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Reassessment of critical exponents and corrections to scaling for self-avoiding walks
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The exact enumeration series of the radius of gyration S~ for self-avoiding walks are analyzed for
various lattices in three and two dimensions (3D and 2D) in addition to those of the end-to-end dis-
tance Rz and the number of walks C& using a method newly developed. The estimates of v for Rz
and y for C& are in good agreement with the renormalization-group calculations in 3D and
Nienhuis s analytical results in 2D; the estimates of v for S~ in both 3D and 2D are somewhat
greater than those for R~. The average estimates of the correction-to-scaling exponent 6& are
6& =0.48 (3D) and 0.65 (2D) for R~, and 6& =1.19 (3D) and 1.06 (2D) for S&, while 6, =0.99 (3D)
and 0.97 (2D) for C&.

and

C =A ~N&-'(I+BN '+C'N '+ . ) (2)

respectively. Here v and y are leading scaling exponents,
and the 6; terms are the ith correction terms, which also
contain analytic ones; p is the connective constant (i.e.,
effective coordination number) of a lattice, and A, B, and
C ( A ', B', C') are critical amplitudes.

A mean-field theory' leads to the Flory formula
v=3/(d+2) for d-dimensional space. Early numerical
estimates of v for SAW's in two and three dimensions
(2D and 3D) are almost reconciled with the formula. The
renormalization-group (RG) calculations ' suggest, how-
ever, somewhat different values: v=0. 588 (3D) and 0.77
(2D), while Nienhuis's analytical argument for the O(n )
model gives v= —,

' for d =2, which coincides exactly with
the Flory value. The assessment of v, y, and p from nu-
merical data may be affected by the presence of 6; terms,
especially the leading correction-to-scaling exponent b, .
Recent series analyses for SAW's in 3D (Refs. 7 —11) and
2D (Refs. 8 and 11—16) taking account of b, &, and Monte
Carlo techniques ' ' for larger X have confirmed that
v=0. 588 (3D) and 0.75 (2D). The estimates of y from
similar series analyses for C& in 3D (Refs. 9 and 11) and
2D (Refs. 11 and 19—21) are consistent with the RG re-
sult ' y=1. 1615 (3D) and Nienhuis's y=~4,' (2D). The
value of d

&
is, however, still controversial and there is no

consensus on it although RG arguments ' predict
6, =0.47 (3D) and 1.18 (2D). Majid, Djordjevic, and
Stanley and McKenzie have estimated 5& in 3D which

I. INTRODUCTION

The self-avoiding walk (SAW) on a lattice serves not
only as a model of a single polymer chain in dilute solu-
tion but also as a test case in the theory of critical phe-
nomena through its identity' with the O(n ) model in the
n =0 limit. The mean-square end-to-end distance R&
and the number of X-step walks Cz can be written as

Rtt = AN (1+BN '+ CN '+ . ) (1)

is in agreement with the RG result by the use of exact
series of R& and Cz, respectively. Almost the same re-
sult has been obtained by Havlin and Ben-Avraham and
Kelly, Hunter, and Jan' by exploiting Monte Carlo data.
As for 6, in 2D, Djordjevic, Majid, Stanley, and dos San-
tos' and Privman' have estimated the values reconciled
with 5& =—', from the exact series of R&, whereas Havlin

and Ben-Avraham and Lyklema and Kremer' have
found 6,=1.2 and 0.84, respectively, using Monte Carlo
techniques. On the other hand, Guttmann" ' and Rapa-
port ' ' have asserted that there is no need to assume
the presence of a nonanalytic correction term, i.e., 5,=1
for d=2 and 3; Adler and Hunter, Jan, and Mac-
Donald' have obtained the result in favor of it from the
analyses of C~ series and Monte Carlo data of R~ in 2D,
respectively.

In a preceding (brief) publication, we have reported a
new method to estimate v and y together with 5, from
R& and C& series. The estimates of v and y for the tri-
angular (tri) lattice are in excellent agreement with
Nienhuis s analytical prediction while 6, is different be-
tween Rtt and C&.. b, , =0.63 (Rtt) and 0.95 (C~). We
have also found that v=0. 755+0.001 and 6,=1.04 by
applying this method to the series of the radius of gyra-
tion S~; the 4, value is in favor of the presence of the an-
alytic correction term in contrast to the case of R~. The
estimate of v for S~ is a little but evidently larger than
Nienhuis's value; it seems to contradict the commonly
believed relation vz =vz, which is supported by other nu-
merical work ' ' ' and RG calculations. In
the present paper we reexamine these results using the ex-
act enumeration series data of S& newly obtained in addi-
tion to the extant ones of Rz, S&, and Cz for the face-
centered cubic (fcc), ' ' body-centered cubic
(bcc), ' ' simple cubic (sc)," tetrahedral (tet), and
square (sq) (Refs. 11 and 25) lattices; much attention is fo-
cused on v and 6& for S&. We have added S~ terms for
the bcc (N=9 —13), tet (N ~21), sc (N= 1 1 —14), and sq
(N=16—21) lattices and the R& term of N=13 for the
bcc lattice to the existing series. These series are repro-
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duced in Tables IX—XIII; S& series for the tri lattice and
R& series for some lattices are also given for the sake of
convenience. Note that these tables quote the values di-
vided by q, the coordination number of a lattice; the step
length is taken as unity.

