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A model of magnetostriction for single-ion random magnetic anisotropy (RMA) spin glasses (SG)
is developed, the calculation being based on the replica technique. An, overall uniform strain is as-

sumed and coupled to the local easy axis (or easy plane) by an adequate projection. The obtained

bulk magnetostriction becomes proportional to the average quadrupolar moment, which depends

upon the assumed ferromagnetic uniform exchange, Jo, and the RMA crystal field (CEF), Do,
strengths. Magnetostriction measurements parallel (k~~) and perpendicular (A, &) to the applied mag-

netic field (up to 7 T) have been performed between 4.2 and 150 K (much larger than the SG tem-

perature, TsG) for the amorphous spin glasses R4p Y23Cu37 (R =Tb, Dy, Ho, and Er). Anisotropic
magnetostriction is a forced effect, with no sign of saturation, and is quite large well above Tsz.
The developed model fits quantitatively and remarkably well the temperature variation of the aniso-

tropic magnetostriction, A, , =A,
~~

—A,„in the case of Tb, Dy, and Ho alloys. The values obtained

from the fit for Do, respectively, are +3.0, +1.25, and +0.6 K. For Er, Do becomes —0.37 K.
The signs of Do are in agreement with having local axial anisotropy for the Tb, Dy, and Ho com-

pounds, and planar for the Er one, in good agreement with the signs of the o.J Stevens quadrupolar

parameter. From the above comparison between our theory and the measured magnetostriction,
values for M, /C„where M& is the magnetoelastic coupling coefticient and C, the average elastic

constant, are also obtained, being in the relation +1:+0.31:+0.18:—0.28, in remarkably good

agreement with the point-charge model of CEF especially developed for those amorphous alloys.

I. INTRODUCTION

Random magnetic anisotropy (RMA) magnetism is a
subject of steadily growing interest. ' ' In this paper we
report magnetostriction measurements on random mag-
netic anisotropy spin glasses (SG) of amorphous structure
together with a model of magnetoelastic coupling in
those systems, which renders a good quantitative ex-
planation of the experimental findings. Amorphous rare
earth (R) alloys are materials expected to present RMA
with random local easy axis, due to the evironmental dis-
order. The origin of the RMA must be associated with
the electric field gradient acting upon the R + quadrupo-
lar ionic charge distribution. Such RMA is naturally ex-
pected to produce a spin-glass freezing of the spin direc-
tions of equal nature of the one well observed in random
exchange spin glasses.

Let us now briefIy summarize the main findings in
RMA spin glasses from the theoretical point of view, in
order to ascertain whether amorphous alloys R4o YQ3Cu37

(R =Tb, Dy, Ho, and Er), which are the object of our
study, are true RMA spin glasses. A full and detailed ac-
count of magnetic properties of amorphous R4o Yp3Cu37
alloys will be given elsewhere. " A finger print of RMA
magnets is the absence of ferromagnetic long-range order
in the presence of ferromagnetic exchange. Imry and
Ma, ' and Aharony and Pytte, ' found that no matter
how weak RMA is, it will destroy the long-range order.
Besides, the initial susceptibility, yo—= (M/H)H o, should
diverge at T~ Tso (Ref. 13) or become very large if

Jo/Do is not too small [go=(Jo/Do) ], according to re-

cent calculations of Chudnovsky et aI. ' In fact, as in
the random exchange SG case, the spin freezing at Tsz
will produce the display of acute cusps of the initial sus-

ceptibility. A RMA system should also exhibit a finite
coercitivity and hysteretic behavior, as shown by Callen
et al. ' and Patterson et al. ' On top of all that, one
should expect strong magnetic aftereffects at remanence.
All this means that Tsz represents the start of strong ir-
reversibilities. All these predictions have been observed
in the present a-R40Y23Cu37 alloys. The initial ac suscep-
tibility presents acute cusps at TsG (Ref. 17) (see Table I),
and besides, the paramagnetic Curie temperature 6 is
positive, indicating the presence of positive exchange in-
teractions. Besides the magnetization at relatively low
fields (=1 T) shows broad cusps around Tso. Arrott
plots of M versus H/M show the inexistence of spon-
taneous magnetization and the approaching of II/M to
the demagnetizing field values for T ~ Tsz and low mag-
netizations. We also observed strong remanence and
coercitivity below Ts~, and a magnetic aftereffect at
remanence, that, for long enough time, was of the form
lnt. We then conclude that, in the case of amorphous
R4OY23Cu37 alloys, we are, in fact, in the presence of
RMA spin glasses.

