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Diffusive disordering kinetics in one dimension
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The growth laws that characterize the nonequilibrium kinetics of one-dimensional models with
conserved dynamics as they are quenched from a low to a high temperature are examined. Exact re-
sults are obtained for the antiferromagnetic Ising model at infinite final temperature. Finite final
temperature quenches and models with two competing interactions are studied with Monte Carlo
simulations. In all cases, exponential. decay of the peak intensity and invariance of the full width at
half maximum of the structure factor S(q, t) is found, contrary to results applicable to similar pro-
cesses in two dimensions. A possible experimental realization of the above models is the disordering
of the Si{100)-2Xn metastable state.

I. INTRODUCTION

The time evolution of systems that are far from ther-
modynamic equilibrium is a fundamental problem in
nonequilibrium statistical mechanics, as well as being of
practical importance in a variety of materials processing
applications. ' In recent years there has been intense in-
terest' in the kinetics of domain growth in systems
quenched from a high-temperature disordered phase to a
point inside a coexistence region. Of particular interest is
that, in analogy with critical phenomena, the kinetics of
such growth processes appear to be governed by a few
universal parameters that are independent of the specific
details of the system. There are two key quantities enter-
ing a universal description of growth kinetics. The first is
a time-dependent length, L(t) ))g, characteristic of the
growing domains and larger than the correlation length
of equilibrium fiuctuations, g. It is generally observed
that growth occurs with a power-law time dependence,

L(t)~t', (t &r, ),
where to is an initial time that is system dependent and
where the exponent specifies a growth class. Second, it is
generally found that the fundamental experimental probe
of strongly nonequilibrium systems, the elastic-scattering
structure factor, S(q, t), can be scaled with a single length
parameter such that

S (q, r) =L d(r)F (q/K), (t & to),

where d is the dimensionality of the system, F is a univer-
sal scaling function independent of time, and K is the full
width at half maximum (FWHM). S(q, t) is defined in
Eq. (8). Equation (2) implies self-similar growth: there is
a distribution of domain sizes that remains invariant in
units of L (t) In this regime. , the evolution of the system
is controlled by the motions of domain walls; efforts to
understand the growth exponent and scaling function
have therefore concentrated on the mechanisms that
drive interfacial motions. Domain growth kinetics is
thus characterized by (1) power-law growth of the aver-

age domain size and (2) scaling of S (q, t)
In this paper we consider the disordering of a system

after a rapid increase in temperature, such that the sys-
tem equilibrates in a disordered phase at the new temper-
ature. In particular, owing to a possible connection with
experiment (see below), we are interested in the disorder-
ing kinetics of a one-dimensional system in which the
number of disordering entities is conserved in time. We
study a lattice-gas system initially in equilibrium at tem-
perature T = TI, both for the case of nearest-neighbor
(repulsive) interactions but also for the case where com-
peting interactions stabilize various superstructures. The
temperature is then instantaneously set to a new value,
T =T~) TI, at which point the system has a degree of
order inconsistent with what could be maintained at TI;.
We compute the evolution of the structure factor be-
tween the initial and final states for the case of Kawasaki
stochastic particle-hole exchange dynamics, first in an ex-
act analytic calculation for TF= oo (random hopping),
and then with Monte Carlo (MC) methods for T~ (

Our main results are as follows. Irrespective of the ini-
tial state, we find (1) an exponential decay of the Bragg
peak associated with the initial superstructure and (2) a
constant width of the structure factor as the peak decays
exponentially. Hence, for the one-dimensional problem
considered here there is no scaling of S(q, t) for disorder-
ing kinetics. Our results indicate that disordering occurs
randomly, i.e., without correlations among the motions
of the disordering atoms. We attribute the 1ack of scaling
to the well-known fact that in one dimension a system
with short-range interactions cannot maintain long-range
order for any temperature. Thus, the correlated regions
associated with the initial state will not shrink in an or-
ganized manner, but will instead be randomly disrupted
due to thermal agitations.

