}(\Delta_1)$ and $B_{N,2}(\Delta_1)$ curves using ρ_N series ($N \le 27$) (Ref. 11) for the sq lattice; the transformed ρ_N^* series little improve the error limit of v, probably because ρ_N series for up to fairly large N are available in this case. The value of Δ_1 is in accord with our previous result for the tri lattice. Hunter

FIG. 4. Plots of $A_{N,1}(\Delta_1)$ vs N^{-1} for the input $\nu=0.5890$ in the case of R_N for the fcc lattice.

FIG. 5. The same as Fig. 4 but for the plots of $B_{N,1}(\Delta_1)$ vs N^{Δ_1-1}

et al.¹⁶ have estimated the values $\Delta_1 = 1.0 \pm 0.1$, $A = 0.775$, and $B = 0.79$ from Monte Carlo data for the sq lattice.

C. Radius of gyration

We use S_N series newly obtained for several lattices (see Tables IX-XIII) and the extant series⁹ for the fcc lattice. Figure 6 illustrates the plots of $v_{N,2}^{(r)}$ ($r=1$ and 2) evaluated from $v_{N,2}^{\text{I}}$ ratios against N^{-1} for the bcc lattice; we have $v=0.597\pm0.006$ as a first trial value. The $B_{N,2}(\Delta_1)$ curves for $N=9-13$ are shown in Fig. 7 for the value $v=0.599$, which was estimated by repeating the above procedure twice; the intersection is somewhat dispersive but suggests $\Delta_1=1.15$ and $B=0.89$. Some terms in the appropriate Neville table of $v_{N,2}^{(r)}$ ($r=1-3$) for the transformed series are reproduced in Table III; we get $v=0.599\pm0.003$ in view of the trend of $v_{N,2}^{(1)}$ and $v_{N,2}^{(2)}$ bowed downwards for larger N . The corresponding Neville table for transformed S_N series for the fcc lattice is given in Table IV (cf. Table 6 in Ref. 9); we have $v=0.599\pm0.004$ taking account of the increase in $v_{N,1}^{(1)}$, but with a tendency somewhat bowed downwards and the decrease in $v_{N,1}^{(2)}$ as N increases. The intersection of

TABLE II. Neville table for estimation of ν from the ratios $v_{N,1}^{\text{II}}$ of transformed R_N series for the fcc lattice. 0.8

N	${\boldsymbol{\nu}}_N^{\text{II}}$ 1	$\boldsymbol{\nu}_{N.1}^{(1)}$	${\boldsymbol \nu}_{N.1}^{(2)}$	$v_{N}^{(3)}$
6	0.567601	0.59302	0.58470	0.57760
7	0.570882	0.590 57	0.58443	0.58407
8	0.573 315	0.59035	0.58970	0.59846
9	0.575 189	0.59018	0.589 58	0.58935
10	0.576 669	0.58999	0.58924	0.58843
11	0.577866	0.58983	0.58912	0.58882
12	0.578852	0.58970	0.58902	0.58872

FIG. 6. The same as Fig. 1 but for S_N for the bcc lattice.

 $B_{N,1}(\Delta_1)$ curves for this value of v yields Δ_1 $= 1.15 \pm 0.15$. Analogous estimation gives $v=0.6025$ $+0.004$ and $\Delta_1 = 1.28 \pm 0.3$ for the sc lattice. For the tet lattice, however, we only have $v=0.593\pm0.006$ from the untransformed S_N series since no intersection is found in $B_{N,2}(\Delta_1)$ curves as in the case of R_N for the fcc lattice, and that the method to seek linear dependence of $B_{N,2}(\Delta_1)$ on $N^{-\Delta_2}$ is ineffective due to the odd-even oscillation inherent to a loose-packed lattice.