The organization of the paper is as follows. In Sec.
II A we outline the main steps of the theory of RMA
magnets, with specialization to our present systems. In
Sec. IIB we develop a model of magnetostriction in
RMA spin glasses, either with local axial or planar an-
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TABLE I. Spin-glass temperature, Ts&,' exchange paramagnetic Curie temperature, e; random CEF
strength parameter, Dp, and M2/C„with M&, the magnetoelastic coupling parameter, and C, the aver-
age elastic stiFness constant, deduced for the amorphous R4p Yp3Cu37 alloys by comparison between ex-
periments (Sec. III) and proposed model (Sec. II).

Alloy

Tb4p Y23Cu37

Dy4p Y23Cu37
Ho4p Y23Cu37
Er4p Y23Cu37

TsG(K) '

36
23.5
12.6
7

e(K)

7.5
40
1.3

=0

Dp(K)

+3.0
+ 1.25
+0.60
—0.37

(M /C, )

( X 10-')

+29.2
+9.2
+4.4
—8.3

'From Ref. 17.
For Er ion this value corresponds to M& /C, (see Sec. II 8 2).

isotropy. The magnetostrictive bulk strain is calculated
in Sec. IIC. In Sec. III we present the experimental re-
sults of magnetostriction in a-R40Y23Cu37 alloys, and in
Sec. IV we make a quantitative comparison of the model
with experiment. Finally, in Sec. V we extract the con-
clusions of our work.

II. MODEL OF MAGNETOSTRICTION
IN RMA SPIN GLASSES

A. Outline of theory of RMA magnets

The theory of RMA magnets is by now reasonably well
established since the pioneering work of Harris et al. ,

'

Aharony, ' and Chen and Lubensky, ' as already men-
tioned. In the following we review and closely adhere to
the early model developed by Aharony, ' although we
will work in the discrete lattice approximation instead of
the continuous one used in renormalization-group calcu-
lations. The model quoted here is paramount for the de-
velopment of the magnetoelastic coupling model pro-
posed in Sec. II B. One starts from the Hamiltonian

H = —g J(x,x+5)S(x) S(x+5)
x, 5

F = 'y f d —a(—x)PIa(x)IlnZIa(x)I, (2.3)

where PIa(x)I is the probability of finding a
configuration of directions I a(x) I, and the integral is per-
formed over the I-dimensional sphere. We use now the
usual replica trick, making

lnZIa(x)I = lim„
Z"—1

(2.4)

Substitution of (2.4) in Eq. (2.3) gives

f3F = lim ——(Tr„e ' —1),
—PH ~

n~o n
(2.5)

where Tr„ is the trace over the n-replicated spin system,
and where the efFective Hamiltonian has the form

H,s= —Jo g S (x) S (x+5)—G Io'(x) I, (2.6)
(x, 5, a)

where the trace is taken over the m-dimensional spin
space, (P=—1/ksT). As usual, we assume a quenched
system and therefore average over the free energies of all
possible random configurations of directions I a(x) I,
merely

—Do g [a(x) S(x)] (2.1) where we have assumed that the exchange interaction is
uniform.

where S(x) is a I-component spin vector, located at the
site x of a d-dimensional amorphous (or also crystalline)
lattice (5 is a vector connecting site x with the average z
NN); J(x,x+5) is the exchange interaction strength, and
a(x) is a unit vector pointing in the local (random) direc-
tion of the uniaxial anisotropy at site x. As said before,
this anisotropy arises from the interaction of the gradient
of the crystalline electric field (CEF) with the quadrupo-
lar moment of the charge distribution of the rare-earth
ion. We have assumed that the random nature of the
amorphous lattice causes the local easy direction to vary
randomly, but we have ignored possible fiuctuations in
the strength of the local anisotropy by making Do a con-
stant. Experiments performed on rare-earth amorphous
alloys show that this is in fact the case.

In order to evaluate the free energy of the system, one
defines the partition function, namely,

o —=(S„.. . , S„)=(S„,. . . , S, , S2i, . . . , S„)

n

Xexp Dog g [a(x).S (x)]
x ex=1

(2.7)

We will now assume that local easy axes a(x) are com-
pletely uncorrelated (although this should not be quite
true in a real amorphous metal ), and then P I aI can be
factorized, i.e.,

P I a(x) I
= +p [a(x)],

is a generalized spin in the spin replica space of dimen-
sion nm, and a stands for the replica index. Besides,

e ~ I= f d a(x)PIa(x)I

Z I a(x) I
=Tr[exp( 13H)], —(2.2) p[a(x)] being the probability distribution of unique ion
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GIo(x)] = gg[o(x)]

with the energy density given by

" '= J d ap(a)exp Do g (a S )~

a=1
(2.8)

It can be shown' that the free energy per degree of free-
dom of the system described by H,~ is equal, in the limit
n —+0, to that of the original spin system.