These results for S(q, t) have also been observed exper-
imentally in the disordering kinetics of the Si(100)-(2Xn)
ordered-defect state. This is a system prepared by
quenching the Si crystal from T=1200'C at a rate of
200'C/sec. It is well known that the Si(100) surface
atoms dimerize to minimize the energy of the free Si
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bonds. However, depending on preparation, there is also
an abundance of dimer vacancies in the reconstructed
surface. It has been observed that following the quench,
the vacancies order in the direction orthogonal to the di-
merization direction, with every n spacings a missing di-
mer, where typically 6&n & 10. This order'ed-defect su-
perlattice, however, is not the equilibrium defect
configuration and is metastable. There is evidence that
the density of vacancies remains constant as they disor-
der. The disordering presumably occurs diffusively, with
the dimer vacancies interchanging with dimers. We will
present arguments that the disordering of this system is
also one dimensional.

The organization of the paper is as follows. In the next
section we present the analytic solution for S (q, t) when
TF = ~ and the initial state is governed by near-neighbor
interactions. In Sec. III we present Monte Carlo results
for simulations involving competing interactions and for
Anite final temperatures. In Sec. IV we discuss our re-
sults and the connection with the Si(100)-(2X n) system.

II. EXACT SOLUTION FOR TF = ~

where c; =0, 1 are occupation variables, V is the adsorp-
tion energy per site, and J is the adatom interaction ener-
gy. We are interested in the case of repulsive interac-
tions, J &0. The equilibrium probability distribution is
given by

P [c]=Z 'exp I
—P(H [c] pN) I, — (4)

where p=(k&T) ', Z is the partition function, and p is
the chemical potential. We choose p= V+J such that
the coverage 6= ( c; ) =

—,', where the angular brackets
here denote an average with respect to P [c]. The system
therefore has particle-hole symmetry and is equivalent to
the Ising model in zero magnetic field. Exchange dynam-
ics is governed through detailed balance by the difference
in energy environments that would result from an inter-
change of nearest neighbors and therefore is not
inAuenced by a uniform distribution of single-site ener-
gies. Dynamically, then, we are unconcerned with the
one-body terms in Eq. (3). The particular choice of half
coverage is merely to facilitate the calculation.

We define the equilibrium structure factor at a momen-
tum q as

g =g e'"~'(5co5c„),

where 5c; =c;—(c; ) and a is the lattice constant. The
structure factor g is related to the angular profile of a
diffracted beam in a diffraction experiment from an or-
dered overlayer, at a momentum transfer q by

In this section we outline an analytic solution of the
nonequilibrium structure factor for a one-dimensional
system driven by random nearest-neighbor hopping. We
consider a lattice-gas system initially in equilibrium,
governed by the nearest-neighbor Hamiltonian

H [c]= —V g c, —Jg c, c, +, ,

where the subscript t denotes a nonequilibrium average.
We note here that S(q, t) satisfies a sum rule such that
the angular profile integrated over all directions is in-
dependent of time. The initial condition is given by
S(q, O)=y~(T=TI). We assume that in the absence of
interactions, i.e., TF= ~, particles obey a simple near-
neighbor random hopping dynamics

dcl = —a(2c, —c, +,—c;,),dt
(9)

where a is the diffusion coefficient and is taken as a pa-
rameter of the model. Note that hopping is prevented
when neighboring sites have the same occupation. Equa-
tion (9) conserves the coverage, as can be seen by sum-
ming over all lattice sites. It is then straightforward to
show, utilizing an equation of motion (presented
elsewhere ") for the product c;cj analogous to Eq. (9),

Q 0 S 0 S 0 S 0 (3) 0 S O (8) 0 Q 0 {30 S 0 (3) 0
(a) {2x))

S 0 0 0 0 0 0 (3) 0 0 0 0 0 0 S 0 0 0 0 0 0 (3)

(b) {7x 1)

0 Lattice
X Adatom

FIG. 1. (a) Low-temperature antiferromagnetic (2X 1) state.
Q denotes lattice sites and X denotes adatoms. (b) 7X1 low-

temperature state: o denotes lattice sites and X adatoms. For
the Si(100)-2Xn ordered state, the chain corresponds to a row
normal to the dimerization direction, with 0 corresponding to
dimers and X missing ones.

