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Characterization of strange attractors in spin-wave chaos
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We report the characterization of strange attractors in spin-wave chaos observed in microwave
pumping experiments in yttrium iron garnet. Two types of scenarios are studied with parallel
pumping and subsidiary resonance techniques. The dimension of the attractors at the onset of
chaos is in all cases less than 2, indicating that few modes participate in the spin-wave chaotic dy-
namics.

INTRODUCTION

Microwave-pumped spin-wave instabilities in magnetic
materials display a rich variety of nonlinear-dynamic
phenomena such as self-oscillations, spiking, period mul-
tiplication, irregular period oscillations, intermittency,
and chaos. The low-frequency oscillations with a variety
of wave shapes have been known to exist' since the early
days of the spin-wave pumping experiments. For
years the origin of the oscillations was not understood,
until several authors showed that they resulted from the
nonlinear dynamics of spin waves pumped above the in-
stability threshold. However, their extensive work fell
short of connecting the spin-wave turbulence with the
modern ideas of chaotic dynamics of nonlinear dissipa-
tive systems. In recent years there has been revival of in-
terest in spin-wave turbulence. Chaotic dynamics has
been studied in ferromagnetic ' as well as antiferro-
magnetic" ' materials, in bulk form and in thin films, '

and several theoretical papers' have been published
on the subject.

Spin-wave nonlinearities are of particular interest be-
cause they can be modeled by nonlinear equations de-
rived from microscopic Hamiltonians with well-known
parameters, providing a theoretical framework to inter-
pret the experimentally observed chaotic dynamics. The
relevance of this is that in most other physical systems it
is not possible to describe the nonlinearities by theoretical
models based on microscopic systems parameters. In the
usual experimental setup to investigate spin-wave tur-
bulence, a magnetic sample is driven by a microwave rf
field either parallel or perpendicular to the static magnet-
ic field. The nonlinear dynamic effects are observed in
the amplitude modulation which appears in the mi-
crowave field returning from the sample when the pump-
ing is well above the instability threshold. This modu-
lation arises from the time variation in the magnon popu-
lations resulting from the dynamic interplay between
parametric spin-wave modes. However, there is no direct
experimental evidence of this, nor of the nature or the
number of such modes. A model with two spin-waves
modes' has successfully explained many features of the
experimental results, ' ' ' but it uses fictitious rather
than realistic interaction parameters. Moreover several
questions remain unanswered, such as the higher self-

oscillation frequency predicted by theory as compared to
the observed ones. One basic question that deserves at-
tention regards the number of modes involved in the pro-
cess, since it is expected that an entire manifold of modes
is pumped above threshold. ' Thus, despite the ex-
istence of a microscopic theoretical framework to treat
spin-wave chaotic dynamics, a close correspondence be-
tween theory and experiment has not been achieved so
far. Clearly, further theoretical and experimental effort is
needed to achieve a full understanding of spin-wave
chaos.

In order to gain understanding about the number of
modes involved in spin-wave chaotic dynamics, we have
performed microwave measurements to characterize the
strange attractors of two routes to chaos previously ob-
served in yttrium iron garnet (YIG). From time-series
data the attractor dimensions and the metric entropies
are calculated using an embedding technique. Two
different algorithms are employed to calculate these
quantities to ensure a more reliable characterization of
the attractors.