We will now make the further assumption for an amor-
phous solid by considering a completely isotropic distri-
bution of CEF easy axes, ' i.e.,

—1

p(a)= J d a =I (m/2)/2m (2.9)

easy axes directions. Then integral in (2.7) can be factor-
ized, obtaining

(2.10)

We now expand e g up to second order as well as the ex-
ponential within the integral and solve for the second-
order equation in g finding' '
g(o )=— D 2

m (m+2)
Do

m (m +2) g gS, SPS SP+O(~o
~

) . (2.11)

Finally, we obtain for the eAective Hamiltonian,

this assumption has been confirmed by Cochrane et al.
on the basis of a random packing of atomic spheres.
Then Eq. (2.8) becomes

T

Jd~aexp Do g x x. g S SP
d a i j=i a=1

II,~= —Jo g S (x) S (x+5)—
x, 5,a

D 2
—P g gS; (x)SP(x)S, (x)SJ~(x),

Do Dog S (x) S (x)+P g QS,. (x)s~(x)s, (x)s~(x)
m (m+2)

(2.12)

where we will assume that the exchange interaction is positive (Jo )0), in agreement with our findings for A4o Yq3cu37
amorphous alloys. The third term in (2.12) is clearly repulsive and reduces to Nn ~S~, and will be discarded, because it

oes not contribute to the order. ' The second term merely produces a shift in the paramagnetic Curie temperature
with an effective exchange interaction Jo Jo Do/m. The main result of the Aharony model is that the fourth term

as a form identical to the quartic spin term for a random exchange Ising spin system if one merely changes the site in-
ices by spin component indices. Therefore, the RMA system can have a spin-glass transition if Do is sufficientl

arge. ' This is in good agreement with the result previously mentioned that there cannot be long-range ferromagnetic
order in a RMA system for d (4. Therefore, we will now follow the same kind of formalism as that for an Ising ran
dom exchange spin glass with short-range interactions (Edwards-Anderson spin glass ). We will perform the calcu»-
tion for our general Heisenberg m-component spin.

D2
g g g S;"(x)S (x)SP(x)s~(x) —1

lj af3 x

g g S; Sg SPS~~= g g (S; ) (S. ) +2 g g S; S;~s S~~

1 . 1F = ——lim —Tr„exp PJo g S (x) S (x+5)+Pp tl~o n

Terms with a=p and a&p must be treated separately, and therefore we split the RMA term as

(2.13)

(2.14)
ij ap tJ a ij (ap)

where the first term in (2.14) has the form of a quadrupolar interaction, while the second is the one leading to the RMA
spin-glass ordering. In the spirit of the Sherrington-Kirkpatrick (SK) model ' we perform a mean-field (MF) ap-
proximation by writing

gg(S, ) (Sj) =mph(p (S, ) —p /2),
ij a i a

g g S; SPS S,~=m g g (q ps; Sf q~p/2), —
ij (a/3) i (aP)

and defining MF parameters in the replicated system in the form

(2.15)

(2.16a)

q.,—— y &s;sf'&„,
m j (2, 16b)

and where a~P in (2.16b).
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We will now make the ansatz that all the p's and q's are the same at the extremal of F, i.e., p—:p and q & =q; then
substituting (2.15) and (2.16) in (2.13) we readily obtain

F =P lim — 1 —Tr„exp ~ g PJozM S, (x)—1 M

7

D2
+P g [p(S; ) —p /2]

D 2

+2it3 g g g(qS; SP—
q /z)-

(ap) x i

(2.17)

where we have made the further approximation of assuming only exchange among the axial spin components (this is
strictly true when introducing the MF approximation with average induced magnetization, M, only along the field axis).
Now, we follow the usual procedure of rearranging g;gi p~S, S, in the form

XXSS X XS 2X($ )
1 - - 1

i (oP) 1 O.' l CX

making use of the Hubbard-Stratanovich identity

(2.18)

2

exp —'&$ =f" exp
2 QO

2

+ax QS &2' ' (2.19)

and using again the replica trick formula (2.4). We now assume an Ising approximation and make S; =0 for i&z. Then
we obtain for the free energy

—p—=p (q p) ,'p—JozM——+f e " ln Tr exp[aS, +(yx +JozM+g MPH)$, ], (2.20)

and where

Do )'=P&q
m +2

132D 2

(p —q) .

