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Monte Carlo study of phase transitions in a confined lattice gas
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The phase diagram of a lattice gas confined between two parallel adsorbing walls is investigated
via Monte Carlo simulation. For large wall separations, we find a line of first-order capillary-
condensation transitions at chemical potentials shifted to smaller values, p(T), than the bulk value

p„,(T). We also find a line of first-order prewetting transitions, terminating in a prewetting critical
point and intersecting the line of capillary-condensation transitions in a triple point where thin-film,

thick-film, and "liquid" phases all coexist. Although such a rich phase diagram had been conjec-
tured earlier on the basis of mean-field calculations and thermodynamic arguments, we believe this
is the first confirmation by simulation.

I. INTR@DUCTION

The inAuence of confinement of a Auid on its bulk and
surface phase transitions is a subject of considerable re-
cent interest. ' The phase diagram of a Auid confined in
slitlike geometry is predicted by mean-field treatments of
lattice models and by density-functional theories of con-
tinuum Auids' to be extremely rich and a complete ex-
ploration of this by Monte Carlo simulation is not feasi-
ble. However, one of the main features of
confinement —that of bringing the bulk liquid-gas phase
transition into competition with those surface phase tran-
sitions occurring for an undersaturated bulk —is evident
in a restricted region of the full phase diagram, which we
have explored in detail by simulation. Specifically, con-
sider a Auid in contact with a reservoir at constant chemi-
cal potential p and temperature T, and confined between
two identical parallel adsorbing walls separated by a finite
distance H in the z direction, but of infinite area in the x
and y directions. Interactions between the walls and the
Auid are represented by an external potential which
varies only with z (perpendicular to the walls). Then, if
the attractive part of the wall potential is of "moderate"
strength so that a first-order wetting transition, with its
accompanying prewetting or thick- to thin-film transi-
tion, ' occurs for a single wall (H=oo) the mean-field
analysis of Refs. 2 and 3 suggests that the phase diagram
is of the form depicted in Fig. 1(a). The genesis of such a
diagram is best understood by reference to the (T,p)
phase diagram for lattice-gas adsorption at a single
wall —see Fig. 1(b). In this case, the prewetting line AB
extends from the point of the wetting transition (T,p„,)
to the prewetting critical point (T„„„p„,) where the dis-
tinction between thick and thin adsorbed films disap-
pears. Note that T & Tp & T, and T, is the the bulk
critical temperature. For T & T & T, thin adsorbed
films are stable for p &p while thick films are stable
for p &p„. These coexist on the prewet ting line p
=pz (T;H = ~). When the lattice gas is confined, so

that H is finite, the bulk coexistence curve is shifted to

p &@„,by an amount that is proportional to I/H for
suSciently large H. Such a shift is termed capillary con-
densation. ' If H is large enough prewetting can still
occur at both walls before condensation of the dense
"liquid" filling the capillary takes place. (In contrast to
the wetting transition, prewetting is a surface transition
occurring out of bulk coexistence so it does not require
infinite H. ) Mean-field calculations and general ther-
modynamic arguments indicate that prewetting is very
weakly dependent on H, i.e., p~„(T;H) =p~„(T; ~ ).
One then expects that for some p &p &p„, capillary
condensation to "liquid" should occur. It is evident from
Fig. 1(b) that for sufficiently large H a triple point is ex-
pected where "thin, " "thick, " and "liquid" states will

coexist. For small wall separations H capillary condensa-
tion will occur at some p &p, and prewetting will not
occur as a transition between stable states. Then the sur-
face ABC of prewetting transitions in Fig. 1(a) will be
occluded by the surface of condensation transitions.

It is the aim of the present work to investigate the
competition between capillary condensation and the
prewetting surface phase transition thereby testing the
predictions of the mean-field treatments. There are three
main reasons we chose to perform simulations for a
lattice-gas model, rather than a continuum fiuid. (i) Lat-
tice models are generally much better suited to very large
scale Monte Carlo simulation. This is important for the
present problem where mean-field calculations indicate
very large wall separations are required if prewetting be-
tween stable states is to take place. (ii) We could draw on
work of Sen and Ebner who had performed simulations
of prewetting for a lattice gas near a single wall. (iii)
Prewetting had not been observed in any simulations of
continuum models. Our paper is arranged as follows. In
Sec. II we describe the lattice model and the details of the
computations. The results of the simulations are present-
ed in Sec. III. %'e conclude in Sec. IV with a discussion
of our results and make some comparisons with the ear-
lier mean-field treatments.
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nearest-neighbors pairs of sites: a z is 1 if site K in the
jth layer is occupied and is 0 if it is not. V is the total
potential affecting a particle in the jth layer due to the
walls. We choose a simple cubic lattice with M layers in
the z direction and work in the grand canonical ensemble
with a given chemical potential p. Bulk liquid-gas coex-
istence occurs at p=p„,= —3c. and the critical tempera-
ture is given by k tTt, / 8= 1.1279 for the simple cubic
structure.