EXPERIMENTAL RESULTS

The experiments reported here were performed at mi-
crowave pumping frequencies in the range 9.2 —9.4 GHz.
A spherical YIG sample with diameter 1.0 mm was held
at room temperature in the center of a TE&p2 cavity
(Q =3000) with the magnetic rf field either perpendicular
(subsidiary resonance) or parallel to the applied dc field
Hp. The power was provided by a 2-W traveling-wave-
tube amplifier fed by a backward-wave oscillator. Its fre-
quency was stabilized with an external crystal oscillator
and manually adjusted to the center of the cavity reso-
nance. Microwave signals rejected from the cavity were
converted down to 60 MHz, amplified, and monitored ei-
ther with a spectrum analyzer or with a crystal detector.
The resulting signals were then recorded in a storage os-
cilloscope. Time-series data were also stored in a com-
puter at intervals of 0.2 ps using a commercial digitizer.
At low power levels the signal rejected from the critical-
ly coupled cavity is negligible. As the driving field h is
increased, an abrupt change in the signal occurs at the
threshold value A., for which a pump photon with fre-
quency ~ excites a pair of parametric magnons with
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FIG. 2. Detected microwave absorption vs tivs time correspond-
ing to scenario C described in the text.
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maximum at R=2.45, and loses its regularity above this
value. Scenario C has also been previously reported in
parallel pumping experiments, observed with the sample
axis [111]parallel to Ho and IIo=1540 Oe. This field
value is very close to the minimum of the butterAy curve,
at which the 8k=90' pair has wave vector k=0. In this
configuration a nearly sinusoidal modulation first appears
at R =1.50 and its frequency increases from the initial
value of —100 kHz linearly with R. A period doubling
occurs at R = 1.62, but there is no evidence of further bi-
furcations before the onset of chaos at R = 1.64.

CHARACTERIZATION
OF THE STRANGE ATTRACTORS

We have used the time-series data to characterize the
chaotic attractors using the embedding technique. Two
relevant quantities in this characterization are the dimen-
sions and the Kolmogorov entropy. The dimension of an
attractor is the first level of knowledge necessary to
characterize its static properties and it is also a lower
bound on the number of independent variables needed to
model the dynamics. The Kolmogorov entropy E mea-
sures the loss of information on the initial conditions per
unit time. Both quantities can be used to discriminate be-
tween stochastic and deterministic dynamical systems.
For instance, the dimension of a limit cycle in the phase
space is 1, whereas that of random noise is infinite. A
regular trajectory has K=O, while white noise has
K = ~. For a deterministic chaotic system the fractal di-
mension, in general, holds a noninteger value and the
Kolmogorov entropy has a finite positive value. A third
set of quantitative measures of a strange attractor is
represented by the Lyapunov exponents, but these cannot
be reliably computed with the limited number of points in
our time series. In order to obtain a reliable characteri-
zation of the attractors we have used two algorithms to
calculate the dimensions, one proposed by Grassberger
and Procaccia (GP) several years ago ' and another intro-
duced more recently by Badii and Politi (BP).

In the GP algorithm one considers a time series
IX, ], , z of points on the attractor and defines the
correlation integral

D(y)= —lim
logn

n log [M ( n ) ]
(4)

The dimension function yields, for specific y values,
several dimensions previously defined. In particular,
the fixed point Do=D(y)=y is the fractal dimension
and Di =D(y=0) is the information dimension, typical-
ly Do?'D, . The generalized metric entropies K(y) can
be obtained from D (y ). For y =0 it satisfies the relation

ln (5(n, E) ) — [rEK(0)—inn],1

D0
where (5(n, E) ) is the moment calculated from the E
dimensional embedded vectors and ~ is the sampling
time.

Strange attractors obtained from scenarios I and C de-
scribed previously, both in the parallel pumping and sub-
sidiary resonance processes, have been studied with the
GP and BP methods. We present here details of the re-
sults obtained with the subsidiary resonance
configuration at the onset of chaos (R =2.51) ap-
proached with scenario C previously described. The
time-series data were obtained from the low-frequency
amplitude modulation at intervals ~=0.2 @sec, which is
about one tenth of the fundamental period at R=2.45.
Figure 3 shows the strange attractor of the trajectories
projected on the x (t) x(t +r) pla-ne. Figure 4(a) shows
plots of log, o C(r) versus log, or obtained with 2048 data
points that are used to calculate the fractal dimension d
with the GP algorithm. As the embedding dimension in-
creases the slope of the curve in the range—3 ( log&oC(r) (—1 converges to a value d = 1.6. In the
BP method we determine the dimension from plots of
log, ,s(5) for @=0 versus log, ,sn shown in Fig. 4(b)
for E =1,2, . . . , 15. For E &6 the slopes at the higher

distribution p(5, n) of nearest-neighbor distances 5
among n randomly chosen points on the attractors