2
m+2

1/2

Do,
(2.20')

This result is identical to the one obtained for random ex-
change SG, ' ' if we change

(P J )/2~(I3 Do)/m(m +2)
and z~m, i.e., the spin components play an equal role as
the site indices (here J is the standard deviation of the
Gaussian random exchange distribution). Notice that an
applied magnetic field term has been introduced in (2.20)
(where g is the Lande factor and pz the Bohr magneton);
this introduction is trivially resulting from the Zeeman
extra-term —giu, s+„S (x) H. The extremal of F against
p, q, and M will give the equilibrium values of these pa-
rameters. From the equations

(aF/aq) =(aF/ap) =(aF/aM) =0,
one readily obtains,

2/'2q= e—- &2n-

+S
ne" sinh(n yx)

n= —S
+S

e" cosh(nyx)
n= —S

(2.22)

( A ) =Tr[ A exp[aS, +S,(yx+PzJOM

+13gp&H)] I /Tr exp[. . . ],
is the thermal average of the operator A. Again expres-
sions (2.2la) —(2.21c) are identical to the SK model
ones as they should be.

It will become useful later, in order to compare our
model of magnetostriction with experiment, to obtain the
expression for the spin-glass order temperature, Ts~,
within the present model of RMA. Expression (2.21b) for
q can be also written, for integer spin, in the form

—x /2-- ~2'�'
q=p ——f "

xe ""&S,),
y —- &2'

dx
-- ~2vr'

where

(2.21a)

(2.21b)

(2.21c)

where we have made H =M =O. Expanding now the hy-
perbolic functions for small q ( T= Tso ), after some
straightforward calculations we obtain

'

& msexp(msasG)
2 f71g

Sea Tsu =+ Do
m +2 g exp(msasG)

mS

(2.23)
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B. Magnetoelastic coupling in RMA spin glasses

l. Anisotropy ofaxiai character

We mill assume that the effect of the magnetoelastic
coupling of the spin to the axial CEF gradient is to pro-
duce some rearrangement of the atomic environment of
the R ion probe in order to modify the effective CEF
strength of parameter Do, but maintaining essentially
constant the local easy axis direction a(x). Although
rearrangement of the local easy axes cannot be, in princi-
ple, ruled out, we will assume that the situation is likely
the same as for crystalline materials, where it is assumed
that the easy axis directions do not change due to the
magnetostrictive distortions, the only source of magne-
tostriction being the dependence of the anisotropy energy
with strain. Now, if the CEF has to maintain the same
axial symmetry as the unperturbed (2.1) one, the local
strain that can couple to this CEF is e... the strain pro-
jected along the local easy axis. Then the magnetoelastic
coupling Hamiltonian will have the form

H, = —M~ g [a(x) S(x)] e (x), (2.24)

where according with the preceding discussion,
Mz =(BDo/Be ) is the magnetoelastic coupling parame-aa

I

aso=(kli TsG) [Do/(m +2)]p (Tso ),
and m& = (1, . . . , +S). An expression completely similar
is obtained for half-integer S (indeed, for a rare earth, S
must be substituted by J, the total angular quantum num-
ber). Expression (2.23) is a generalization for high-spin
values of the Chen and Lubensky' one, obtained using a
continuous Ginzburg-Landau-Wilson approximation.

ter. This parameter is assumed to be homogeneous as for
the unperturbed CEF parameter Do, due to the reasons
explained before. The strained system will get the equi-
librium if an elastic energy of the form

H„=—,'C, g [e„(x)]', (2.25)

=e' cos, 0(x) (2.26)

where 0(x) is the angle formed by the local easy axis with
the applied field axis (z).

We will now make full use of the previous replica tech-
nique in order to derive the effective Hamiltonian. This
has the form

H, = —gg(x, o.),

where the energy density is given by

is also present, and where C, is some average elastic con-
stant, assumed to be invariant across the solid.