Figure 8 shows the plots of $v_{N,2}^{(r)}$ (r = 1 and 2) obtained from ρ_N series against N^{-1} for the sq lattice; the estimate $v=0.751\pm0.0015$ is obtained in view of the linear decrease in $v_{N,2}^{(1)}$ as a whole but with damping odd-even al-

FIG. 7. Curves of $B_{N,2}(\Delta_1)$ for the input $\nu=0.599$ in the case of S_N for the bcc lattice.

ternate oscillation and the somewhat irregular decrease in $v_{N,2}^{(2)}$ with the damping oscillation as $N^{-1} \rightarrow 0$. Using the value of v, we have $\Delta_1=1.07$ and $B=1.51$ from the $B_{N,2}(\Delta_1)$ curves depicted in Fig. 9. Some terms in the Neville table for $v_{N,2}^{(r)}$ (r=1-3) obtained from ρ_N^* series using these Δ_1 and B are reproduced in Table V; we get a little improved value $v=0.751\pm0.001$ as our final estimate bearing in mind the damping odd-even oscillation of $v_{N,2}^{(1)}$ about a constant value together with somewhat irregular damping oscillation of $v_{N,2}^{(2)}$, and $\Delta_1 = 1.07 \pm 0.04$ is determined. These values are compared with $v=0.755\pm0.001$ and $\Delta_1 = 1.04\pm0.03$ for the tri lattice.

D. Number of walks

We form for C_N series

$$
\mu_{N,k} = (C_N / C_{N-k})^{1/k} \tag{8}
$$

and

$$
\gamma_{N,k}^{(r)} = N(\mu_{N,k}/\mu_{N,k}^{(r)} - 1) + 1 \t{,} \t(9)
$$

where $\mu_{N,k}^{(r)}$ (r = 1–3) are rth extrapolants of $\mu_{N,k}$ defined such as Eq. (5), and determine first trial values of μ and γ
by plotting $\mu_{N,k}^{(r)}$ and $\gamma_{N,k}^{(r)}$ against N^{-1} . We then construct the estimators:

$$
A'_{N,k}(\Delta_1) = \frac{N^{\Delta_1 - \gamma + 1}C_N - \mu^k (N - k)^{\Delta_1 - \gamma + 1}C_{N - k}}{\mu^N [N^{\Delta_1} - (N - k)^{\Delta_1}]}
$$
(10)

and

TABLE IV. Neville table for estimation of ν from the ratios $v_{N,1}^{\text{II}}$ of transformed S_N series for the fcc lattice.

\boldsymbol{N}	${\boldsymbol{\nu}}_N^{\text{II}}$ 1	${\boldsymbol{\nu}}_{N,1}^{(1)}$	$v_N^{(2)}$	$\nu^{(3)}_N$
6	0.600 345	0.58965	0.604 96	0.60081
7	0.599332	0.59325	0.60228	0.59870
8	0.598 949	0.59627	0.60531	0.61038
9	0.598863	0.598 17	0.60482	0.60384
10	0.598 910	0.59933	0.60398	0.60202
11	0.599015	0.60006	0.60335	0.601 66
12	0.599 139	0.600 51	0.60272	0.60083

FIG. 8. The same as Fig. 1 but for S_N for the sq lattice.

$$
B'_{N,k}(\Delta_1) = \frac{(N-k)^{\gamma-1}C_N - \mu^k N^{\gamma-1}C_{N-k}}{\mu^k N^{\gamma-\Delta_1-1}C_{N-k} - (N-k)^{\gamma-\Delta_1-1}C_N} \ . \tag{11}
$$

Using these μ and γ values, Δ_1 is estimated from the intersection of $A'_{N,k}(\Delta_1)$ or $B'_{N,k}(\Delta_1)$ curves for different N. Improved estimates of μ , γ , and Δ_1 are obtained in the same manner as in R_N and S_N cases with the aid of the ransformation $C_N^* = C_N / (1 + B' N^{-\Delta_1})$.

The second trial values $\mu = 10.0362 \pm 0.0006$ and μ = 1.163±0.003 are estimated from the first values μ =10.0368±0.0010 and γ =1.164±0.004 for the fcc lattice. Figure 10 shows $B_{N,1}(\Delta_1)$ curves $(N=10-14)$ for the second values of μ and γ ; the intersection of the

FIG. 9. The same as Fig. 7 but for the input $v=0.751$ for the sq lattice.