(5r) =Mr(n)= I 5'(5, n)d5 .
0

From the scaling form of this as n —+ ~ one defines a y-
dependent dimension function

where e is the Heaviside function. C(r) may be calculat-
ed from a time series of a single physical quantity x(t)
(the voltage of the microwave diode detector in our case)
with the embedding technique, by which E-dimensional
vectors X, (t) are constructed with coordinates x(t),
x(t+ ), . .r. , (t+x(E —1)r), where r is a fixed delay time
and E the embedding dimension. ' For a small r the
correlation integral scales as

C(r) r- (2)

where the correlation exponent d = lim„ologC/logr is
close to the fractal dimension of the attractor.

In the method of Badii and Politi the central quantity
is the moment of order y calculated from the probability

FIG. 3. Two-dimensional projection of the strange attractor
at the onset of chaos in scenario C.
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From the time-series data we have also calculated the
entropy IC(0) as a function of the embedding dimension
using Eq. (5). Figure 5 shows the results at the onset of
chaos in the subsidiary resonance. In both scenarios F
and C, for large E the entropy converges to a constant
value K, =0.05. This positive constant value confirms
the deterministic nature of chaos in our experiments.
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log& &8n end converge to a value for the information di-
mension D, =1.5, in good agreement with the dimension
obtained with the GP method. The same procedure has
been used to calculate the dimensions of the attractors
with scenarios F in subsidiary resonance and C in parallel
pumping. In all cases we find 1.4 (d & 1.8, which is also
close to the value obtained in YIG under parallel pump-
ing at low temperature.
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FIG. 4. (a) Correlation integral log, oC(r) vs log&or calculated
from the time-series data at the onset of chaos in scenario C. (b)
Plots of log», (5) vs log&, zn for y =0 for several embedding di-

mensions (E) calculated from the same time-series data as (a).

DISCUSSION

Several conclusions can be drawn from the above re-
sults. The first is that the broad power spectra observed
in spin-wave turbulence experiments is a manifestation of
deterministic chaos. The chaotic state is observed only at
selected experimental parameters, such as crystal orienta-
tion, static magnetic field (wave vector) value, and mi-
crowave pumping level. Different routes to chaos have
been identified, both in the parallel pumping and the sub-
sidiary resonance techniques. In all investigated experi-
mental configurations the strange attractors at the onset
of chaos have dimension 1.4 ~ d ~ 1.8. Somewhat higher
dimensions have been obtained by other authors for ma-
terials' or configurations different from ours. This result
indicates that despite the fact that a large number of
magnon modes is excited above the instability threshold,
the number of degrees of freedom is small, strongly sug-
gesting tha, t only a few spin-wave modes are involved in
the chaotic dynamics. This is consistent with recent
theoretical results' ' obtained with several simplifying
assumptions (such as wave-vector-independent interac-
tion and damping parameters). However, the nature of
these modes remains to be clarified. Considering the fact
that two- and three-mode models reproduce many
features of the experimental observations, we believe that
the dynamics is indeed governed by a few equations of
motion describing collective spin-wave excitations. These
collective excitations may result from the phase locking
of many individual magnons into a small number of
phase-locked modes, each one with a different phase. As
shown by Lim and Huber, when several magnons are
phase locked, they are all described by just two equations
of motion similar to those for one mode. This phase
locking into collective modes would reduce the number
of degrees of freedom. This interpretation is consistent
with the fact that the self-oscillations obtained recently
with numerical simulations using the two-mode model '
are similar to earlier results involving a large number of
modes.
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FIG. 5. Metric entropy vs the embedding dimension for the
chaotic attractor at the accumulation point of scenarios F()
and C(~ ).
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