Under the application of a polarizing magnetic field,
H, assumed uniform across the materia1, the solid will be
magnetostrictively strained, and we will make the main
assumption of assuming the strain to be along the field
axis (z) and to be also uniform, i.e., e„In p. rinciple, lo-
cal nonuniform strains are possible in an amorphous
solid. However, this would be made at the expense of
enormous amounts of elastic energy in the interfaces of
regions of diFerent strain directions (the appearance even
of dislocations can be easily imagined). On the other
hand, a uniform strain can couple to the local square
magnetization induced by the field [S,(x)] as it will be
-shown. Moreover, a nonuniform strain will produce an
elastic extra energy of k&0 phonon character, which is
dificult to imagine in a purely static situation. Finally
the local strain e coupling to the CEF produced by e„
will be

—g(x, a ) f d~aexp (Do+M2e-„)' g (a S )
d a a=1

(2.28)

Expansion of the exponentials up to second order and resolution of the second-order equation in g (o ) produces the fol-
lowing magnetoelastic energy density:

g, (tr ) = —M~e„g
n

(x,x, x', ) X S S; DxMzx„( Zx, x,x, Z—S,'S; ')
a=1 ij a

g x;xjx i g S; S + —,'C, e~, (x i ), (2.29)

where the first two terms are magnetoelastic coupling ones, the third is a "morphic" term affecting the elastic constants
values, and the last term is the elastic energy one. x; are the direction cosines of the local easy axis. We will neglect the
morphic term; the term with coe%cient DOM2 is a perturbation of the term responsible for the spin-glass order. We ob-
tain the following types of average angular integrals:

( X;XjXkX!) =

(x'x'x'„) =
k

( X;XjXkX!) =

1
(~j~k!+~ k~jl+~il~'jk )'

m m+2
1

m (m +2)(m +4)
1

[3(~j~kl ~ik~jl ~il~'jk )+6~ij ~ik~il ]m m+2 m+4

(2.30)
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where ( ) are averages over the isotropic distribution p (a) of random CEF local anisotropy axes, i.e.,

(( . ))= „„fd a( . )p(a).fdisap(a)

The magnetoelastic term in M2 then becomes
—M2e„

m (m +2) [3(S, ) +(S„)+(S ) ],

(2.31)

(2.32)

and for H applied along z we will neglect terms in [S,] and [S ], i.e., we restrict to an Ising approximation. Notice
that in the plane normal to z~~H the magnetoelastic coupling Hamiltonian has cylindrical symmetry as it should be.

The other magnetoelastic term, after some rearrangements, becomes

2DOM~
(2.33)

Collecting terms (2.32) and (2.33) we obtain the following magnetoelastic coupling plus elastic Hamiltonians:

3M2 2DoMH, = — e„gg [S, (x)] — e„gg g S, (x)S~ (x)SP(x)S~(x)

2 m(m+2) (2.34)

According to this result the magnetostrictive distortion produces two effects: a main one of introducing an axial CEF
anisotropy along the applied field direction, and an interaction identical to the one responsible for the SG order. This
additional axial anisotropy clearly is macroscopic or coherent.

2. Planar local anisotropy

When locally, at site i, we have an easy plane (x, , y, ), i.e., Do (0, in Eq. (2.31), the magnetoelastic coupling Hamil-
tonian for spherical symmetry must have the form

H = —M (S +S )e;, (2.35)

&,'=( I/2)(e +e )

is the irreducible strain for basal plane cylindrical symmetry. As before we now project the uniform macroscopic strain
e„along the basal plane in order to couple with the basal CEF, i.e.,

e =e„cos 8,
1 t

Ey.y. Ezzcos p
t

where 0 and y are the angles between the local CEF axes (x;,y; ) with z. A calculation similar to the one done for local
axial symmetry produces, within the Ising approximation, the effective axial coherent magnetoelastic anisotropy

g g [S,~(x)] + —,'C, e„,
x a

(2.36)

where terms in (S ) and (S ) have been neglected for induced magnetization along the z axis, i e , we ad.op. t an Ising
approximation.

C. Free energy and equilibrium strains

Following the same procedure outlined in Sec. II A, we obtain for the free energy including ferromagnetic exchange,
RMA anisotropy and magnetoelastic coupling

r

PF= Nb. * (q —p —) —P zM + f e ln Trexp[a"S, +(y*x +PzJOM+Pgp~II)S, ]4 2 — v'2~

3PC,
&zz2 m(m+2) (2.37)
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and where the ingredient parameters are modified by the magnetostrictive distortion in the form