TABLE V. Neville table for estimation of ν from the ratios

TABLE VI. Neville table for estimation of γ from the ratios $\mu_{N,1}$ of transformed C_N series for the fcc lattice.

.				
\boldsymbol{N}	$\mu_{N,1}$	${\gamma}_{N,1}^{(1)}$	$\gamma_{N,1}^{(2)}$	$\gamma_{N,1}^{(3)}$
6	10.339 506	1.205 70	1.161 53	1.15639
7	10:292 955	1.19525	1.16509	1.17713
8	10.258 690	1.19152	1.17881	-1.20797
9	10.232436	1.18860	1.17715	1.17623
10	10.211 703	1.186 14	1.17522	1.17298
11	10.194919	1.18412	1.174 14	1.17361
12	10.181059	1.18243	1.17326	1.17283
13	10.169421	1.18102	1.17261	1.17257
14	10.159 511	1.17981	1.17205	1.17201

curves yields $\Delta_1=1.1$ and $B' = 0.069$. Since the third estimation of μ and γ makes no improvement on the second values, we take these values as our final estimates; $\Delta_1 = 1.1 \pm 0.3$ is determined in view of both error limits of μ and γ . Some terms in the Neville table of the extrapo-
lants $\gamma_{N,1}^{(r)}$ ($r=1-3$) for the transformed C_N^* series are reproduced in Table VI. Our value of μ is compatible with $\mu = 10.0346 \pm 0.001$ by Watts³⁹ and 10.0364 by Ra-
paport.⁹ Similarly, we have $\Delta_1 = 1.02 \pm 0.4$ (bcc), with $\mu = 10.0546 \pm 0.001$ by watts and 10.0564 by Ka-
paport.⁹ Similarly, we have $\Delta_1 = 1.02 \pm 0.4$ (bcc), 0.95 ± 0.3 (sc), and 0.9 ± 0.4 (tet) for other lattices in 3D; values of μ , γ , A' , and B' estimated are listed in Table VIII.

For the sq lattice, we estimate μ = 2.638 15 ± 0.000 15 For the sq lattice, we estimate μ – 2.056 15 ± 0.066 15
and γ = 1.343 ± 0.003 from untransformed C_N series, which are our final estimates in this case. Figure 11 illustrates $B'_{N,2}(\Delta_1)$ curves $(N=21-27)$ for these values; we

obtain $\Delta_1 = 0.97 \pm 0.3$, which is consistent with the previbus value²³ $\Delta_1 = 0.95 \pm 0.15$ for the tri lattice. Guttmann¹¹ has estimated μ = 2.638 160±0.000 004 using the same data but a different method.

III. DISCUSSION AND CONCLUSION

Several critical quantities we estimated for various lattices in 3D and 2D are listed in Tables VII and VIII together with the existing estimates from exact series or Monte Carlo data; the values in a preceding paper for the tri lattice are republished there for the sake of convenience. The error limits of Δ_1 are estimated by considering those of v for R_N and S_N , and μ and γ for C_N . The values of v for R_N in 3D are entirely reconciled with $v=0.588$ from RG calculations; those in 2D are in good

FIG. 10. Curves of $B'_{N,1}(\Delta_1)$ for the inputs μ = 10.0362 and $\gamma = 1.163$ in the case of C_N for the fcc lattice.

FIG. 11. Curves of $B'_{N,2}(\Delta_1)$ for the inputs μ =2.63815 and $y = 1.343$ in the case of C_N for the sq lattice.

