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Extended Hubbard model in two dimensions
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The two-dimensional half-filled extended Hubbard model is studied by means of Quantum Monte
Carlo simulation. The model includes the on-site electron interaction (U) and nearest-neighbor in-
teraction (V). We study the formation of antiferromagnetic, charge-density-wave, and supercon-
ducting states of the model as the parameters of the model are varied.

I. INTRODUCTION

The one-dimensional extended Hubbard model has
been extensively studied by many people using different
methods. ' Among these are renormalization-group
techniques, Monte Carlo simulation methods, ' and ex-
act solutions for small clusters. ' Despite the apparent
simplicity of the extended Hubbard model, there is a rich
ground-state phase diagram in terms of the interactions
U and V. The ground state of the system can be a spin-
density wave (SDW), charge-density wave (CDW), or su-
perconducting state. One important feature of the phase
diagram is that there is a SDW-to-CDW transition '

near the line U=2V for U) 0. In this paper, we study
the same extended Hubbard model in a two-dimensional
square lattice by Monte Carlo simulation techniques. We
find the 1D and 2D cases are qualitatively similar. How-
ever, the SDW-to-CDW transition is found near the line
U=4V for U)0 due to the change in the number of
neighbors. In the following sections, we will brieAy dis-
cuss the method used and present some results obtained
from the simulations. We only consider the half-filled
case here. The system is a 4X4 cluster with periodic
boundary conditions.

II. MODEL AND METHOD

The model is defined by the Hamiltonian:

where P=L b, r, p, is the chemical potential, and

Ho=t g C;+„Cj„,
&ij &

P

H'=Urn;tn;t+V g n;nJ —p, gn; .
i' &ij & i

The thermal parameter f3 is divided into L "imaginary
time" intervals. The last step in (2) employs the Trotter
approximation. The error caused by this breakup is of
the order (b,r) .

The electron-electron interaction can be eliminated
through the use of the discrete forms of the Hubbard-
Stratonovich transformations For U )0

—Av Un, . n.
e '" '" =—' g exp A,o(n n—. )2 i,P J,P

o.=+1

A~U (n;„+n, „)
with

cosh(A, )= exp(hrU/2) .

For U(0
—hv Un, . n.

e '" '"=
—,
' g exp[Ao(n; „+,n.i„)

o-=+1

H = t g C;+„CJ„+U g n, t n, t + V g n; n
&ij & i &ij& with

—A, '(n, „+n „)] (4)

where (ij ) denotes nearest neighbors, and p denotes
spins. The first two terms together define the simple
Hubbard model with an on-site electron interaction U. V
measures the interaction between electrons on the neigh-
boring sites. We chose the scale of energies so that t = 1.

To perform Monte Carlo simulations for the model, we
write the partition function of the system as:

—P(H —p N}Z= Tre
—b&H +H'}0

L
oe —a~H'

1=1

e ' = cosh(2A. )/cosh (A, ), A,
'= jn(cosh', ) .

One auxiliary Ising variable (cir,ol) is introduced at lat-
tice site (i, i) for the interaction U, while for terms involv-
ing the interaction V,

Vn;n =g Vn;. „n
PrP

four auxiliary Ising variables (cr„crz, o3, cr4) are needed
between each pair of nearest neighbors. The increased
number of Ising variables in this system, as compared to
the pure Hubbard model, is one of the factors limiting
the size of the system we can consider. Taking the trace
over fermion degrees of freedom yields
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O O' O 1' O 2, O'3 r O'4 P = T, l
detO„[cro(i, l ),cr, ((ij ), l ),o2((ij ), i),cr3((ij ), l), cr4((ij ),I)]

where the O„are XX% matrices (N is the number of
sites).

O„=I++(e e '),
1=1

1 for (ij ),
)» = '0 otherwise,

and V'"(cro, cr„crz, cr3, cr4) corresponds to the potential
due to the auxiliary Ising fields.