2

D,~ 3f3M2

m+2 m(m+2)
r

(2.38)

r"=P&e D,f,
with

D =D 1+
M

Def D0 +4 D ~zz (2.39)

being an effective CEF strength parameter.
The extremal of F against q, p, and M will give, as in Sec. II A, the equilibrium values for these parameters, which

keep the same form as expressed by Eqs. (2.21a)—(2.2lc), but instead now including the parameters given by Eqs. (2.38)
and (2.39). The equilibrium magnetostrictive strain results from the condition BF/Be„=O and from (2.37) it becomes

zz

Do

c, p+ (m+4) z, T p (2.40)

As can be seen, the magnetostrictive strain has two contributions: one is the quadrupolar contribution due to the CEF
distortion, and the other is proportional to the thermodynamic internal energy, appearing also in the specific heat ex-
pression. ' This term decreases rapidly with temperature and it will be generally neglected so on. It is useful to
speculate about the extremal character of e„as obtained from the condition BF/Be„=O. A quite straightforward cal-
culation shows that

2
d .„a . . . a=p ' + j e * (a' S, +x('*S, ( — (G "S,+x( "S,))I +2 — v 2m' B6

(2.41)

which is always a positive quantity, and therefore e„given by Eq. (2.40) actually corresponds to a minimum of the mag-
netoelastic free energy.

Now the anisotropic magnetostriction producing a "tetragonal" distortion of the unperturbed spherical symmetry of
the amorphous system is

A, , = —,((3e„—co),

and from (2.40) it must be given by

[3p —S(S+1)]= I e " (0 ~),
2C, C, — V'2

(2.42)

(2.43)

where

0 2=(1/2)[3S, —S(S+1)]

is the quadrupolar Stevens operator. k, has the usual
form of a magnetostrictive strain of CEF origin. In ex-
pression (2.43) besides the canonical thermal average, one
has the average over the RMA disorder through the
Gaussian distribution. Notice again that for R ions the
spin S has to be substituted by the total angular momen-
tum J through all the equations (2.21a)—(2.21c) and
(2.43), and in this form they will be used from therein.

The expression for A, , when the local anisotropy is pla-
nar is obtained in a similar way from the coherent anisot-
ropy effective magnetoelastic Hamiltonian given by Eq.
(2.36). One then obtains the same expression (2.43) by
changing M2/C, by (M2/C, )(2—4/I) [we again
neglect a second-order term similar to the one in Eq.
(2.40)].

III. EXPERIMENT: MAGNKTOSTRICTION
IN R40 Y23Cu37 AMORPHOUS ALLOYS

The samples of R&oY23Cu37 (R =Tb, Dy, Ho, and Er)
were prepared using the argon arc technique starting
from the constituents: rare earths of 99.9% and Cu of
99.999% purities. Amorphous ribbons were prepared us-
ing the rotating wheel technique, the ribbons having an
average width of 2 mm and =40 microns in thickness.
The amorphous structure was checked using x-ray K
copper radiation, broad maxima due to nearest neighbors
(20=33') and next nearest neighbors (28=57 ) being ob-
served. Small peaks of residual crystallinity were
superficial inasmuch as they were removed by rubbing
the ribbon surface with fine emery paper. The composi-
tion was checked as well using scanning electron micros-
copy and the energy dispersive x-ray microanaiysis
(EDAX) technique.

The magnetostriction measurements were performed
using the well-known strain gauge technique, ' using a
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dummy gauge in order to compensate for thermal expan-
sion and magnetoresistance in the gauges. The magnetic
field was produced with a superconducting coil (up to 7
T) for the samples with Tb, Dy, and Er, and with a pulse
field'coil (up to 15 T) for the Ho alloy. In order to
prevent the stiffness of the gauge, around 12 ribbons were
glued together with M-600 bond agent (Micromeasure-
ments, USA), forming a sort of composite, and the gauge
(SK-350 Micromeasurements) was attached to it. The
strain was measured using a sensitive dc bridge (for the
continuous fields) and a 25 KHz modulation bridge (for
the pulsed fields). Details of those apparatus are given,

respectively, in Refs. 32 and 33. Magnetostriction was
measured parallel (A,

~~)
and perpendicular (Ai) to the ap-

plied field in order to extract the volume strain,
co =A, ~(+ 2A, ~, and the anisotropic one,

A, , =A" —A, [=(3/2)(A" — /3)] .