II. SERIES ANALYSIS

A. Method

v~„=—,'ln(p~/p~ k)/ln[N/(N —k)] (4)

for k = 1 or 2, where pz =Rz (or Sz). The ratios (k = 1)
of adjacent terms are used for close-packed lattices while
the alternate ratios (k =2) are used for loose-packed lat-
tices owing to the characteristic odd-even oscillation.
After forming these ratios, we construct the Neville table
for linear, quadratic, and cubic extrapolants of them:

vN, k lNvN, k (N «»—W k,
—
k f/kr— (5)

for r = 1 —3, with v& =v& or v~. We determine the first(0) I Ii

trial value of v by plotting these extrapolants against X
and extrapolate to X—+ ~ having in mind the curvature
of convergence as a whole together with damping oscilla-
tions. Then the estimators

8 (6)=N, k 1 2v —6)

~z=8 +(b, 2/5, ) CN' '+ .

are constructed; the second equality follows from substi-
tution of Eq. (1). The curves 8& k(b,

&
) as a function of b, ,

for difterent X intersect at a point close to correct 6( if v
is known and ~C~ is small enough compared with ~8(;
approximate values of 6& and B can be estimated simul-
taneously for the trial v. We perform the transformation
pz=p&/(1+BN ') using the result to eliminate the
singular term. Similarly, the improved v is estimated
from p& series. Thus we get the reliable estimates of v
and 5, by repeating the above procedure several times.

We can also estimate b, , (and A ) similarly from the es-
timaiors'

Our method to estimate v and 6, is based on the con-
ventional technique of series analysis combined with the
finite-size scaling idea of Privman and Fisher employing
the cancellation of the leading correction term. First we
evaluate the two types of ratios:

vX, k gN(PN+K/PN

and'"

B. End-to-end distance

We will estimate critical quantities for R& by employ-
ing the method described above. Figure 1 illustrates the
first plots of vIv'2 (r =1 and 2) obtained from the alternate
ratios v&2 against X ' for the tet lattice. We get the es-
timate v=0. 593+0.004 considering the slight downward
tendency of convergence for the linear extrapolant as

~0 together with damping oscillation with the in-
terval of four successive terms. The similar plots for v&2
suggest v=O. 592+0.004; the estimate of v will mean the
value obtained from v~ k hereafter unless otherwise stat-
ed since in most cases there exists no significant
di6'erence between these two schemes. Using the trial
value v=0. 593, we have 6,=0.78 and B= —0.244 from
the intersection of Bz 2( b, ) curves for different N.
The improved estimate of v is obtained by performing
the transformation p& =pz /( 1+BN '

); we get
v=0. 5885+0.002 as our final estimate after repeating
such a procedure three times. Some terms in the corre-
sponding Neville table of vIv'2 (r =1—3) for pz are given
in Table I; v&2 and v&2 converge to a constant value(1) (2)

with damping oscillations of period four, from which
(mainly from that of vIv"2) the error limit is estimated.
Figure 2 shows Bzz(b, , ) curves for N=17 —22 for
v =0 5885; . the successive average B~ 2

= ,' (B~-
+B&2) is employed in place of 8&2 to lessen the odd-
even eftect for a loose-packed lattice, but we omit the bar
in B~ 2 and A~ 2 hereafter. We get 5) =0.53 and
B= —0.244 although the intersection is somewhat
dispersed in this case. The corresponding A+2(b, &)

curves are given in Fig. 3; almost the same value of 6&
and A =1.442 are estimated. We take 6,=0.53+0.06 as
our final estimate; the error limit is determined by taking
into account that of v in addition to uncertainty of the
intersection. Similarly, we have v =0.589+0.002
and 6

&

=0.50+0. 1 for the bcc lattice while
v=0. 5910+0.0006 and 5& =0.44+0.05 for the sc lattice.

The first trial value v=0. 593+0.002 is estimated for
the fcc lattice (see Table 5 in Ref. 9), but the above

0.64

-z 0.60-
(

6( —2v 5) —2v
px —(N —k) '

p~ k-
Aiv, k(~i) =

N' —(N —k)'
= A +(62/b, , —1)ACN '+ (7)

if the exact v is known. We shall rely mainly on Eq. (6)
since reliable values of 6& and B are necessary in order to
get the accurate v from R& and S& series.

0.56
0

I

0.05
N-'

O. i0

FICx. 1. Ratio estimate of v for Rz from linear (r=1) and
quadratic (r =2) extrapolants v&'& for the tet lattice.
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TABLE I. Neville table for estimation of v from the ratios
vz 2 of transformed R& series for the tet lattice.