We use the determinant algorithm of Blankenbeler,
Scalapino, and Sugar' to sum over the Ising spins. This
algorithm involves updating the Green's function
G„=O„',when a move o.~—0. is accepted.

The Green's function G„satisfies the Dyson equation:

G„'=G„+(G„I)(e'"—'" I)G-„' .— (7)

Following Hirsch's" procedure for the Hubbard model,
we can obtain various correlation functions of interest for
the present model.

The calculations are made for the half-filled case only.
The total number of electrons in the system is 16.
Electron-hole symmetry exists in this case, and the chem-
ical potential p, = U/2+4V at all temperatures. The
time slices are taken so that b,r max( U, 4V) =0.4. A typi-
cal Monte Carlo run for a square (4 X 4) cluster involved
2000—4000 measurements separated by two Monte Carlo
sweeps, and proceeded by 1000 warm up sweeps. Calcu-
lations were made on the LSU FPS-264 and IBM-3084
systems.

l.5—

&n n-, &
I.O

0.5

As a test of the program, some comparisons were made
with results of exact diag onalization calculations for
some small clusters. Figure 1 shows the results of one of
these comparisons, in which the first and second neighbor
charge correlation functions are shown for a ring of eight
sites in the case U=2. 0, V=1.5. The agreement is
reasonably good, particularly at low temperatures. The
small discrepancies (about 5%) at higher temperatures
are attributed to the fact that the thermal properties in
the exact diagonalization calculation are obtained using a
canonical ensemble while the Monte Carlo calculation
employs a grand canonical ensemble.

In the case of a four site system (one square) we find
good agreement between Monte Carlo results and those
obtained from exact diagonalization using a grand canon-
ical ensemble at all temperatures. This comparison indi-
cates that the systematic error in the Monte Carlo calcu-
lations is about 2% for the A~ we used. We conclude
from this that the results for the larger systems reported
below have possible systematic errors of a few percent.

Statistical errors in correlation functions are estimated
as about lgo at low temperatures where the correlations
are large, and somewhat larger when the correlations are
small at high temperatures. This error is usually smaller
than the size of the dots used in our graphs. For this
reason we do not supply error bars. The errors in suscep-
tibilities can be somewhat larger as a result of numerical
cancellation occurring in sums of correlation functions.

III. RESULTS

We have considered the model in difterent range of the
parameters U and V. Various correlation functions and
susceptibilities are obtained from the simulations. The
quantities studied are defined as: Local moment,

(S')=((., „—., „)'),
one site charge correlation,

(n') =((n, „+n, „)'),
magnetic correlation function,

ik-(R,. —R, )S(k)=—pe ' ' ((n, t n, )i(n, t n)i)), ——
EJ

charge correlation function,

1 ik (R.—R. )

S,(k)= —ge ' ' ((n, n;)(n. n, )), ——
IJ

0.0
O. O 2.0

kBT
4.0 where n; is the average number of particles on site i.

Zero-frequency magnetic susceptibility,

FIG. 1. First (lower curve) and second neighbor (upper
curve) charge correlation functions as a function of temperature
for a ring of eight sites. Solid curves are the results of an exact
diagonalization calculation; closed circles and open circles are
the Monte Carlo results. Parameters: U=2, V=1.5.

g(q)= —f doge ' ' ([n;t(~)—n;i(r)]
N o

X[n, &(0)—n &(0)]),
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zero-frequency charge susceptibility, 8.0-

y, (q)= —f doge ' ' &[n,.(r) —n,. ][n (0)—n ]&,
EJ

(13)

We also calculate some pairing correlation functions
and susceptibilities for the system.

The singlet pairing susceptibility is

6.0

(tx) '

4.0

y (q)= —f dogeX o

X & C, ,(r)C, ,(r)C,+, (0)C,+, (0) & .