I =g~+5(q)/4,

where 5(q) is a 5 function. In one dimension g can be
evaluated exactly. At e=

—,
' it is given by

1 Q

4[1—2u cos(qa)+u ]
where u:—tanh(pJ/4). Thus, for J (0 and T~O, g& de-

velops a strong peak at the boundary of the Brillouin
zone, qa =m, which corresponds to the antiferromagnetic
structure shown in Fig. 1(a). The 5-function term in (6)
has no contribution. For T= oo, gq=8(1 —e)=—' and
the system is structureless. We are interested in the evo-
lution of the structure factor between these two extremes
at constant coverage.

The elastic-scattering structure factor for the non-
equilibrium system is the generalization of Eq. (5),

S (q, t) =g e'"~'( 5c05c„), ,
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that for TF=~ and 8=—,', 60.0,
54.0

t=0

S(q, t)= ,'+(—y~ —,' }—e

I—2A, I dt'e ' e(t'),
q

where

(10)

A,
q
=4a sin (qa/2),

e(t) = (5co5ci ), ,

(1 la)

(1 lb)

0.0

—0.2

—0.4

—0.6

0
—0.8

—1.0

and where y is evaluated at the initial temperature. e(t)
is the nonequilibrium near-neighbor correlation function,
which is seen to act as a "source" for the evolution of
S (q, t) via near-neighbor exchange dynamics.

We omit the specifics of solving for e(t) in Eq. (10) and
for evaluating the integral, for which an exact solution
can be obtained. " The dominant role of the integral in
Eq. (10) is in governing the long-time decay of S (q, t) and
also in guaranteeing that the sum rule is obeyed for all
times. Utilizing our solution for S(q, t), we show in Fig.
2 a semilog plot of the relaxation of the Bragg peak,
S (m /a, t) for initial temperature, Kz TI = —J/8 and
TF = ~. The initial decay is exponential in accord with
Eq. (10). The exponential decay persists for longer times
the smaller the initial temperature. At very long times,
there is a crossover to a power-law decay t ",where d
is the dimensionality of the system. This long-time decay
could have been a definite signature of the dimensionality
of a physical process. Unfortunately, the intensity at the
crossover point is less than 1% of its peak value and
therefore too small to be detected experimentally or even
to be seen in the simulations. In Fig. 3 we present S(q, t)
for k~ TI = —J/8 for the portion of the Brillouin zone
qa =0.95~ to qa =m for several times. It is seen that for
0&at &0.2 (which, from Fig. 2, is well within the ex-
ponential regime), S(q, t) decays while preserving its
shape: The FWHM at zero time is essentially that for the
subsequent times shown. As can be seen from Eq. (10),
each wave-vector component of S(q, t} relaxes with its
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own relaxation rate. In the initial state considered here,
the peak intensity is associated with a relatively narrow
range of wave vectors, and thus the peak decays while
preserving its shape. There is a slight broadening in the
width at late times to satisfy the sum rule as the peak in-
tensity is eventually redistributed to all wave vectors.

III. MONTE CARLO SIMULATIONS

In this section we examine the decay of S(q, t} for the
system prepared in an ordered state and for a finite final
temperature. We use simulations because analytic results
are not possible. The system was prepared in two initial
conditions, in the antiferromagnetic state to compare
with our previous analytic result and in the (1X7) state
shown in Fig. 1(b), which is representative of the disor-
dering kinetics experiment on Si(100). We emphasize
that our model system is one dimensional, but as we will

argue later, it is related to the disordering of the Si(100)-
(2 X n) ordered defect state, where n =6, 7, 8, or 9 depend-
ing on preparation. The (2X n ) state consists of dimer
vacancies aligned every "n" spacings. Evidence will be
presented below that these ordered defects disorder one
dimensionally. For the purposes of the simulation, the
(2Xn) phase is denoted as (1Xn). The occupants c; in
our model represent not the actual atoms or dimers but
the missing dimers. We run the simulation at n =7 but
similar results are expected for other values of n.

