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Theory of the Knight shift in solids: Effect of electron-phonon interaction
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We derive a theory of the Knight shift in the presence of a periodic potential and spin-orbit and
electron-phonon interactions. We use a temperature Green's-function technique and solve the self-

energy equations in the presence of a magnetic field. The spin, orbital, and spin-orbit contributions
to the Knight shift are mainly affected by the electron-phonon interaction through the changes in

the one-electron energies and wave functions. By considering both the electron-electron and
electron-phonon interactions, we show that the Stoner factor is affected by about 13% in sodium.
The theory presented in this work is general and, we believe, can be applied to metals, semiconduc-
tors, and intermetallic compounds with suitable modifications. In view of the present controversy
in the role of the electron-phonon interaction on the magnetism of solids, our work is expected to
pave the way for a better quantitative understanding of the subject.

I. INTRODUCTION

A first-principles analysis of the Knight shift (K} is an
important tool to probe the electronic and magnetic
properties of solids. The mechanisms that contribute to
the Knight shift have been extensively discussed in earlier
works. ' The importance of these mechanisms has also
been evaluated through various applications. ' '

These mechanisms have contributed, in a very extensive
way, to our understanding of both single-particle and
many-particle effects both in the presence and absence of
the magnetic field. However, there has not been any
theory of the Knight shift, to date, which considers the
effect of electron-phonon interactions from first princi-
ples.

Recently there has been considerable activity to assess
the role of the electron-phonon interaction in the magne-
tism of solids. ' However, there remains substantial
disagreement among the findings of these investigations.
It is well known that the Pauli paramagnetic susceptibili-
ty is exchange enhanced by the electron-electron interac-
tion through the Stoner factor. Enz and Mathias have
proposed that this factor is affected by the electron-
phonon coupling, and is responsible for the ferromagne-
tism of ZrZn2. On the other hand, Fay and Appel have
proposed that the electron-phonon correction to the
Stoner factor is of the order (m /M}', where m and M
are the electron and atomic masses, respectively, and
hence negligible. The idea that the Pauli susceptibility is
not affected by electron-phonon interaction is also sup-
ported by Grimvall and Pickett. At the same time,

Kim and co-workers have emphasized the role of
phonons in the ferromagnetism of solids. Thus the sub-
ject still remains controversial.

In view of the above remarks we have undertaken this
work to probe in detail the effects of electron-phonon in-
teraction on the Knight shift. This is a many-body prob-
lem and has been formulated as an extension of our ear-
lier work, which has considered the many-body and
spin-orbit effects on the Knight shift.

We employ a temperature Green's-function technique
to investigate this problem. The method has been suc-
cessfully applied to derive first-principles theories of mag-
netic susceptibility, ' indirect nuclear spin-spin interac-
tions, and chemical shift. Furthermore, since the in-
ertia of the ions is important, the interaction between the
electrons which is mediated by phonons is not instantane-
ous but retarded. This makes the Green's functions a
particularly useful vehicle for describing them.

The planning of the paper is as follows. In Sec. II we
briefly review the general expression of K, obtained in our
earlier work. In Sec. III we set up integral equations for
the electron self-energy in the presence of electron-
phonon interaction and the magnetic field. These equa-
tions are then solved to determine the modifications of
the different contributions to the Knight shift by the
electron-phonon interaction. We briefly summarize the
work with a conclusion in Sec. IV. In Appendix A we
discuss the mass renormalization due to the electron-
phonon interaction, in the light of our theory', and in Ap-
pendix B we discuss the temperature dependence of the
mass-enhancement factor.
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II. GENERAL EXPRESSION OF THE KNIGHT SHIFT K "=(K "),+(K "},+(K;")„, (2.1}

The general expression of the Knight shift at the jth
nuclear site for an interacting electron system is given by

where (Kj")„(Kj"")„and(Kj'")„are the spin, orbital,
and spin-orbit contributions to the Knight shift, and they
are

(K;"),= ——,'pji g Xj„„~[g„"„(k)o"„~„+(2/pic)X„'", „]f'(E„k),
n, k, p

( "),= —(e2I3mc2) g — 6,j'(E„k)+(2pz lm)e &„g [(rj qr )„p p.(Lj /r~ )
1

nkp J . np, np n, k, p

(2.2)

+(L'Ir, )„.(r, qr ) ~ „]np, mp g mp, np (2.3)