14
15
16
17
18
19
20
21
22

II
+N, 2

0.588 600
0.589 580
0.588 639
0.589 256
0.588 635
0.589 293
0.588 719
0.589 182
0.588 756

(1)
+N, 2

0.590 44
0.590 90
0.588 92
0.586 83
0.588 60
0.589 61
0.589 47
0.588 13
0.589 12

(2)
+N, 2

0.612 17
0.625 16
0.584 33
0.573 60
0.587 51
0.600 04
0.592 95
0.581 85
0.587 55

(3)
+N, 2

0.683 38
0.797 11
0.537 93
0.479 05
0.593 87
0.657 34
0.605 65
0.536 36
0.573 13

CV

z

i.46

1.45

1.44

method is unavailable to the estimation of b, , since
B&,(A, ) curves do not intersect; it seems that ~C~ is too
large in this case. We then take another approach using
the power-series expressions in Eqs. (6) and (7); respec-
tive plots of A& k and B&& as a function of X ' and

' for larger N are expected to be linear for suitable
6& and A2. If we assume 62=1, the values 5& =0.5 and
B= —0. 155 are obtained for the trial value v=0. 593 by
examining the linearity of the plots. An improved v can
be estimated recurrently exploiting the transformation

p~ =pal(1+BN '). Figure 4 illustrates the third plots
of Az, (b, , ) for v=0. 5g9 against N ' for several choices
of b, , ; the plots for 5, =0.4 and 0.5 display the excellent
linear dependence whereas those for 6& &0.4 are bowed
upwards and those for 6& )0.5 are slightly bowed down-

6l —1
wards. The analogous plots of Bz,(b.&) against N '

for 5, =0.40, 0.45, and 0.50 are shown in Fig. 5; excellent
linearity is also found, especially for 6,=0.45. We' then
have 6&=0.45+0.05, 3 =1.04, and B= —0.24 for the
fcc lattice. The slope of the B~,(b. , ) line for b. , =0.45
yields C =0.21; it should be noted that

~
C~ is comparable

to ~B~. Some terms in the Neville table of vz', (r =1—3)
for the final series are given in Table II; we take

1.43

0.4 0.6

FIG. 3. The same as Fig. 2 but for A~, (A, ).

v=0. 5880+0.0006 as our final estimate bearing in mind
the trend of linear decrease in v~ I and v~ &

with increas-
ing N. These results are compatible with the estimates
from a different series analysis by Majid et al. for the
fcc lattice: v=0. 5875+0 0015 6& =0.47 3 = 1.05,
B= —0.286, and C=0.25.

As for d=2, we get the estimates v=0. 750+0.001,
5&=0.66+0.05, A =0.766, and B=0.37 from the first
plots of vIv'z (r = 1 and 2) and the intersection of A& 2(h, )

and B&z(b, , ) curves using pz series (N ~ 27) (Ref. 11) for
the sq lattice; the transformed p& series little improve the
error limit of v, probably because p& series for up to fair-
ly large N are available in this case. The value of 6, is in
accord with our previous result for the tri lattice. Hunter

1. ) 0

0.28

w 0.26

CQ
I

&.05-

0.24

0.22

0.5 0.6
0.05

I

O. i5

0.7

FIG. 2. Curves of A~2(6&) for the input v=0. 5885 in the
case of Rz for the tet lattice.

FICx. 4. Plots of A»(6&) vs N ' for the input v=0. 5890 in
the case of R& for the fcc lattice.
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0.3-
0.61-

0.60-

0. I

I

0.2

0.45

I

0.4

0.59-
I

0.05
N-

I

0. 10
I

Q. 15

FIG. S. The same as Fig. 4 but for the plots of B»(b &) vs—1
1

FIG. 6. The same as Fig. 1 but for S& for the bcc lattice.

et aI. ' have estimated the values 6
&

= 1.0+0.1,
A =0.775, and B=0.79 from Monte Carlo data for the
sq lattice.

C. Radius of gyration

We use S& series newly obtained for several lattices
(see Tables IX—XIII) and the extant series for the fcc
lattice. Figure 6 illustrates the plots of vIv'z (r =1 and 2)
evaluated from v~ z ratios against X ' for the bcc lattice;
we have v=0. 597+0.006 as a first trial value. The
Bz 2(h&) curves for N=9 13 are show—n in Fig. 7 for the
value v=0. 599, which was estimated by repeating the
above procedure twice; the intersection is somewhat
dispersive but suggests 5,=1.15 and 8=0.89. Some
terms in the appropriate Neville table of vIv'2 (r =1—3)
for the transformed series are reproduced in Table III; we
get v=0. 599+0.003 in view of the trend of v&'z and vz'z
bowed downwards for larger X. The corresponding Ne-
ville table for transformed S~ series for the fcc lattice is
given in Table IV (cf. Table 6 in Ref. 9); we have
v=0. 599+0.004 taking account of the increase in v&'„
but with a tendency somewhat bowed downwards and the
decrease in vz'& as X increases. The intersection of

Bz,(b, &) curves for this value of v yields b, ,= 1.15+0.15. Analogous estimation gives v =0.6025
+0 004 and 5]= 1 28+0.3 for the sc lattice. For the tet
lattice, however, we only have v=0. 593+0.006 from the
untransformed S~ series since no intersection is found in
BN2(b, , ) curves as in the case of Rz for the fcc lattice,
and that the method to seek linear dependence of
B&2(h, ) on N ' is ineffective due to the odd-even oscil-
lation inherent to a loose-packed lattice.