The (1X7) structure requires competing further-
neighbor interactions for stabilization. Thus, we consider
a more general Hamiltonian than that of Eq. (3):

qo/~

FIG. 3. The structure factor S(q, t) calculated exactly for the
one-dimensional antiferromagnetic Ising model with infinite
final temperature. The full width at half maximum (FTHM) is
invariant with time, implying the absence of scaling. Similar re-
sults are obtained with the Monte Carlo studies.

—1.6 I I I I I I I I

000 002 004 006 008 0 10 0 12 0 14 0 16 018 020

FIG. 2. Semilog plot of the decay of the peak intensity
S(m/a, t) vs time for the antiferromagnetic Ising model with ini-
tial temperature J/I(&T;= —8 and infinite final temperature
J/I( gTf =0. The result is from an exact solution. The decay
obeys first-order kinetics.

H [c]= —V g c; —J„„gc;c~ —J„d g c;c~. ,
i (n, n) (n, d)

(12)

where the second term refers to a sum over nearest-
neighbor interactions as in Eq. (3), and where there is as
well a sum over d-neighbor interactions. For the antifer-
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romagnetic Ising model J„z=0. For the (1 X 7) state we
assume J„7=—J„„/4, as is suggested from experiment
(see below), with J„„repulsive.

We simulate the disordering kinetics utilizing a stan-
dard MC algorithm. ' ' At t =0 the system is prepared
in a perfectly ordered state corresponding to zero temper-
ature. The exact number of missing dimers is difficult to
quantify experimentally. As the simplest approximation,
we have taken a perfect (1X7) structure. Similar results
are obtained, however, if an excess of dimer vacancies is
assumed as long as this excess is less than 20%%uo of the
ones in ordered sites. Kawasaki dynamics of exchanging
a particle with a hole were followed with the Monte Car-
lo algorithm.

We monitor the evolution of S(q, t), which is evaluated
at discrete points in reciprocal space, q„=2rrn/X, im-
posed by periodic boundary conditions, where X is the
size of the lattice. We have calculated S(q, t) about the
Bragg wave vector q+ =2m/7 for the (1X7) structure.
The MC routine was repeated M times to collect the
necessary statistics. M was varied between 100 and 200
without appreciable change in the results. Also, the size
of the system X was varied between 100 and 500 to check
for finite-size effects. No differences were observed.
Similar results were obtained for both initial structures.
Figure 4 shows the decay of the Bragg peak for the
(1X7) initial state at two final structures. The decay is
described by an exponential for at least 1 order of magni-
tude drop in intensity. Eventually the decay levels off as
the configuration of scatterers becomes random. Finite-
temperature runs were made with various sets of interac-
tions; again the results are similar for the antiferromag-
netic and (1X7) initial states. For the (1X7) arrange-
ment, J„„was chosen always repulsive and stronger than
the 1'th-neighbor interaction to model the Si(100)-(2Xn)
phase. The strength of these interactions is not known
but their ratio is suggested by electronic calculations,

FIG. 4. Semilog plot of the decay of the peak intensity
S(2m/7a, t) vs time for the one-dimensional model that has a
perfect (7X 1) initial state and (i) infinite-temperature final state
( X); (ii) J„„/KTf= —2= —4J„q/KTf final temperature (0).
The decay obeys first-order kinetics. Results are from Monte
Carlo simulations.

and their magnitude can be estimated from the disorder-
ing temperatures. In Fig. 4, (X) shows the result at
TF = ~ and (o) show the results for J„„/kT
= —4J„&/kT with the negative sign denoting repulsion.

Because the initial configuration is always perfectly or-
dered, S(q, t) is a 5 function broadened only by the finite
size of the system. No change in the FWHM is observed
for the whole range of the intensity drop when there is
nearest-neighbor interaction. When d-neighbor interac-
tions are included (d & 6), only after the intensity has
dropped by a factor of 10 does the structure factor start
to broaden. Similar behavior is seen for various finite
sizes suggesting that the finite size of the system is not
important.