(14)

2.0

For q=0,

~ (0)= f—d y & C;t( )C;t( )C, t(0)C, t(0)&1 P

EJ

o.o a
0.0 1.0 2.0

kgT
t

3.0 4.0

d~ C~g w Ckg w Ck g 0 C+k ) 01 n

We will confine our attention here to q=0 (uniform case),
and q= (m, m. ) (staggered case). We will refer to S(m) and
y(n) as the staggered correlation function and the stag-
gered susceptibility, respectively.

The staggered magnetic susceptibility will diverge at
low temperature if the system is in an antiferromagnetic
state, and the staggered charge susceptibility will diverge
at low temperature if the system is in a charge-density-
wave state. If the system is in the singlet superconduct-
ing state, the pairing susceptibility should diverge at low
temperatures.

A. U) 0, V=O

This is the ordinary single band Hubbard model, which
has been studied in the square geometry considered here
by Hirsch" and by Hirsch and Tang' for systems up to
8X8 in size. There has recently been considerable con-
troversy concerning the ground state following the sug-
gestion of Anderson that the ground state of the spin- —,

'

two-dimensional Heisenberg antiferromagnet might lack
long-range order. ' As the systems we consider are not
large, and the calculations are restricted to temperatures
kz T/t )0.25, we do not attempt to reach a conclusion
on this point. However, our results are in agreement
with those of Hirsch"' showing the building up of
strong antiferromagnetic correlations at low temperature,
and a strongly diverging staggered magnetic susceptibili-
ty. We take the opportunity to introduce the reader to
our approach to the presentation and analysis of data be-
ginning with this rather well studied case.

Figure 2 shows the reciprocals of both the uniform and
the staggered magnetic susceptibilities for U =4. The
straight lines through the higher-temperature data points
are linear least-square fits to the data points with
k&T/t ) 1.5. It is apparent that, above k&T/t =1.25 for
the uniform case and ks T/t ) 1.00 for the staggered

FIG. 2. Uniform (closed circles} and staggered (open circles)
reciprocal magnetic susceptibility for the case U=4, V=O. The
straight lines are least-squares fits to the data points for

kz T/t ~ 1.5. The intercepts are at k&O/t = —0.17+0.07 and

0.39+0.01, respectively.

case, Curie-Weiss laws apply reasonably well,

X '=[T 0]/C . — (16)

B. U=O, V&0.

In this case the system appears to approach a state
[usually described as a charge density wave (CDW)] in
which sites are alternately almost doubly occupied or al-

One sees that 0 is negative (the least-squares fit value is
0=—0. 17+0.07) for the uniform susceptibility. This is

typical of antiferromagnets. On the other hand, 0 is pos-
itive (0.39 0.01) for the staggered susceptibility, indicat-
ing a possible divergence and a phase transition. Howev-
er, one sees a tail on the susceptibility so that g ' does
not reach zero. This is, in part, a result of the finite size
of the sample we consider. In addition, it has been
demonstrated many years ago that the two-dimensional
Heisenberg antiferromagnet with finite-range interactions
can not have long-range two-sublattice order at finite
temperature. '

The reciprocal of the uniform susceptibility, g (0) de-
viates from linear behavior in the range of temperatures
where the linear fit to y '(m) is approaching zero. This
behavior is similar to that observed in exact' diagonali-
zation calculations for the Hubbard model on small clus-
ters. In a bulk three-dimensional antiferromagnet,

'(0) has a sharp minimum (cusp) at the Neel tempera-
ture and approaches a finite limit as T—+0. Some recent
results for the square lattice Heisenberg antiferromag-
net' imply that y '(0) should also have a minimum at
finite temperatures and approach a finite limit at T=0.
The present results are only partly consistently with these
expectations, but it is plausible that t'he deviations are
due principally to finite size effects.
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most empty. The nearest neighbors of a doubly occupied
site would be empty, and the second neighbors occupied,
and so on, conceptually similar to a two sublattice anti-
ferromagnet.