Figure 8 shows the plots of vIv'z (r =1 and 2) obtained
from p& series against X for the sq lattice; the estimate
v=0.751+0.0015 is obtained in view of the linear de-
crease in v&'z as a whole but with damping odd-even al-

1.Q

TABLE II. Neville table for estimation of v from the ratios
v&, of transformed 8& series for the fcc lattice.

0.8

6
7
8
9

10
11
12

0.567 601
0.570 882
0.573 315
0.575 189
0.576 669
0.577 866
0.578 852

(&)
vN, 1

0.593 02
0.590 57
0.590 35
0.590 18
0.589 99
0.589 83
0.589 70

(2)
vN, 1

0.584 70
0.584 43
0.589 70
0.589 58
0.589 24
0.589 12
0.589 02

(3)
vN, 1

0.577 60
0.584 07
0.598 46
0.589 35
0.588 43
0.588 82
0.588 72

1.0 1.3

FIG. 7. Curves of B&2(5, ) for the input v=0. 599 in the case
of S& for the bcc lattice.
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TABLE III. Neville table for estimation of v from the ratios
vN 2 of transformed SN series for the bcc lattice.

6
7
8

9
10
11

I
VN, 2

0.617 072
0.615 393
0.612 608
0.611 873
0.610 180
0.609 780

(1)
VN, 2

0.595 84
0.597 29
0.599 21
0.599 55
0.600 47
0.600 36

(2)
VN, 2

0.600 72
0.601 63
0.602 59
0.602 39
0.602 35
0.601 77

(3)
VN, 2

0.578 68
0.603 21
0.602 77
0.602 20
0.601 25

z0

0.754-

0.750-

ternate oscillation and the somewhat irregular decrease in
v~'2 with the damping oscillation as N ' —+0. Using the
value of v, we have 6,=1.07 and B=1.51 from the
B~2(b, ) curves depicted in Fig. 9. Some terms in the
Neville table for vz'2 (r= 1 —3) obtained from p~ series
using these 6& and B are reproduced in Table V; we get a
little improved value v=0. 751+0.001 as our final esti-
mate bearing in mind the damping odd-even oscillation of
v&2 about a constant value together with somewhat ir-
regular damping oscillation of v&'2, and 5&=1.07+0.04
is determined. These values are compared with
v=0. 755+0.001 and 6 = 1.04+0.03 for the tri lattice.

D. Number of walks

We form for Cz series

pN, k (CN~CE —k )

i

Q. 05
g-1

FIG. 8. The same as Fig. 1 but for SN for the sq lattice.

(N —k )r 'C~ p, "Nr 'C~-
y —61—1 y —&1—] (1 1)

p N ' C k (N k)— ' —C

Using these p and y values, 6& is estimated from the in-
tersection of Az k(b, , ) or BN k(b, ) curves for different N.
Improved estimates of JM, y, and 5, are obtained in the
same manner as in Rz and S& cases with the aid of the
transformation Cg =Czl(1+B'N ').

The second trial values p = 10.0362+0.0006 and
y = 1.163+0.003 are estimated from the first values
p=10.0368+0.0010 and y =1.164+0.004 for the fcc lat-
tice. Figure 10 shows B&,(6, ) curves (N = 10—14) for
the second values of p and y; the intersection of the

X~,'k =N(p~, k ~pe, 'k —1)+1 (9)

where pz'k (r = 1 —3) are r th extrapolants of pz k defined
such as Eq. (5), and determine first trial values of p and y
by plotting p~'k and y~'k against X '. We then con-
struct the estimators:

and

C —"(N —k) ' C

p+[N ' —(N —k) ']
(10)

CV

z i. 5
CQ

TABLE IV. Neville table for estimation of v from the ratios
vN 1 of transformed SN series for the fcc lattice.

6
7

9.
10
11
12

II
VN, 1

0.600 345
0.599 332
0.598 949
0.598 863
0.598 910
0.599 015
0.599 139

(1)
VN, 1

0.589 65
0.593 25
0.596 27
0.598 17
0.599 33
0.600 06
0.600 51

(2)
VN, 1

0.604 96
0.602 28
0.605 31
0.604 82
0.603 98
0.603 35
0.602 72

(3)
vN, 1

0.600 81
0.598 70
0.61038
0.603 84
0.602 02
0.601 66
0.600 83

1.3

i.Q

FIG. 9. The same as Fig. 7 but for the input v=0.751 for the

sq lattice.
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TABLE V. Neville table for estimation of v from the ratios

v& 2 of transformed SN series for the sq lattice.
TABLE VI. Neville table for estimation of y from the ratios

pN 1 of transformed CN series for the fcc lattice.