Lattices		$\boldsymbol{\nu}$	$\pmb{\Delta}_1$	\boldsymbol{A}	\boldsymbol{B}
fcc	R_N	0.5880 ± 0.0006	0.45 ± 0.05	1.04	-0.24
		0.5875 ± 0.0015^a	0.470 ^a 1 ^b	1.05 ^a	$-0.286^{\rm a}$
	S_N	0.599 ± 0.004	1.15 ± 0.15	0.145	0.96
bcc	R_N	0.589 ± 0.002	0.50 ± 0.10	1.06	-0.22
		0.5909 ± 0.0002^b	1 ^b	1.031 ^b	
	S_N	0.599 ± 0.003	1.15 ± 0.10	0.151	0.89
		0.5912 ± 0.0004^b		0.1633^{b}	
sc	R_N	0.5910 ± 0.0006	0.44 ± 0.05	1.212	-0.145
		0.5919 ± 0.0004^b	$1,^{\rm b}$ 0.50 \pm 0.05 ^{c,d}	1.134 ^b	-0.16°
	S_N	0.6025 ± 0.0040	1.28 ± 0.30	0.165	0.80
		0.5933 ± 0.0003^b		0.1772 ^b	
tet	R_N	0.5885 ± 0.0020	0.53 ± 0.06	1.442	-0.244
	S_N	0.593 ± 0.006			
tri	R_N	0.7503 ± 0.0004	0.63 ± 0.05	0.7052	0.2935
		0.7500 ± 0.0025 ^e	0.66 ± 0.07 ^{e, f}	$0.708^{e,f}$	0.30 ^e
		0.7488 ± 0.0010^8	1 ^{g,h}	0.7145 ^g	0.761 ^h
	${\cal S}_N$	0.7550 ± 0.0010	1.04 ± 0.03	0.0944	1.710
		0.7489 ± 0.0006 ^g		0.1002 ^g	
sq	R_N	0.750 ± 0.001	0.66 ± 0.05	0.766	0.37
		0.7479 ± 0.0010 ^g	$1,$ g, h, i 1.2 ± 0.1 °	0.774 ^g	0.95 ^h
		$0.75^{i,j}$	0.84 ± 0.04	0.775 ⁱ	0.79^{i}
	${\cal S}_N$	0.751 ± 0.001	1.07 ± 0.04	0.107	1.51
		0.7484 ± 0.0006 ^g		0.108 ^g	
^a Reference 7. ${}^{\rm c}$ Reference 8 (MC).	^b Reference 9 [Monte Carlo data (MC)].			^f Reference 13. ${}^{\text{h}}$ Reference 15.	^g Reference 17 (MC).
d Reference 10 (MC).					Reference 16 (MC).
^e Reference 12.					j Reference 14 (MC).

TABLE VII. Critical values estimated for R_N and S_N for several lattices.

agreement with Nienhuis's analytical prediction (or the Flory value) $\frac{3}{4}$ and $v=0.7503\pm0.0002$ from the transfermatrix method by Derrida.⁴⁰ The mean value of Δ_1 for R_N is Δ_1 =0.48 in 3D, and Δ_1 =0.65 in 2D. The former is in accord with $\Delta_1=0.47$ obtained from RG calculations and exact series analysis by Majid et al .⁷ for the fcc lattice, and it is compared with $\Delta_1=0.5$ from Monte Carlo approaches by Havlin and Ben-Avraham⁸ and Kelly et $n!$.¹⁰ for the sc lattice; the latter is consistent with the conjecture $\Delta_1 = \frac{2}{3}$ from exact series analyses by Djordjevc et al.¹² and Privman¹³ for the tri lattice, but inconsistent with $\Delta_1 = 1.0$ estimated by Hunter *et al.* ¹⁶ using

'Reference 11.

Reference 9.

'Reference 22.

Reference 39.

'Reference 21.

N	$\frac{1}{4}C_N$	$\frac{1}{4}C_N R_N^2$	$\frac{1}{4}(N+1)^2C_NS_N^2$
1		1	
2	3	8	14
3	9	41	116
4	27	176	746
5	81	689	4121
6	237	2552	20 300
	699	9083	93 440
8	2049	31408	405 636
9	6015	106239	1687383
10	17547	353 304	6753810
11	51321	1158617	26 307 092
12	149499	3756384	99817558
13	436137	12061945	371382217
14	1268475	38418328	1 355 404 008
15	3693663	121 504 271	4875193600
16	10730613	381942224	17280369496
17	31 203 621	1 194 166 357	60 563 128 677
18	90 566 913	3715993832	209 818 417 170
19	263067933	11 514 366 573	720 394 458 228
20	762975129	35 543 506 848	2450455002848
21	22 14 262 551	109 342 447 895	8274346083763
22	64 17 997 005	335 329 803 992	

TABLE IX. Exact series of C_N , R_N , and S_N for the tet lattice.