(Kj )so X ( pB j } app ( +jnp, np'~np', mp"+mp", np+~npnQj, np, mp +mp'np ', ~np, np~npmp'+, jmp', np )

nkp E

+ ~np, mp' mp', qp" jqp", np+~np, mp' jmp', qp" qp", np+ jnp, mp' mp', qp" qp", npE E

1 P, P+ go~ji(+j p p
F p p +F p p+j2 ~mn

f (E„i,) . (2.4)

In Eqs. (2.2) —(2.4), pz is the Bohr magneton, m is the
mass of the electron except that when used as an index it
represents the band index, q and n are other band indices,
and the p s are the spin indices. e &„ is an antisymmetric
tensor of the third rank and we follow the Einstein sum-
mation convention. Repeated band and spin indices im-

ply summation. ~ is the electronic momentum operator
in the presence of spin-orbit and self-energy interactions
represented by X. f (E„i,) is the Fermi distribution func-
tion, E „=E (k) E„(k), rr ar—e the Pauli spin matrices,
and r =r —R, R being the position vector of the jth
nucleus with respect to r. gnn is the intraband g matrix
defined by

g„"„(k)o."„„,(k) =goo"„„(k)

+ 21 ~ np mp" mp", np'
0.'/3P ~ E

m, p" mn

where go is the free-electron g-factor:

8~ 3(o. r, )r,"—o'
o'5(r, )+

(2.5)

r,"(~+Ak)"
+2E

Ar

—:X +X'
J J (2.6)

Here, the first term is a sum of the contact and the dipo-
lar parts of the hyperfine vertex and the last term
represents the orbital hyperfine vertex:

F"=~"+(2/gopjj)X'", (2.7)

where X'" is defined through the following expression
which is obtained by assuming the magnetic field and the

o

nuclear-moment (M, ) dependence of the electron self-

energy:

X(k, 8, M, , E„)=X'(k, E„)+BOX,' "(k,E„)

+M,"X" (k, E„}
+B"M'X '"'(k, E„)+ . (2.8)

III. SELF-ENERGY EQUATIONS

The expressions [Eqs. (2.2) —(2.4)] are not in comput-
able form, because of the presence of the self-energy
terms. In order that the different contributions to K are
expressed in physically meaningful forms, we have to set

The matrix elements occurring in Eqs. (2.2) —(2.4) are,
in general, represented by

O„.(k)= J u„*„(r)O u k .(r)d r,
where ui, (r) is the periodic part of the Bloch function.

It may be noted that, although (K ")„represents the
spin-orbit contribution, it does so only partly. The effect
of spin-orbit interaction also enters in the spin contribu-
tion, (K, ")„through the effective g'factor defined earlier.
(K""), is, for all purposes, the dominant term; however,
(K'")„ is of the same order as (K;"), in narrow-gap
semiconductors with large g factors. In some of the
heavy metals and semimetals, too, (K"")„is expected to
contribute significantly.

The self-energy term includes both the electron-
electron and the electron-phonon interactions. Since the
electron-electron interaction has been discussed in detail
in our earlier work, we skip this effect in this paper. It is
included insofar as it contributes to the screening of the
electron-phonon interaction.
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up integral equations for the self-energy. Viewed as a
field theoretical problem it might appear that one has lit-
tle hope of handling this fermion-boson coupling in an
accurate manner. However, it may be possible to treat
this problem exactly, following Migdal's approach. He
showed that in normal metals one can calculate the one-
electron self-energy to an accuracy of (m /M)', where

I

M is the ionic mass, by what amounts to second-order
self-consistent perturbation theory. This remarkable re-
sult does not depend on the strength of the electron-
phonon coupling, but rather depends on the existence of
a small parameter (m /M)' J in the problem. Thus, in the
presence of the electron-phonon interaction, one can
write

X(k, Ji)= ——g I
Mkk'

I
D(k k', Ji ——J, )G(k', J,.),

~ k', J(,
(3.1)

where M&& is the electron-phonon coupling function, D is the phonon propagator, G is the exact one-electron propaga-
tor, and

(21+1)i~
(3.2)

in which p is the chemical potential and P=(kz T) . We consider the field dependence of the electron self-energy and
write

X(k, B,M, ,Ji ) = ——g I
Mi i, I

D(k k', J, ——J, )G(k', 8,M, , Ji ),
k', J,,

where G(k', B,M, J, ) is defined as
~ 2

G(k', B,M, Ji )=Go(k', JI ) — h iJGo(k', Ji. )ir Go(k', Ji ) ~irG (ok', J )i
m

+ ,'goiJ&B "G—o(k',J& )F"Go(k', J&.)+0 (M )+higher-order terms .