13
14
15
16
17
18
19
20
21

II
+N, 2

0.751 705
0.750 353
0.751 457
0.750493
0.751 352
0.750 588
0.751 286
0.750 662
0.751 234

(1)
+N, 2

0.749 22
0.751 71
0.749 85
0.751 47
0.750 56
0.751 35
0.750 72
0.751 33
0.750 75

(2)
+N, 2

0.753 03
0.753 73
0.751 58
0.750 73
0.752 89
0.750 94
0.751 32
0.751 25
0.750 84

(3)
+N, 2

0.762 68
0.748 58
0.749 40
0.745 74
0.755 30
0.751 37
0.747 90
0.751 97
0.749 65

6
7
8
9

10
11
12
13
14

PN, I

10.339 506
10.292 955
10.258 690
10.232 436
10.211 703
10.194919
10.181 059
10.169421
10.159 511

(1)
3 N, 1

1.205 70
1.195 25
1.191 52
1.188 60
1.186 14
1.184 12
1.182 43
1.181 02
1.179 81

(2)
VN, 1

1.161 53
1.165 09
1.178 81
1.177 15
1.175 22
1.174 14
1.173 26
1.172 61
1.172 05

7N, 1
(3)

1.156 39
1.177 13
1.207 97
1.17623
1.172 98
1.173 61
1.172 83
1.172 57
1.172 01

curves yields 6,=1.1 and 8'=0.069. Since the third es-
timation of p and y makes no irnprovernent on the
second values, we take these values as our final estimates;
b, , = 1.1+0.3 is determined in view of both error limits of
p and y. Some terms in the Neville table of the extrapo-
lants yIv'& (r =1—3) for the transformed C~ series are
reproduced in Table VI. Our value of p is compatible
with p=10.0346+0.001 by Watts and 10.0364 by Ra-
paport. Similarly, we have b, , = 1.02+0.4 (bcc),
0.95+0.3 (sc), and 0.9+0.4 (tet) for other lattices in 3D;
values of p, y, 3', and 8' estimated are listed in Table
VIII.

For the sq lattice, we estimate p=2. 63815+0.00015
and y = 1.343+0.003 from untransformed C& series,
which are our final estimates in this case. Figure 11 illus-
trates 8~2(b, , ) curves (N=21 —27) for these values; we

obtain 6& =0.97+0.3, which is consistent with the previ-
ous value 6

&
=0.95+0.15 for the tri lattice.

Guttmann" has estimated p=2. 638 160+0.000004 using
the same data but a different method.

III. DISCUSSION AND CONCLUSION

Several critical quantities we estimated for various lat-
tices in 3D and 2D are listed in Tables VII and VIII to-
gether with the existing estimates from exact series or
Monte Carlo data; the values in a preceding paper for the
tri lattice are republished there for the sake of conveni-
ence. The error limits of 6& are estimated by considering
those of v for R~ and Sz, and p and y for C&. The
values of v for R& in 3D are entirely reconciled with
v=0. 588 from RG calculations; those in 2D are in good

0.08-

—0.07
X

CQ

CQ

0.40

0.06 0.35

0.9 1.0

0.90 0.95 i.00

FIG. 10. Curves of 8N 1(51) for the inputs p=10.0362 and

y = 1.163 in the case of CN for the fcc lattice.
FIG. 11. Curves of BN2(61) for the inputs p=2. 63815 and

y = 1.343 in the case of CN for the sq lattice.
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Lattices

TABLE VII. Critical values estimated for R& and S& for several lattices.

fcc

bcc

sc

tet

SN

R~
S~
RN

0.5880+0.0006
0.5875+0.0015'
0.599+0.004
0.589+0.002

0.5909+0.0002"
0.599+0.003

0.5912+0.0004
0.S910+0.0006
0.5919+0.0004
0.6025+0.0040
0.5933+0.0003
0.5885+0.0020
0.593+0.006

0.7503+0.0004
0.7500+0.0025'
0.7488+0.0010g
0.7550+0.0010
0.7489+0.0006g
0.750+0.001

0.7479+0.0010g
0.75'"

0.751+0.001
0.7484+0.0006g

0.45+0.05
0470' 1

1.15+0.15
0.50+0.10

1b

1.15+0.10

0.44+0.05
1, 0.50 +0.05'

1.28+0.30

0.53+0.06

0.63+0.05
0.66+0.07"

lg, h

1.04+0.03

0.66+0.05
1, '"' 1.2+0. 1'

0.84+0.04'
1.07+0.04

1.04
1 05'
0.145
1.06
1.031
0.151
0.1633"
1.212
1.134
0.165
0.1772
1.442

0.7052
0.708"
0.7145g
0.0944
0.1002g
0.766
0.774g

0.775'
0.107
0.108g

—0.24
—0.286'

0.96
—0.22

0.89

—0.145
—0.16'

0.80

—0.244

0.2935
0 30'
0.761"
1.710

0.37
0.95"
0.79'
1.51

'Reference 7.
bReference 9 [Monte Carlo data (MC1].
'Reference 8 (MC).
Reference 10 (MC).