Monte Carlo data for the sq lattice. Guttmann^{11,21} and
Penancy^{9,15,17} suggest the presence of the applying value Rapaport^{9,15,17} suggest the presence of the analytic value Rapaport sugges
 $\Delta_1 = 1$ for $d = 2$ and 3.

Our estimates of ν for S_N are slightly larger than those for R_N ; the difference is conspicuous for lattices in 3D and the values are close to the Flory value $\frac{3}{5}$. This seems to contradict the widely accepted belief that ν is equivalent between R_N and S_N , which is supported by earlier numerical work^{24,25} and RG calculations. Our result suggesting $v_S > v_R$ can probably be ascribed, as Rapaport⁹ indicated, to the slow rate of convergence of S_N series since it includes contributions from all possible distances between pairs of sites in a walk. Recent Monte Carlo estimates' ' $8,26$ for SAW's in 2D are con-

sistent with the conjecture $v_s = v_R$ while those^{9, 18, 26} in 3D seem to give $v_S > v_R$.

We get $\Delta_1 = 1.19$ (3D) and 1.06 (2D) as the averages of our estimates of Δ_1 for S_N . They are evidently different from those for R_N and in favor of the presence of the analytic correction of $\Delta_1 = 1$ as shown in a preceding publication for the tri lattice, but Δ_1 in 3D is a little larger than that in 2D. The estimation of Δ_1 is dependent on a given value of ν , so that the discrepancy may be attributed to the difference in v between S_N and R_N . However, the discrepancy increases for smaller v_S ; for example, $\Delta_1 = 1.6$ for the fcc lattice if we choose $v_s = 0.588$, and $\Delta_1 = 1.13$ for $v_s = 0.750$ for the tri lattice.

The estimates of γ in 3D are entirely reconciled with

\boldsymbol{N}	$\frac{1}{8}C_N$. $\frac{1}{8}C_N R_N^2$	$\frac{1}{8}(N+1)^2C_NS_N^2$
		16	30
3	49	177	548
	331	1696	7766
	2245	14917	95 581
6	15007	124 468	1059212
	100 603	999 995	10958400
8	668965	7819224	107 000 732
9	4456585	59853953	1002919433
10	29 536 387	450 672 532	9061897542
11	196 006 195	3 347 481 963	79 685 665 460
12	1296083749	24 590 339 689	683 195 865 502
13	8 578 330 951	178 939 306 279	5 745 246 546 465

TABLE X. Exact series of C_N , R_N , and S_N for the bcc lattice.

the RG value⁴ γ = 1.1615; almost the same results are obtained from exact series analyses by Rapaport⁹ and
Guttmann.¹¹ Those in 2D are in good agreement with Guttmann.¹¹ Those in 2D are in good agreement with Nienhuis's prediction $\gamma = \frac{43}{32}$, which is supported by other Nienhuis's prediction γ =
numerical attempts.^{11,20,} The average values of Δ_1 for C_N are Δ_1 =0.99 (3D) and 0.97 (2D), which confirm the presence of the analytic correction $\Delta_1 = 1$ both in 3D and 2D. The value in 2D is compatible with $\Delta_1=0.93$ estimated by Adler^{20} from the series analysis for the honeycomb lattice whereas Δ_1 =0.465 is given by McKenzie²² for the fcc lattice. Recently, Guttmann and Enting⁴¹

TABLE XII. Exact series of C_N and S_N for the sq lattice.