(Notice that, indeed, the strictions A.~~=@„and
A,~—:e =—e, but we prefer to use the notation cus-
tomarily used in magnetoelastic work. ') We present in
Figs. 1 —4 isotherms of parallel and perpendicular magne-
tostriction between about 4.2 and 15O K for the studied
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FIG. 1. Parallel, Xj~, -(a), and perpendicular, A,~, (b), magnetostriction vs applied magnetic field isotherms for amorphous
Tb40Y23cu37 alloy.
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compounds. As it can be observed, magnetostriction
changes almost linearly with field even well above Tsz,
with no sign of saturation, the magnetostriction being a
forced one. Magnetostriction is very large and remains
so even well above Tso. In Figs. 5(a) —5(d) we present the
thermal variation of A,

~~

and k~ at the maximum applied
field H =7 T; as it can be observed, A, z = —

k~~ /2, and
therefore co is small in those materials. This means that
the tetragonal distortion, e, , of the spherical environment
of a rare-earth probe ion is almost exclusively contributed

by the axial distortion along the field axis z, i.e.,

of=(3/&6)(e„—co/3) =(3/&6)e„.

The only exception was the sample of Ho, where all the
attempts to determine a measurable A, ~ were unsuccessful,
the estimated X~=0 at all temperatures. However, ~/3 is
as small as in the other compounds and therefore was
neglected.
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IV. RESULTS AND DISCUSSION

A. Comparison of model with magnetostriction experiment

We now proceed to quantitatively compare our
theoretical model of magnetoelastic coupling in RMA
spin glasses with the magnetostriction measurements
quoted in Sec. III. To be more specific, we proceed to fit
the thermal variation of the anisotropic magnetostriction,
A,„at the maximum applied field H =7 T, using the mod-
el expression (2.43) derived in our theoretical model
(Secs. II 8 1, II B2, and II C) [we neglect the second order
contribution in (2.40) for the time being]. The two kinds
of ions studied, Tb +, Dy, and Ho + (Stevens
coefficient aJ (0) and Er +(aJ )0) allow us to test our
model for locally uniaxia1 and planar anisotropies. To
perform the fit we need to know the therma1 variation of
the spin-glass order parameter q and of the field-induced
magnetization M. We have then proceeded to a self-
consistent solution of Eqs. (2.21a), (2.21b), and (2.21c), for
q, p, and M, respectively. In doing this we have two
disposable parameters, the effective exchange parameter
Jo and the CEF strength Do. In Fig. 6 we show the
thermal variations of q for the different compounds, as
obtained from initial susceptibility measurements' (Sec.
I) together with the theoretical calculation. Jo was ob-
tained from the paramagnetic Curie temperature,
e=zJO, the values of e, obtained from the ac suscepti-
bility, being shown in Table I. Do was initially fixed by
setting q equal to zero at TsG in Eq. (2.23). In Fig. 7 we
show the thermal variation of the magnetization" at 7 T,
together with the theoretical calculation. Theory pre-
dicts for Tb, Dy, and Ho compounds, low-temperature
broad cusps, which are not observed at the large field of

measurement, although the degree of agreement between
theory and experiment is satisfactorily correct.

We show in Figs. 8(a) —8(d) the thermal variation of X,
for the studi. ed compounds, together with the theoretical
calculation. The agreement with experiment is remark-
ably good. The values of Do used for the fit are shown in
Table I. They were obtained from Eq. (2.23) solved in a
self-consistent way. We have obtained that Do) 0 for the
ions Tb +, Dy +, and Ho + for which O.J &0, which
means that we have loca11y uniaxial anisotropy. In the
case of Er +, with O.J &0, the parameter Do had to be
taken negative (see Table I) in order to compute a reason-
able thermal variation of A, This means that we are in
the presence of locally planar anisotropy, in agreement
with aJ )0. However, the agreement is now (Er + ion)
only qualitative. The calculated second-order contribu-
tion in Eq. (2.40) does not improve the fit substantially
[see Fig. 8(d)], and one wonders whether fourth-order
terms in the CEF magnetoelastic Hamiltonian would be
responsible for such a discrepancy in the case of the Er +

compound.

B. Comparison with CEF point charge model

It is always a useful practice to evaluate the magnetoe-
lastic coupling parameters within the point-charge model
(PCM). For an amorphous alloy, any irreducible distor-
tion supported by spherical symmetry is suitable to calcu-
late M2, and we will choose the zero volume tetragonal
mode, i.e.,

e =e e =e = —e/2.zz ~ xx yy

In a rare-earth amorphous alloy the random CEF poten-
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tial felt by the rare-earth probe ion can be expanded in
tesseral harmonics Z„„and the second-order or axial
term has the form

~20(RJ ~j PJ)= — Iel'aj(ref &g ', z2O(~j 4j)R.