(3.3)

(3.4)

In Eq. (3.4) 0 (MJ ) includes terms which are functions of M, and h &
——e &„h", h"=eB"/2fic; and Go is the electron

propagator in the absence of the magnetic field and M, and is diagonal in the periodic part of the Bloch function. Us-
ing Eqs. (2.8) and (3.4) in Eq. (3.1), and comparing the coefficients of B"we have

1 2& '"(k J()= ——g IMkk'
I

D(k k' Ji J()— —
k', J(

X —
~

e ii„GO(k', Jl )rr Go(k', Jl )ir Go(k', Ji.)+ —,'gopJiGO(k', Ji.)~"Go(k', J, )
2m c

+Go(k', J,. )X'"(k',J,. )GO(k', J,. ) (3.5)

Equation (3.5) can be rewritten with the introduction of the band and spin indices as

X IM. i, .i, I'D(k —k' E.~ —JI )
k', JI,

E~~pG07r G07r G0 + 2 g0p~ G0o G0 +G0X ' G0p 1,p
2m c

n p, n pk' , k' '
(3.6)

Using the completeness property of u„k and replacing the phonon propagator D by the bare-phonon propagator D0,
where

2fl6) g
0 2 2 (3.7)

we can write Eq. (3.6) as

1 2%cog&.',".p(k E. )= ——g IM.~,.~ I'
k', J(, (Enk Jl') (~~k —k')

-(k')~~ - „(k')
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where, as before, repeated indices imply summation. The frequency summation can be carried out using the Luttinger-
Ward indentity

1 1

p J, , (Ji E—„)
(J')dJ',

2~i (J' —E )
(3.9)

where the contour I encircles the imaginary axis in an anticlockwise direction. Using Eq. (3.9) in Eq. (3.8), and neglect-
ing the terms proportional to f, which are not expected to be important for the intraband matrix element, we obtain

2„'"„.(k, E„»)= —g ' [2„'"„(k')+2piig—„"„(k')o„„(k')]f'(E„k) .«.»
—Enk ) —(f~k-k )

Following an average-interaction ansatz, in which case the self-energy is independent of k, we obtain

X„'"„.(k, E„)= [X„'"„.(k, E„)+,'p i'—„"„(k)o~P„(k)]P„(k),
where

(3.10)

(3.1 1)

2&~» k™.k, .k

(Enk' E„k) —(fico» k )
(3.12)

The apparent singularity in Eq. (3.12) is due to the fact that in evaluating frequency summations, we have considered
only the real part of the energy. The imaginary part is proportional to the lifetime, which is not of interest here.

The solution of Eq. (3.11)becomes

P„(k)
(3.13)

Following a similar but more tedious method we can obtain

(k)
p )

nm
k o." ~ knpmp 2, PB

1 ci (k) gnm ( npmp'(,
~~nm

where

(3.14)

I Mnk, mk'
I

2&~» —k
pnm )= g 'E

(kp)k' nm

and the interband g matrix is defined as

f«k)
(E„k —E„k) —(Acok k) (Emk. —E„k) —(ficok k, )

2 2 2 2
(3.15)

LPg

m
q, p
q~m

a
np, qp" qp", m p'

E (3.16)

In the limit of m going to n, p„reduces to p„, and X„~goes to X„„.We shall now use these results to obtain
tractable expressions for (K""), and (K"")„,since (K "), does not have explicit dependence on X. Substituting Eq.
(3.13) into Eq. (2.2) we obtain

nkpn, ,

s p 8
1 k) inpnp' nn (3.17)

Thus, by considering the magnetic field dependence of the self-energy, we have seen that (E""), is modified by a factor
of [1—P„(k)] . In order to understand the physical meaning of this modification, let us write Eq. (3.13) as

/3„(k ) = —g u„„(k,k' )f'(E„„.),
k'

where u„„(k,k ) is an effective electron-electron interaction mediated by phonon and is given by

(3.18)

u„„(k,k') =
( En k' En k ) ( ~~» —k' )

(3.19)