We show in Fig. 3(a) the development of double occu-
pancy with decreasing temperature. Three di6'erent
values of V: 0.50, 0.75, and 1.00 are considered. The ten-
dency toward double occupancy obviously increases with
increasing V and decreasing temperature. For the two
larger values of V, there are indications of saturation of
(n ) at low temperatures.

At first sight, it may appear surprising that the high-
temperature limit of (n ) is not 1. However, a simple
argument shows that the correct value is 3/2 when the
electrons are uncorrelated. (In a large system in which
the number of electrons equals the number of sites, if one
electron is on a given site, the probability that another
one will be present is only —,

' because only one spin state is

available there, whereas other sites have two states). If
(n ) is calculated for the case studied in Sec. IIIA,
above ( U & 0, V=O) the high-temperature limit for ( n )
is approached from below rather than from above.

Figure 3(b) shows the dependence of the charge corre-
lation function for neighboring sites on distance for
V=0.5 and 1.0 at k&T/t=0. 25. It is seen that if site
"0" is occupied, first and fourth neighbors have
depressed occupancy, and second, third, and fifth neigh-
bors have enhanced occupancy. Increasing V increases
the magnitude of the charge alternation. Perhaps, the
most interesting point about Fig. 3(b) is that the magni-
tude of the alternation does not show any appreciable de-
crease with distance over the range considered.

In addition, the reciprocal staggered charge suscepti-
bility g, will approach zero, similar to the staggered
magnetic susceptibility in III A above. We will show this
behavior in the next subsection.

2.0—

& n2)

1.5
0.0 I.O 2.0 3.0

C. U)0, V&0.

The intersecting physics in this region is the competi-
tion between U and V, leading to a transition between
spin-ordered and charge-ordered states. In one dimen-
sion, this crossover occurs near or on the line U=2V.
Analytic approximations' ' ' show a transition exactly
on the line U=2 V, while Monte Carlo simulations indi-
cate small deviations from this line for intermediate
values of U.

In the present case of a two-dimensional square lattice,
we find a similar transition near U=4 V. Unfortunately,
we can not carry this calculation to low enough tempera-
tures or larger systems to determine accurately the exact
location and order of the transition.

Figure 4(a) shows the behavior of the quantity

(17)

(b)

O.O

FIG. 3. (a) The development of partial double site occupancy
for U=O, V) 0 as the temperature decreases is illustrated by
the plot of the average of the square of the site occupation num-
ber. Closed circles V=0.5; open circles: V=0.75; triangles:
V=1.0. The curves are guides to the eye only. (b) The charge
correlation function is shown for the central site and first
through fifth neighbors for U=O, and k& T/t =0.25. Open cir-
cles: V=0.50, closed circles, V= 1.0.

for k = ( ~, m. ) as a function of V for the cases U =2 and
U=4. For small V, m is small (in the range between 0.1

and 0.2), but begins a rapid rise near U=4V to approach
1 for large V.

Figure 4(b) compares the behavior of staggered spin
and charge susceptibilities for U=4 and V=O. 5, 1.0, and
1.25 as functions of temperature. The corresponding
correlation functions are shown in Fig. 4(c). For V=O. 5,
the spin susceptibility and correlation function increase
rapidly at low temperatures while the charge susceptibili-
ty and correlation function remain small. When V is in-
creased to 1.0 so that the condition U=4V is satisfied
both spin and charge susceptibilities and correlation
functions are increasing at low temperatures, and al-
though the spin correlations appear to be diverging more
rapidly, it is not clear what will happen at T=O. In the
case of V = 1.25, the charge correlation function and sus-
ceptibility are strongly dominant and the spin correlation
and susceptibility are being suppressed as the tempera-
ture decreases. It is evident that the system changes from
spin-to-charge ordered states near U =4 V.