'Reference 12.

Reference 13.
N'Reference 17 (MC).
"Reference 15.
'Reference 16 (MC).
'Reference 14 (MC).

agreement with Nienhuis's analytical prediction (or the
Flory value) —' and v=0. 7503+0.0002 from the transfer-
matrix method by Derrida. The mean value of 6, for
Rz is 6&=0.48 in 3D, and b, =0.65 in 2D. The former
is in accord with 6&=0.47 obtained from RG calcula-
tions and exact series analysis by Majid et a/. for the fcc

lattice, and it is compared with 6, =0.5 from Monte Car-
lo approaches by Havlin and Ben-Avraham and Kelly et
a/. ' for the sc lattice; the latter is consistent with the
conjecture 6, = —', from exact series analyses by Djordjev-
ic et a/. ' and Privman' for the tri lattice, but incon-
sistent with 6&=1.0 estimated by Hunter et a/. ' using

Lattices

TABLE VIII. Critical values estimated for Cz for several lattices.

B'

fcc

bcc

sc

tet

sq

'Reference 11.
Reference 9.

'Reference 22.
Reference 39.

'Reference 21.

10.0362+0.0006
10.0364+0.0006'"
6.5300+0.0015
6.5295+0.0020
4.6839+0.0004
4.6839+0.0002'
2.8790+0.0015
2.8792+0.0005d
4.1507+0.0008

4.150 82+0.000 08'
2.638 15+0.000 15

2.638 160+0.000 004'

1.163+0.003
1.1629+0.0020'

1.163+0.005
1.1656+0.001
1.162+0.002

1.1613+0.0021'
1.162+0.007
1.157+0.003
1.344+0.003

1.3431+0.0010'
1.343+0.003

1.3436+0.000 13'

1.1+0.3
1, 0.465'
1.02+0.4

0.95+0.30

0.9+0.4

0.95+0.15
le

0.98+0.3
le

1.139

0.143

1.184

0.304

1.191

1.181

0.069

0.0755

0.076

0.12S

0.345

0.384
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TABLE IX. Exact series of C&, Rz, and Sz for the tet lattice.

1

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22

CN4

1

3
9

27
81

237
699

2049
6015

17 547
51 321

149 499
436 137

1 268 475
3 693 663

10730 613
31 203 621
90 566 913

2 63 067 933
7 62975 129

22 14262 551
64 17 997 005

4 C~R

1

8
41

176
689

2552
9083.

31 408
106 239
353 304

1 158 617
3 756 384

12 061 945
38 418 328

121 504 271
381 942 224

1 194 166 357
3 715 993 832

11 514 366 573
35 543 506 848

109 342 447 895
335 329 803 992

—'(N+1) C~S~

1

14
116
746

4121
20 300
93 440

405 636
1 687 383
6753 810

26 307 092
99 817 558

371 382 217
1 355 404008
4 875 193600

17 280 369 496
60 563.128 677

209 818 417 170
720 394 458 228

2 450455 002 848
8 274 346 083 763

Monte Carlo data for the sq lattice. Guttmann" ' and
Rapaport ' ' suggest the presence of the analytic value
b, I

= 1 for d =2 and 3.
Our estimates of v for S~ are slightly larger than those

for R&', the difference is conspicuous for lattices in 3D
and the values are close to the Flory value —', . This seems
to contradict the widely accepted belief that v is
equivalent between R& and S&, which is supported by
earlier numerical work ' and RG calculations.
Our result suggesting vs & v~ can probably be ascribed,
as Rapaport indicated, to the slow rate of convergence
of S& series since it includes contributions from all possi-
ble distances between pairs of sites in a walk. Recent
Monte Carlo estimates' ' ' for SAW's in 2D are con-

sistent with the conjecture vs=vs while those ' ' in9, 18,26

3D seem to give vs )v
We get b. , = 1.19 (3D) and 1.06 (2D) as the averages of

our estimates of 6, for S&. They are evidently different
from those for Rz and in favor of the presence of the an-
alytic correction of 6& = 1 as shown in a preceding publi-
cation for the tri lattice, but 6, in 3D is a little larger
than that in 2D. The estimation of 5I is dependent on a
given value of v, so that the discrepancy may be attribut-
ed to the difference in v between S& and R&. However,
the discrepancy increases for smaller vs, for example,
6& = 1 ~ 6 for the fcc lattice if we choose vs =0.588, and

6,= 1.13 for vs =0.'750 for the tri lattice.
The estimates of y in 3D are entirely reconciled with

TABLE X. Exact series of C&, Rz, and Sz for the bcc lattice.