\boldsymbol{N}	$\frac{1}{4}C_N$	$\frac{1}{4}(N+1)^2C_NS_N^2$
$\mathbf{1}$	1	1
\overline{c}	3	14
$\overline{\mathbf{3}}$	9	116
$\overline{\mathbf{4}}$	25	722
5	71	3887
6	195	18508
7	543	82 160
8	1479	340 180
9	4067	1351555
10	11025	5 1 3 6 1 9 4
11	30073	18989580
12	81233	68082102
13	220375	239 338 055
14	593 611	822 629 240
15	1604149	2786064872
16	4311333	9274487688
17	11616669	30 521 878 637
18	31 164 683	99086541810
19	83779155	318 742 922 236
20	224 424 291	1014076260686
21	602 201 507	3 202 213 457 395

have obtained $\Delta_1=1$ and $\Delta_2=1.5$ from the analysis of 56-term series for the number of self-avoiding polygons on the sq lattice. Our method for this series yields $\Delta_1 = 0.9805$ by using the values $\mu = 2.6381585$ and α =0.50006 given by them, where α is the exponent for specific heat; the Δ_1 value is in excellent agreement with Δ_1 =0.98 for the SAW on the same lattice to support $\Delta_1 = 1$. We have also estimated $\Delta_1 = 0.70 \pm 0.06$ and 0.63 ± 0.06 from the 54-term series⁴¹ for the span and square span of the polygon, respectively, where we used our estimate $v=0.752\pm0.004$ in both cases. These Δ_1 values are reconciled with our corresponding result 0.66 \pm 0.05 for the SAW; the value of v is compared with 0.753 ± 0.007 of Guttmann and Enting.

A universal relation⁴² is generally predicted among the correction-to-scaling amplitudes as well as the leading critical amplitudes. Our estimates of B and B' in 3D suggest that they are universal excepting the values for R_N for the sc lattice and for C_N for the tet lattice; such a feature is not so clear for B in 2D. Note that B is negative for R_N in 3D whereas it is positive for S_N . Average estimates of the ratio A_S/A_R are 0.139 (3D) and 0.137 (2D) in contrast with the result by Lax, Barrett, and Domb:⁴³ S_N^2/R_N^2 = 0.155 (3D) and 0.140 (2D) as $N \to \infty$.

Critical quantities for SAW's are estimated from the exact series of R_N , S_N , and C_N for various lattices in 3D and 2D using a new method of series analysis; we have added new terms to the extant data of S_N for several lattices. The estimators of v for R_N and γ for C_N in 3D are entirely consistent with the RG calculations $v=0.588$ and $\gamma = 1.1615$ while those in 2D are in good agreement with Nienhuis's analytical values $v = \frac{3}{4}$ and $\gamma = \frac{43}{32}$; the estimates of μ are reconciled with other numerical results in 3D and 2D. Our values of ν for S_N are, however, somewhat larger than those for R_N contrary to expectation in both cases of 3D and 2D. The averages are $v=0.598$ (3D) and 0.753 (2D); the former is very close to the Flory value $\frac{3}{5}$. The average estimates of the

correction-to-scaling exponent are $\Delta_1=0.48$ (3D) and 0.65 (2D) for R_N , and $\Delta_1 = 1.19$ (3D) and 1.06 (2D) for S_N while Δ_1 = 0.99 (3D) and 0.97 (2D) for C_N ; the values for S_N and C_N are in favor of the analytic correction $\Delta_1=1$, whereas those for R_N are reconciled with the RG calculations.

ACKNOWLEDGMENTS

I am very grateful to Y. Arai for assistance with computational work.