(4.1)

where R are the distances of the ligand ions j (with
charge Z, ) to the probe one, and (O~, qrj) the polar angles

referred to the local frame. nJ is the Stevens reduced ma-
trix element and (ref) the average radial second mo-
ment for the 4f electrons. We now express V&0 in
terms of cartesian ion coordinates, and distort the posi-
tions of the ligand ions within the mode mentioned, ex-
panding V2O in powers of e~&, in order to obtain M2. If
we furthermore perform the spatial average [( . . ) „ in
expression (4.2)] of the potential we finally obtain

M2= hei az(r4f)(f(R, O ))„,
4

(4.2)
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sume that e ~ 0 ~ m
—u, with a near but not exactly

equal to zero, and we calculate (f(RJ, O~))„averaging
over an isotropic distribution of local easy axes, we ob-
tain

Mz= ~e~ aJ(ref ) g ( —,'cos a —2cos a+ —,') .
R

(4.3)

In any case, assuming equal atomic environment for the
whole series of compounds, the values of M2 are con-
trolled by aj(ref ). According to Table I, the experi-
mentally determined relative values of M2 (M2 for
Er4p Y2sCu37) are, respectively, for the Tb, Dy, Ho, and
Er compounds, + 1:+0.31:+0.18:—0.28, in remarkably
good agreement with the prediction of our PCM Eq.
(4.2), which is +1:+0.32:+0.20:—0.25. Therefore, the
PCM (either with electron screening or distortion of per-
fect spherical local symmetry) is remarkably well accom-

plished in the present amorphous alloys.
It is now worthwhile to estimate the deviations from

perfect sphericity in order to explain with formula (4.3)
the values obtained for the magnetoelastic coupling pa-
rameters Mz. In order to evaluate the spatial average in
Eq. (4.3) we should know the radial distribution functions
g;, (r) for the different pairs of ions. We will make the as-
sumption of assigning zero charge to the Cu atoms and
take Z = +3 for the rare-earth ions. According to
Hunter measurements, g(r) for the isomorphous alloy
YssCu37 gives an average distance (R„r)=3.58 A and
a number of NN of =6. In this way we estimate that

(g (ZJ/R~ ) =3.9X 10 cm
j p'

Then, from Eq. (4.3), and using the experimental values
of M2 of Table I, we obtain that the values of a vary be-
tween 50 and 52 for the present series of compounds,
showing only a slight, although signi6cant, distortion
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from perfect sphericity. The structure factor F(a) in
(4.3) varies between = —0.038 and —= —0.065, i.e., is very
small [instead, for a crystalline alloy, F(a) usually is
quite large].

V. CONCLUSIONS

Several main conclusions can be extracted from this
research. A theoretical model has been proposed to ex-
plain magnetostriction in random magnetic anisotropy
(RMA) spin glasses, with positive exchange interaction.
The model assumes a homogeneous strain along the ap-
plied field axis (which, in turn, is locally projected along
the local crystal-field axis) and uses the standard replica
method. The assumed single-ion magnetoelastic crystal-
field coupling [see Eq. (2.24)] induces an additional
coherent macroscopic anisotropy along the applied mag-
netic field axis (plus a term of identical nature of the one
responsible for the spin-glass behavior). The model
works either for axial or planar local anisotropies. The
main conclusion of our model is that the bulk anisotropic
striction becomes proportional to the average (thermal
and over the disorder) quadrupolar moment.

The proposed model fits quantitatively and remarkably
well the thermal variation of the anisotropic magnetos-
triction, A,„ for the RMA amorphous magnets
R4o Yz3Cu37 (with R =Tb, Dy, Ho, and Er). A, , is quite
large for those systems and remains so well above the
spin-glass temperature. A result of the fit above is the
determination of the eA'ective ferromagnetic exchange

coupling parameter, Jo, of the random crystal-field
strength, Do, and of the magnetoelastic coupling parame-
ter, M2, for the present series of compounds. The signs
and strengths of the experimental values of Do and M2
(see Table I) agree remarkably well with the developed
single-ion point-charge model for those amorphous mag-
nets. It is also suggested that the existence of finite mag-
netostriction in amorphous magnets is related to the ex-
istence of a slight distortion of the otherwise perfectly
spherical local symmetry. In this sense magnetostriction
perhaps manifests itself as a unique technique to show up
deviations from perfect local spherical atomic distribu-
tion in amorphous magnetic materials.
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