The exponential decay of Bragg peaks in the disorder-
ing of one-dimensional systems without change in width
can be seen essentially as a nonequilibrium analog of the
Debye-Wailer factor. For a system in equilibrium the
effect of lattice vibrations is to diminish elastic scattering
with an overall (wave-vector-independent) attenuation
that is exponential with increasing temperature, a conse-
quence of thermal displacements about lattice sites being
uncorrelated. It is therefore as though, upon letting
TI —+T~, we have taken our system in time through a
series of equilibrium states of increasing temperature.
We have, of course, obtained the system's nonequilibrium
response to a large and discontinuous change in tempera-
ture. However, the reason we can make this analogy is
that the system is one dimensional: The system remains
"disordered" for all temperatures and hence, the motions
of the disordering particles are uncorrelated. It is known
that thermal Auctuations are always sufficiently strong
compared to interparticle interactions that the initial
domains are randomly disrupted, without regard to their
structure, i.e., without a progressive inward shrinkage
from the boundaries that would presumably result in a
scaling of S(q, t) for disordering. In contrast, we note
that in two dimensions for an initial state in an ordered
phase with long-range order, disordering evolution
occurs at domains boundaries and hence, is correlated.
In this latter case, then, one would not expect "Debye-
Waller" behavior of the structure factor, and scaling of
S(q, t) is observed. Because the two main results of the
disordering, i.e., the exponential decay of the peak and
the invariance of the FWHM, are also present in the
Debye-Wailer effect, it is interesting to ask if they are re-
lated. For the latter, the FWHM does not change be-
cause all the wave vectors are losing intensity at the same
rate. The initial one-dimensional ordered state disorders
also by uncorrelated displacements of the scatterers. It is
a first-order process because the decay rate is proportion-
al to the number of scatterers still present in ordered
domains, which leads to exponential decay of the peak in-
tensity. The random displacement of scatterers will very
quickly create many monomers, because motion is un-

correlated, and intensity will be moved away from the
peak of the structure factor to the "wings. " All the wave
vectors around the peak are losing intensity at the same
rate because the disordering of scatterers is independent
of the domain size. The FWHM, therefore, will not
change.



39 DIFFUSIVE DISORDERING KINETICS IN ONE DIMENSION 9381

IV. DISORDERING OF Si(100)-(IX n) PHASES

Both an exponential intensity decay and a constant
FWHM during the decay have been observed experimen-
tally in the disordering kinetics of the Si(100)-(2 Xn)
ordered-defect state, as described in the introduction.
Figure 5 shows the decay at three different temperatures
of the intensity of the satellite peak corresponding to the
(2X7) ordered state. All three curves can be fitted very
well with an exponential decay. The initial intensity is
smaller at the higher temperature because of the true
Debye-Wailer effect. Figure 6 shows the satellite Bragg
peak at early times superimposed on one obtained later,
after normalizing the peaks. It is clear that there is no
change in the FWHM of the peak.

Because, in principle, this is a two-dimensional system,
both of these results are incompatible with the expected
power-law "growth" (decay) and scaling of the structure
factor. As mentioned in the Introduction, power-law
growth and scaling have been observed ' in several ex-
perirnental and many model system studies for quenches
from disordered to ordered states. It would be expected
also for the disordering kinetics from an initial ordered
state, unless the final temperature is higher than the tran-
sition temperature that destroys the effect of correlations.
Although we do not have a phase diagram for the Si(100)
surface, it is rather likely that the disordering tempera-
tures (T =600—700 K) of the (2 X n ) phases are not large
compared to the interaction energies governing the kinet-
ics, and so correlations are still present. It would be very
dificult to determine a phase diagram for such a surface
because many ordered states are known to exist, ' de-
pending on the preparation method. It is also di%cult
to determine the phase diagram theoretically because
electronic calculations' of the minimum-energy
configuration give states that are very close to each other,
so it is dificult to distinguish the true minimum. The
(2X n) structure is not a true low-temperature equilibri-
um ordered state but a metastable one locked in by the
rapid quench. '" We believe, however, that the non-
equilibrium behavior of a true equilibrium state is also
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Experimentally, an intensity decay consistent with 1D
ordering is observed. The anisotropy of the Si(100) sur-
face that leads to the (2Xn) structure in the first place
suggests that the disordering might be one dimensional.
The ordered state is made out of missing dimers every
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FIG. 5. Decay of the peak intensity of the satellite peak that
corresponds to the Si(100)-(2X7) phase at three diferent tem-
peratures. The decay obeys first-order kinetics.