- ¹P. G. de Gennes, Scaling Concepts in Polymer Physics (Cornell University Press, Ithaca, NY, 1979).
- ²F. J. Wegner, Phys. Rev. B 5, 4529 (1972); 6, 1891 (1972).
- 3D. S. McKenzie, Phys. Rep. 27, 35 (1976), and references therein.
- 4J. C. Le Guillou and J. Zinn-Justin, Phys. Rev. Lett. 39, 95 (1977);Phys. Rev. B21, 3976 (1980).
- 5G. A. Baker, Jr., B.G. Nickel, M. S. Green, and D. I. Meiron, Phys. Rev. Lett. 36, 1351 (1976); Phys. Rev. B 17, 1365 (1978).
- ⁶B. Nienhuis, Phys. Rev. Lett. 49, 1062 (1982); J. Stat. Phys. 34, 731(1984).
- ⁷I. Majid, Z. V. Djordjevic, and H. E. Stanley, Phys. Rev. Lett. 51, 1282 (1983).
- S. Havlin and D. Ben-Avraham, Phys. Rev. A 27, 2759 (1983).
- ⁹D. C. Rapaport, J. Phys. A 18, 113 (1985).
- ¹⁰K. Kelly, D. L. Hunter, and N. Jan, J. Phys. A 20, 5029 (1987).
- ¹¹A. J. Guttmann, J. Phys. A 20, 1839 (1987).
- ¹²Z. V. Djordjevic, I. Majid, H. E. Stanley, and R. J. dos Santos, J. Phys. A 16, L519 (1983).
- 13V. Privman, Physica A 123, 428 (1984).
- ¹⁴J. W. Lyklema and K. Kremer, Phys. Rev. B 31, 3182 (1985).
- ¹⁵D. C. Rapaport, J. Phys. A 18, L201 (1985).
- 16 D. L. Hunter, N. Jan, and B. MacDonald, J. Phys. A 19, L543 (1986).
- ¹⁷D. C. Rapaport, J. Phys. A **18**, L39 (1985).
- ¹⁸N. Madras and A. D. Sokal, J. Stat. Phys. 50, 109 (1988).
- ¹⁹I. Majid, Z. V. Djordjevic, and H. E. Stanley, Phys. Rev. Lett. 51, 143 (1983).
- ²⁰J. Adler, J. Phys. A 16, L515 (1983).
- A. J. Guttmann, J. Phys. A 17, 455 (1984).
- 2S. McKenzie, J. Phys. A 12, L267 (1979).
- ²³T. Ishinabe, Phys. Rev. B 37, 2376 (1988).
- 24F. T. Wall and J.J. Erpenbeck, J. Chem. Phys. 30, 637 (1959).
- 25C. Domb and F. T. Hioe, J. Chem. Phys. 51, 1915 (1969).
- ²⁶H. Meirovitch, J. Chem. Phys. **79**, 502 (1983).
- 27 T. A. Witten and L. Schäfer, J. Phys. A 11, 1843 (1978).
- ²⁸J. des Cloizeaux, J. Phys. (Paris) **42**, 635 (1981).
- ²⁹M. K. Kosmas, J. Phys. A 14, 2779 (1981).
- M. Benhamou and G. Mahoux, J. Phys. Lett. (Paris) 46, 689 (1985).
- ³¹J. L. Martin, Proc. Cambridge Philos. Soc. 58, 92 (1961).
- 32J. L. Martin and M. G. Watts, J. Phys. A 4, 456 (1971).
- 33M. F. Sykes, A. J. Guttmann, M. G. Watts, and P. D. Roberts, J. Phys. A 5, 653 (1972).
- 34T. Ishinabe, J. Phys. A 20, 6435 (1987).
- ³⁵The tables in Ref. 25 quote the values of S_N^2 but not $(N+1)^2 C_N S_N^2$.
- V. Privman and M. E. Fisher, J. Phys. A 16, L295 (1983).
- ³⁷S. Havlin and D. Ben-Avraham, J. Phys. A 15, L311 (1982).
- 38Similar quantities are used in a somewhat different context in order to estimate Δ_1 for neighbor-avoiding walks; see G. Torrie and S. G. Whittington, J. Phys. A 10, 1345 (1977).
- M. G. Watts, J. Phys. A 8, 61 (1975).
- 40B. Derrida, J. Phys. A 14, L5 (1981).
- A. J. Guttmann and I. G. Enting, J. Phys. A 21, L165 (1988).
- 42A. Aharony and G. Ahlers, Phys. Rev. Lett. 44, 782 (1980).
- 43M. Lax, A. J. Barrett, and C. Domb, J. Phys. A 11, 361 (1978).