1

2
3

5
6
7
8
9

10
11
12
13

CN
I
8

1

7
49

331
2245

15 007
100603
668 965

4456 585
29 536 387

196006 195
1 296083 749
8 578 330951

8 CNRN

1

16
177

1696
14 917

124468
999 995

7 819224
59 853 953

450 672 532
3 347481 963

24 590 339 689
178 939 306 279

—,'(N+1) C~S~

1

30
548

7766
95 581

1 059 212
10 958 400

107000 732
1 002 919433
9 061 897 542

79 685 665 460
683 195 865 502

5 745 246 S46 465
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TABLE XI. Exact series of C& and S& for the sc lattice. TABLE XIII. Exact series of C& and S& for the tri lattice.

1

2
3
4
5
6
7
8
9

10
11
12
13
14

CN
1

6

1

5

25
121
589

2821
13 565
64 661

308 981
1 468 313
6 989 025

33 140457
157 329 085
744 818 613

—'(N+1) C~S~

1

22
292

2994
26 613

212 532
1 583 808

11 126 940
75 021 053

487 286 330
3 079 847 364

18 971 359 374
114611086 221
679 491 899 320

1

2
3
4
5
6
7
8

9
10
11
12
13
14
15

CN
1

6

1

5
23

103
455

1991
8647

37 355
160 689
688 861

2 944 823
12 559 201
53 455 781

227 131 875
963 627 597

—'(IV+1) C~S~

1

22
282

2778
23 305

175 194
1 215 740
7 939 156

49 422 491
295 993 366

1 717 056 604
9 697408 184

53 533 130211
289 769 871 988

1 541 876 281 342

TABLE XII. Exact series of C& and Sz for the sq lattice.

1

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21

1

4

1

3
9

25
71

195
543

1479
4067

11 025
30073
81 233

220 375
593 611

1 604 149
4311 333

11 616 669
31 164 683
83 779 155

224 424 291
602 201 507

—'(N+ 1) C~S~

1

14
116
722

3887
18 508
82 160

340 180
1 351 555
5 136 194

18 989 580
68 082 102

239 338 055
822 629 240

2 786064 872
9 274487 688

30 521 878 637
99086 541 810

318 742 922 236
1 014076 260 686
3 202213457 395

the RG value y=1. 1615; almost the same results are
obtained from exact series analyses by Rapaport and
Guttmann. " Those in 2D are in good agreement with
Nienhuis's prediction y =

—,'„which is supported by other
numerical attempts. " ' ' The average values of b

&
for

C~ are b. , =0.99 (3D) and 0.97 (2D), which confirm the
presence of the analytic correction 6& = 1 both in 3D and
2D. The value in 2D is compatible with 6&=0.93 es-
timated by Adler from the series analysis for the honey-
comb lattice whereas 5&=0.465 is given by McKenzie
for the fcc lattice. Recently, Guttmann and Enting '

have obtained 6, = 1 and 62 = 1.5 from the analysis of
56-term series for the number of self-avoiding polygons
on the sq lattice. Our method for this series yields
6& =0.9805 by using the values p =2.638 158 5 and
a=0.50006 given by them, where o. is the exponent for
specific heat; the 6& value is in excellent agreement with
6, =0.98 for the SAW on the same lattice to support
6

&

= 1. We have also estimated 6, =0.70+0.06 and
0.63+0.06 from the 54-term series ' for the span and
square span of the polygon, respectively, where we used
our estimate v=0. 752+0.004 in both cases. These 6,
values are reconciled with our corresponding result
0.66+0.05 for the SAW; the value of v is compared with
0.753+0.007 of Guttmann and Enting.

A universal relation is generally predicted among the
correction-to-scaling amplitudes as well as the leading
critical amplitudes. Our estimates of B and B in 3D sug-
gest that they are universal excepting the values for R&
for the sc lattice and for C~ for the tet lattice; such a
feature is not so clear for B in 2D. Note that B is nega-
tive for R& in 3D whereas it is positive for Sz. Average
estimates of the ratio As/Az are 0.139 (3D) and 0.137
(2D) in contrast with the result by Lax, Barrett, and
Domb: SN /Rz =0.155 (3D) and 0.140 (2D) as N~ oo.