The interaction given by Eq. (3.19) can be either attractive or repulsive. If the states k and k are separated by an ener-

gy larger than Acok k. , the effect is repulsive, but if the energy difference is smaller than this, attraction is present. It
may be noted, in passing, that an attractive interaction of this type led to the explanation of low-temperature supercon-
ductivity through the formation of Cooper pairs. Since the present work does not envisage such a pairing we confine
ourselves to the discussion of electron-phonon interaction effects in the normal state.
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Thus far, we have not considered the effect of mass renormalization on the spin contribution to the Knight shift. In
order to do this let us rewrite Eq. (3.17) as

n, k, p n1 — k
(3.20)

where E„k is the modified one-electron energy in the presence of electron-phonon interaction. Equation (3.20) can be
further simplified as 1, „„~f(Ek)

n, k, p I n1 —P~ k

In Appendix A we have shown that

(VkE„„) '=(V„E„„) '[1+y„(k)]

(3.21)

(3.22)

and

/3, (k) = —y„(k),
where y„(k) is the mass-renormalization function. Substituting Eqs. (3.22) and (3.23) into Eq. (3.21) we obtain

(K;"),= ——,'P~ g X,„„g„"„(k)op~„g'(E„k) .
n, k, p

(3.23)

(3.24)

Thus we have seen that the modifications caused by the magnetic field dependence of the self-energy are canceled by the
mass-renormalization effects. In other words, (K "), is modified only through the changes in the one-particle energies
and wave functions, in the presence of electron-phonon interaction.

Let us now consider the combined effects of both the electron-electron and electron-phonon interactions and see how
the electron-phonon interaction modifies the Stoner factor. (K ")„in the presence of electron-electron interaction
only, is given by

1

nkp , , n

where [1—a„(k)] ' is the Stoner factor:

a„(k)= —g U„(k,k')f'(E k)
m, k'

(3.25)

(3.26)

and U is the strength of an average exchange interaction. It is now easy to see that by considering both the electron-
electron and electron-phonon interaction effects in the self-energy equations, we would finally obtain

1+y„(k)—a„(k (3.27)

Following a procedure as we have done in obtaining
Eq. (3.24), (K "), would be modified:

(K) "),(0)
(K,""),= (3.28)

[1—a~ (1+y )]
where (K "),(0) is the Knight shift in the absence of the
electron-electron and electron-phonon interactions, and
the overbars above the quantities denote average values.
Thus the Stoner factor [1—a] ' changes to
[1—a

~
(1+y)] ' in the presence of the electron-phonon

interaction. Let us now estimate the effect in a free-
electron-like system, sodium. The mass enhancement pa-
rameter y in sodium is about 0.26 and a is about 0.4 (Ref.
38). With these data, it is easy to see that the Stoner fac-
tor is affected roughly by 13%. In general, the mass
enhancement parameter y varies by about 20—40%%uo in
simple metals. Thus c7 would be correspondingly re-
duced by about 20—30% in these systems. However, it
would not be possible here to predict as to what would be
the status for more complicated systems. The effect

FP, =gP gP
np, mp' nm ~np'mp'

where

f3„(k)
A„" =1+ g„"

1 —„(k)
Assuming P„=P „we can write

P„(k)
1 —„(k)

and
= 3" o."mp', np mn ~mp', np

(3.29)

(3.30)

(3.31)

(3.32)

Substituting Eqs. (3.28) and (3.31) into Eq. (2.4) we have

might be important.
As regards (K"")o, since it does not explicitly depend

on the self-energy term, it is modified only through the
changes in the energy eigenvalues and eigenfunctions.

In order to discuss the effect of electron-phonon in-
teraction on (K, ")„,we write using Eqs. (2.7) and (3.14):
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,x-,
jnp, np

'
np m', p" mp", np+ np, np jnp, mp' mp', np npn, p npm, p' jmp', np

mn

+ np, mp' mp', qp" jqp", np+ np, mp' jmp', qp" qp", np+ jnp, mp' mp', qp" qp", np
qn mn

mn jnp mp'~mp', np+ nm np mp' jmp', np+ 2gop—, ' ' ' f (Enk) .
E

(3.33)

In Eq. (3.33) only the last term depends on the interband
electron-phonon parameter P„. However, this term is

normally small and is not expected to contribute
significantly to (K'")„. Thus (K'")„ is also mainly
modified through only the energy eigenvalues and eigen-
functions.