At high temperatures, Curie behavior (y- T ) is ex-
pected for all susceptibilities in view of the expressions
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for the susceptibilities, Eqs. (12)—(15) assuming that, for
example,

lim g e ' ' ([n;(r) —n;][n~(0) —n, ]). (18)
Na~ o..

lj

is finite. Terms of first order in r (18) then determine the
intercept 0 (in the extrapolated plot of y ' against T),
while higher terms lead to curvature in the plot. In many
bulk ferromagnetic systems, plots of y '(0) versus T are

quite linear until one gets close to the Curie temperature.
The 0 determined by a straight-line extrapolation is often
quite close to the actual transition temperature. In an an-
tiferromagnet, y '(0) would be expected to show a
minimum, while the staggered susceptibility, if it could be
measured, should behave similarly to the uniform suscep-
tibility in a ferromagnet. We are not aware of any
demonstration that a similar situation prevails in regard
to either charge-density-wave (or superconductive) sys-
tems and there is a question as to whether a sharp phase
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FIG. 4. (a) Behavior of the quantity m defined by Eq. (17) (essentially a staggered charge correlation function) for U=2 and
k~ T/t =

—,
' as a function of V (open circles); U =4 and k& T/t =0.5 (closed circles). The curves are guides to the eye only. (b) Tem-

perature dependence of staggered spin (solid lines) and charge susceptibilities (dashed lines) for U=4. Curves (which are guides to
the eye only) are labeled by the values of V. (c) Staggered spin (solid lines) and charge (dashed lines) correlation functions as func-
tions of temperature for U =4. Curves, which are guides to the eye only, are labeled by the values of V.
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seems to be enhanced by negative U. In the case of
V=1.0, the value of S, saturates around 14.7, close to
the maximum possible value of 16.

'When V=O, there is a direct mapping from the antifer-
romagnetic state for U )0 to the CDW state for U & 0, in
which the S,-S, correlations in the antiferromagnetic

in the CDWcase transform into charge correlations in t e
state. " At the same time, long-range singlet pairing
correlations of the superconducting type develop so that
it is apparently possible to have both charge order an
supercon uc ingd ting order in the ground state. This appears

11exphcit y in exac
' '

1
'

t diagonalization calculations for smal
systems. 21

Figure 7(a) shows the pairing susceptibility y (0), ( q.
14) as a function of temperature for U= —4 and V=0.2,
0.0 and —0.2. It is seen that the pairing correlations are

~ ~ ~

suppressed for small positive V, but are possibly slightly
h d b a small negative V. Figure 7(b) shows the

reciproca1 of the pairing susceptibility for U= — an
V=O. O and —0.2. The results are very close. As in the

kind ofcase of the other susceptibility it appears that a kind o
Curie-Weiss law is reasonably well satisfied at high tem-
peratures (k~ T/t ) 2.0).

It would be interesting to explore the entire phase dia-
gram of the extended Hubbard model, including the re-

simulation the algorithm appears to become unstable or
negative V as the magnitude of V becomes larger. This
may be an indication of an approach to a condensed
phase, but we are unable to proceed further.

IV. CONCLUSIONS

4.0—

O. O I.O 2,0
kpT

t

4O

FIG. 7. (a) Singlet pairing susceptibility as functions of tem-
perature or = — anf U= —4 d V=0.2 (triangles) 0.0 (open circles),
and 0.2 (closed circles). Curves are guides to the ey y.e onl ~ (b)
Reciprocal of the singlet pairing susceptibility as a function o
temperature ort f U= —4 and V=O (open circles), and —0.2
(closed circles). The curve is a guide to the eye only. The
straight line indicates linear extrapolation of the high-
temperature data.

We have performed Monte Carlo simulation calcula-
tions for the extended Hubbard model on a square lattice.

nl the half-filled case is considered here. We have
t d' d roperties of the model in different regions of its

phase diagram, and observed the formation o
and sing et pairind

'
1 t

' '
~ states. An AF-to-CDW transition is

f the superconducting type becomes significant for nega-
tive U and V ~ 0, but disappears when V) 0. The ovehe overall
picture in two dimensions is similar to that in one dimen-
sion.
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