Critical quantities for SAW's are estimated from the
exact series of R&, S~, and C& for various lattices in 3D
and 2D using a new method of series analysis; we have
added new terms to the extant data of S& for several lat-
tices. The estimators of v for R~ and y for C~ in 3D are
entirely consistent with the RG calculations v=0. 588
and y =1.1615 while those in 2D are in good agreement
with Nienhuis's analytical values v=

4 and y = », the es-
timates of p are reconciled with other numerical results
in 3D and 2D. Our values of v for S& are, however,
somewhat larger than those for R& contrary to expecta-
tion in both cases of 3D and 2D. The averages are
v=0. 598 (3D) and 0.753 (2D); the former is very close to
the Flory value —', . The average estimates of the
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correction-to-scaling exponent are b, &=0.48 (3D) and
0.65 (2D) for R&, and b,

&

= l. 19 (3D) and 1.06 (2D} for Sz
while b, , =0.99 (3D} and 0.97 (2D) for C&, the values for
S~ and C~ are in favor of the analytic correction 5,= l,
whereas those for R~ are reconciled with the RG calcula-
tions.

ACKNOWLEDGMENTS

I am very grateful to Y. Arai for assistance with com-
putational work.

P. G. de Gennes, Scaling Concepts in Polymer Physics (Cornell
University Press, Ithaca, NY, 1979).

F. J. Wegner, Phys. Rev. B 5, 4529 (1972); 6, 1891 (1972).
3D. S. McKenzie, Phys. Rep. 27, 35 (1976), and references

therein.
4J. C. Le Guillou and J. Zinn-Justin, Phys. Rev. Lett. 39, 95

(1977);Phys. Rev. B 21, 3976 (1980).
5G. A. Baker, Jr., B. G. Nickel, M. S. Green, and D. I. Meiron,

Phys. Rev. Lett. 36, 13S1 (1976);Phys. Rev. B 17, 1365 (1978).
B. Nienhuis, Phys. Rev. Lett. 49, 1062 (1982); J. Stat. Phys. 34,

731(1984).
I. Majid, Z. V. Djordjevic, and H. E. Stanley, Phys. Rev. Lett.

51, 1282 (1983).
S. Havlin and D. Ben-Avraham, Phys. Rev. A 27, 2759 (1983).
D. C. Rapaport, J. Phys. A 18, 113 (1985).
K. Kelly, D. L. Hunter, and N. Jan, J. Phys. A 20, 5029
(1987).

~ A. J. Guttmann, J. Phys. A 20, 1839 (1987).
Z. V. Djordjevic, I. Majid, H. E. Stanley, and R. J. dos San-
tos, J. Phys. A 16, L519 (1983).
V. Privman, Physica A 123, 428 (1984).

~4J. W. Lyklema and K. Kremer, Phys. Rev. B 31, 3182 (1985).
~5D. C. Rapaport, J. Phys. A 18, L201 (198S).
~6D. L. Hunter, N. Jan, and B.MacDonald, J. Phys. A 19, L543

(1986).
D. C. Rapaport, J. Phys. A 18, L39 (1985).
N. Madras and A. D. Sokal, J. Stat. Phys. 50, 109 (1988).
I. Majid, Z. V. Djordjevic, and H. E. Stanley, Phys. Rev. Lett.
51, 143 (1983).

20J Adler, J. Phys. A 16, L515 (1983).
A. J. Guttmann, J. Phys. A 17, 455 (1984).

2S. McKenzie, J. Phys. A 12, L267 (1979).
T. Ishinabe, Phys. Rev. 8 37, 2376 (1988).

24F. T. Wall and J. J. Erpenbeck, J. Chem. Phys. 30, 637 (1959).
25C. Domb and F. T. Hioe, J. Chem. Phys. 51, 1915 (1969).

H. Meirovitch, J. Chem. Phys. 79, 502 (1983).
2~T. A. Witten and L. Schafer, J. Phys. A 11, 1843 (1978).

J. des Cloizeaux, J. Phys. (Paris) 42, 635 (1981).
M. K. Kosmas, J. Phys. A 14, 2779 (1981).
M. Benhamou and G. Mahoux, J. Phys. Lett. (Paris) 46, 689
(1985).
J. L. Martin, Proc. Cambridge Philos. Soc. 58, 92 (1961).

32J. L. Martin and M. G. Watts, J. Phys. A 4, 456 (1971).
M. F. Sykes, A. J. Guttmann, M. G. Watts, and P. D. Roberts,
J. Phys. A 5, 653 (1972).
T. Ishinabe, J. Phys. A 20, 6435 (1987).
The tables in Ref. 25 quote the values of Sz but not
(N+ 1) C~S~.
V. Privman and M. E. Fisher, J. Phys. A 16, L295 (1983).
S. Havlin and D. Ben-Avraham, J. Phys. A 15, L311 (1982).

8Similar quantities are used in a somewhat diferent context in
order to estimate 6& for neighbor-avoiding walks; see G. Tor-
rie and S. G. Whittington, J. Phys. A 10, 1345 (1977).
M. G. Watts, J. Phys. A 8, 61 (1975).

40B. Derrida, J. Phys. A 14, L5 (1981).
A. J. Guttmann and I. G. Enting, J. Phys. A 21, L165 (1988).

42A. Aharony and G. Ahlers, Phys. Rev. Lett. 44, 782 (1980).
M. Lax, A. J. Barrett, and C. Domb, J. Phys. A 11, 361 (19?8).