IV. SUMMARY AND CONCLUSIONS
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APPENDIX A

Here we discuss the mass renormalization due to the
electron-phonon interaction. The total one-electron ener-

gy in the presence of this interaction is

E„k Enk+X (k, E„k), — (Al)

In this paper we have made a detailed investigation of
the electron-phonon interaction effects on the Knight
shift. The contributions to K " as we have found out, are
mainly modified through the changes in energies and
wave functions. However, by considering the combined
effects of electron-electron and electron-phonon interac-
tions on the Knight shift, we have shown that the Stoner
factor appearing in the spin contribution to the Knight
shift is affected, in the free-electronlike system sodium, by
about 13%. However, the theory is general and can be
applied to different types of systems, such as metals,
semiconductors, etc. Indeed, the electron-phonon in-
teraction makes a substantial contribution to the varia-
tion of the energy gap in narrow-gap semiconductors,
and is partly responsible for the temperature dependence
of the Knight shift in these systems.

In conclusion, the theory presented in this paper is the
first of its kind to investigate in detail the electron-
phonon interaction effects on the Knight shift. In view of
the controversy still existing in the assessment of the
electron-phonon interaction on the magnetism of solids,
the theory, we believe would pave the way for a better
quantitative understanding of the effect.

where

IM. k „k I'2&~k k
X (k, E„k)=——g ', G(k', Ji. ) .

~ k', JI, ( Jl' Enk) (~~k —k')

(A2)

Performing the frequency summation using Eq. (3.9),
we obtain after neglecting the first-order correction

lM„k „k '2%~k k.f (E„k )

Enk Enk
k' (Enk' Enk) (~~k —k')

(A3)

Since we are interested in the electronic states near the
Fermi surface we can write

VkE„k —V„E„k—g
k'

k'

Mnk, nk l
2&~k kVkf (E.—k)

Mnk, nk'I 2fiCgk kVkE„k
, f'(E„k ) .

(E„k,—E„k) —(Amok k )

(A4)

If we make a further approximation, i.e., by replacing
V'kE«by 7'kE«, we can obtain

V„E„k=VkE„k[1 —y(k)], (A5)

where

lMl'G(E, )
(Ag)

y(k)= g ' f'(E„„)=—/3(k) .
k' (Enk' Enk) (~~k —k')

(A6)

Since the density of states is proportional to
l VI, El, we

have to the first order of y(k)

G (E„k)= G (E„k)[1+y(k) ], (A7)

where G(E„k) is the renormalized density of states and
G (E„k) is the density of states in the absence of electron-
phonon interaction. Now we shall further simplify y(k).
Since the electron-phonon interaction is short range we
can consider

l M„k „k.l
as a constant

l
M l

. Again, since
in the low-temperature limit, Acok k is greater than

lE„k —E„kl, we replace the phonon frequency by an aver-

age frequency; say the Debye frequency coD. In this limit,
the value of y(k)averaged over the Fermi surface is given
by
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(A9)m, =m ( I+) ),
where m, is the renormalized mass due to the
electron-phonon interaction.

which is a positive quantity. Here G(EF) is the density
of states at the Fermi surface. Thus, the density of states
is enhanced by a factor of (I+@). The increase in the
density of states implies a change in the effective mass by
the same factor:

APPENDIX B

In this appendix we consider the temperature depen-
dence of P„(k) through the Fermi function fr(Ek —p).
We assume the electron-phonon matrix element and the
phonon frequency to be constants. Dropping the band
index and using cylindrical coordinates, Eq. (3.12) can be
written

~M ~2%co +~,
p(k)= —

2 f dk,' f dk' p(Eq. , Eq, ficgD)fT(Ek, —p),

where

$(E~., E„,ficuD ) = k'=k". +k',
(Eg E„) ——(AcoD )

(B2)

and p is the chemical potential. For simplicity we consider a system of free electrons. In this case k&'=+2m@, /A', and
P(k) becomes

AcuD iMi
p(k)= —

~
p' f dEk. p(Ek, E~, A'cuD)fT(Ek —p) .

277' 2
(B3)

P(k) =

Integrating by parts and noting that the surface integral vanishes for a periodic integrand, we have

&~DIMI' 2m „, p
P d k' Ek' +k ~~D T +k' P2~ 0

(B4)

Using the relation

2

f dE R (E)fT(E —p)= f"R (E)dE+ (k~T)'
0

we have, from Eq. (B4),

1

(p Eq ) —(A~D )'— 1

E~ —
{ALOD )

2

(K~ T) 1—
2 (p EI, )

—(AcoD )—
where

G(p)=
3/2

1/2 (B7)

and is the density of states. In real systems, however, the
energy and the electron-phonon matrix element will also
have temperature dependence, which should also be con-
sidered for an actual calculation.
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