FIG. 6. Comparison of the shape of the satellite peaks of the
Si(100)-(2X7) ordered state at early and late times after the
peak heights have been normalized. The FWHM is constant.
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be observed, as our model calculations have indicated.
Is there any other information supporting the above in-

terpretation in terms of one-dimensional disordering?
Calculations on the energies of the electronic config-
urations have shown that there is strong repulsion be-
tween two nearest-neighbor defects (i.e., dimer vacancies)
along the dimer rows. This strong repulsion forces the
vacancies to be as widely separated along the rows as pos-
sible. A weak attractive interaction between dimer va-
cancies at the "n"-neighbor position will stabilize the
(2Xn) phase. In choosing the pairwise interactions in
the Monte Carlo simulation J„„=—4J„7 we were
motivated by these considerations. These interactions
imply that once the system starts disordering, it is more
favorable for a defect to continue diffusing within its row
than to an adjacent one; otherwise it will become a
nearest neighbor of another defect. The strong repulsion
between neighboring defects prohibits this. The one-
dimensional character of the disordering process is there-
fore suggested by the highly anisotropic interactions be-
tween defects. The system, of course, is two dimensional,
and the anisotropy of the interactions is expected to be
less important at higher temperatures. As stated before,
however, the disordering temperatures (600—700 K) are
smaller than typical interaction energies in semiconduc-
tors, so correlations between defects are expected to per-
sist and the anisotropy to be important.

It has been suggested' recently and subsequently cor-
roborated' that the formation of the Si(100)-2Xn phase
is a result of the presence of small amounts of Ni impuri-
ties on the surface (the Ni Auger peak is between
0.3%—0.8% of the Si peak). The experiments suggest
that the (2X n) is not formed if the Ni level is below the
lower of the above values.

The formation of the (2Xn) phase is correlated to the
amount of Ni present as seen by AES. At high tempera-
tures, no Ni is observable with AES. If the sample is
slowly cooled, again no Ni is observed at low tempera-
tures. If the sample is quenched, Ni is observed, its con-
centration depends on the quench rate (a faster rate gives
a higher "surface" concentration), and the value of n in
the (2Xn) phase appears to be correlated with the Ni
concentration (a higher concentration leading to lower
n) It is diffi. cult to see how this situation can come
about with generally accepted concepts of solubility and
cooling curves. Nevertheless, if one accepts that Ni, by
whatever means, stabilizes the (2X n) structure, then one
may ask if the observed disordering behavior can be as-
cribed to the behavior of Ni.

One can construct a scenario in which Ni is the cause
of the disordering behavior. In order to observe exponen-
tial decay of the intensity of the "n" Bragg peaks, two
conditions must be met. Ni must "disappear" in a mode
identical to radioactive decay, and all the resulting dimer
vacancies must spontaneously disorder as the holding po-
tential provided by the Ni atom disappears. A decrease
in Ni concentration with time is suggested, ' but its decay
rate is not given. ' We first discuss how the concentra-
tion of Ni could decrease in a "radioactive decay" mode,
i.e., without memory of its history. If one postulates that
the Ni atoms important for the formation of the (2Xn)

structure reside in a thin subsurface layer (two to three
atoms thick), and furthermore, that as soon as a Ni atom
moves anywhere out of this layer it is "lost" for the pur-
pose of forming the (2 Xn) phase, then one has the ana-
log of radioactive decay and correspondingly first-order
kinetics for the disappearance of the relevant Ni atoms.
This process is straightforward to envision if Ni were
simply to pop up from the subsurface layer to the surface
(where it can accumulate to any concentration), but this
behavior is inconsistent with experiment, ' ' which
shows the observable Ni concentration to decrease with
annealing time. Therefore, Ni must be diffusing into the
crystal, or possibly precipitating. ' In either case, it
would appear that a concentration gradient and a
diffusion mechanism are required, causing deviations'
from first-order kinetics for the disappearance of Ni. The
only way that first-order kinetics could be obeyed for in-
ward motion of Ni is if there exists an extreme supersa-
turation of Ni that is confined to one or two layers, with
the concentration of Ni in the rest of the crystal below
the solubility limit and with rapid diffusion of Ni. This is
difficult to imagine.

We now address the second of the necessary conditions
for observing Ni caused exponential decay of the "n"
Bragg peak intensity, namely that the dimer vacancies
that are bound in the ordered array by a Ni atom spon-
taneously disorder as the holding potential of the Ni
atom disappears. This requires first of all no activation
barrier for this disordering (once the Ni potential is
gone). Assuming that this is true, if there is one or less
than one dimer vacancy associated with each Ni atom, '

the Bragg intensity will show exponential decay if the Ni
concentration does. The true Ni concentration is quite
uncertain, however, depending on the assumed distribu-
tion of Ni impurity in depth, the mean free path, and the
sensitivity factors. A value for the ratio of Si to Ni atoms
ranging from 15 to 150 can be obtained from various as-
sumptions using the data of Ref. 12. It is thus possible
that a patch of up to 10 dimer vacancies is inAuenced by
one Ni atom. The decay of Ni with first-order kinetics
would, in the latter case, produce "droplets" of disorder
in the (2Xn) phase whose number would increase with
first-order kinetics. The effect on the Bragg peak should
be a broadening of the profile as the intensity decreases. '

This is not observed.
Therefore, although it is possible and likely that Ni im-

purities provide the potential that orders the (2Xn)
phase, it is difFicult to construct a scenario by which the
disordering behavior is due to the disappearance of the
Ni atoms. The major obstacle is a model for the diffusion
of Ni into Si that obeys first-order kinetics. A more likely
scenario is that the rate-limiting step in the decay of the
(2Xn) phase is the disordering of the dimer vacancies,
and that these disorder one dimensionally, as described
above. The decrease in the Ni surface or subsurface con-
centration can then proceed by whatever mechanism, as
long as it is rapid compared to the disordering of the di-
mer vacancies. The values J„„and J„d in our modeling
then refer to the interactions between the dimer vacancies
themselves. It is physically reasonable that one-
dimensional disordering occurs, given the nature of the
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dimerized surface and the fact that the defects are dimer
vacancies. This one dimensionality of the Si(100) surface,
which essentially results from the anisotropy in dimeriza-
tion, has also been seen in EELS experiments' of potassi-
um adsorption on Si(100). The measured plasmon disper-
sion curves can be explained by assuming decoupled one-
dimensional potassium chains in the valleys between the
divers.

V. CONCLUSIONS

ing that the disordering in this system is one dimensional.
Ni impurities may cause the formation of the (2Xn)
phase; however, a one-dimensional disordering appears to
be necessary to explain the diffraction measurements.
Specific interactions used in the model give a qualitative
picture of the behavior, but it should be clear from our
treatment that microscopic information about the kinetic
mechanisms can be obtained from the macroscopic time
evolution of a system in a strongly nonequilibrium situa-
tion.

We have shown by analytic and Monte Carlo calcula-
tions that the disordering kinetics of one-dimensional sys-
tems with short-range interactions obey exponential de-
cay of the peak intensity and invariance of the structure
factor FWHM. This is coritrary to what is observed for
two-dimensional disordering. It should be a general re-
sult for systems ordering or disordering one dimensional-
ly.

Experimental results of disorder of the metastable
Si(100)-(2Xn) phase display the above features, suggest-
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