Our choice of wall potential was inAuenced by work of
Sen and Ebner who investigated prewetting in a variety
of lattice models. We chose a potential that corresponds
closely to one of theirs. Each wall is considered to be
composed of atoms on the sites of a semi-infinite simple
cubic lattice interacting with Auid atoms via the
Leonard- Jones 12-6 potential:
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FIG. 1. (a) Schematic phase diagram of a confined lattice gas
in the prewetting region, as a function of the wall separation K,
temperature T, and chemical potential p. The surface of
capillary-condensation transitions is bounded on its right by the
bulk coexistence line, and on its left by the line of capillary criti-
cal points. The prewetting surface ABC is bounded by the
prewetting line AB in the 1/H =0 plane, a line of prewetting
critical points BC, and a line of triple points AC where it inter-
sects the condensation surface. (b) A schematic (T,p) phase dia-
gram for a lattice gas. Bulk coexistence occurs at p=p„,. AB
denotes the prewetting line with H = ~. On confining the sys-
tem at large H the prewetting line is hardly altered but capillary
condensation occurs at p, (p„, [dashed curve (i)j. For
T & T & Tp phase transitions from "thin" to "thick" to
"liquid" occur as p is increased. T, is the triple-point tempera-
ture for this separation H. When H is small prewetting is pre-
cluded by capillary condensation at p (p„„,[dashed curve (ii)j.
Note that each condensation line ends in a critical point corre-
sponding to a shifted bulk critical point.

II. THE MODEL AND COMPUTATIONAL DETAILS

The Hamiltonian of our lattice-gas model isI
H= —E g o,~tT, i~+ g V, go,~ .

x

Here E (positive) is the interparticle potential between
nearest neighbors and the sum in the first term is over all

V, (z) = 9 — +
45 z

a—45

a'
(z +0.72a)

15a
(z +0.6la) (2)

The total wall potential in the confined system is

V&
= V, (ja)+ V, ((M + 1 —j)a ) . (3)

The simulations were performed on the ICL Distribut-
ed Array Processor (DAP), and its successor, .the Active
Memory Technology DAP510. These bit-serial machines
are especially well suited to simulation of lattice models.
The infinite walls in the x and y directions were replaced
by a finite area with periodic boundary conditions. The
number of sites in a layer, L, was either 1024 or 4096,
and we could find no systematic finite-area eft'ects to the
level of accuracy of the simulations. The Metropolis
spin-Aip alogorithm was employed, and di6'erent numbers
of Monte Carlo steps per site were discarded for equili-
bration or kept for averaging, depending on the state
point. For each point on a thermodynamic integration
path, 1000 steps were discarded for equilibration and

where a is the lattice spacing and R is a constant. Sen
and Ebner found that choosing R =0.31 gave a first-
order wetting transition in a mean field appr-oximation at
T„=0.5T, and a prewetting line that was rather exten-
sive in temperature: T,=0.81T,. Although they do
not consistently calculate T and T „, in their Monte
Carlo simulations, they estimate that both temperatures
should be lowered below their mean-field values —the
prewetting critical temperature more than the wetting
transition temperature. Their Monte Carlo results indi-
cate that the prewetting line is shifted closer to bulk
coexistence than in a mean field, and they estimate that
the critical point is near bp „,—:(p„,—p „,)=0.030E,
whereas the mean-field value is 0.045m.

We used the same value of R but approximated the
sum over sites in a single wall by the accurate "summed
10-4" formula
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1000 kept for averaging, while for runs near the prewet-
ting critical point 5000 steps were discarded and 50000
were kept.

Phase equilibria are best investigated by computing the
grand potential 0 of the inhomogeneous lattice gas. The
state with the lowest value Q is the equilibrium state of
the system. Coexistence of two distinct states a and 13

occurs when Q =Q&. A convenient route to the compu-
tation of 0 can be obtained from the thermodynamic re-
lation

an = —N
Bp

on an isothermal path and the relation"
r

B(Q/T)
i)( l /T)

(5a)

(5b)

on a path at fixed chemical potential. Here U is the total
internal energy and we have used the definition
0=—U —TS —pN. The integrations start at sufficiently
low p so that the ideal gas result for N can be em-
ployed. ' '" Thus in the simulation we monitor N and U
along reversible thermodynamic paths and use (5) to ob-
tain 0 for the various phases. In addition we monitor the
density (occupancy) profile

d 0= pd V—SdT —Kdp+—2y d A —( Af)dH, (4)

where@ is the pressure, Vis the volume, S is the entropy,
N: (N )—is the average number of tiuid atoms (occupied
sites), A is the area of one wall, and y is the wall-fiuid in-
terfacial tension (surface-excess grand potential per unit
area). The last term in (4) is the work done when the wall
separation H:—Ma is increased: f is the (solvation) force
between the two walls. If we work with fixed 2 and H
(and hence V) we can integrate the Gibbs adsorption
equation

of its value at any single state point. This was of the
same size as the asymmetry of the density profiles about
the center of the slit, and is probably an overestimate of
the true statistical errors in the grand potential.

The grand potentials of "gas" and "liquid" branches
are equal when Ap/kz T, =0.008 57+0.00052. We can
compare this result for capillary condensation with that
from the macroscopic Kelvin equation which predicts a
shift in the bulk transition by an amount'

2('y
~Pa

M(nt s,—)
' (7)

where y s is the (single) wall-gas interfacial tension eval-
uated at p =p„, and y &

is the corresponding quantity for
the wall-liquid interface. These surface tensions are
defined as the surface-excess grand potential of the Quid
in the slit, i.e.,

2y = lim +pM0
M~ co L

and for the lattice model have the dimension of energy.
pt and p in (7) are the densities (occupancies) of "liquid"
and "gas" at bulk coexistence. Since the "liquid" branch
exists at p =p„„A& is well defined at bulk coexistence
and y &

can be estimated by assuming this quantity to be
independent of M for M & 61. pl is set equal to the densi-
ty at the center of the slit. . While the "gas" branch ex-
tends well beyond the equilibrium transition —see Fig.
2—this metastable portion does not reach p„, in a corn-
plete wetting situation. ' Thus it is necessary to extrapo-
late 0 to p„, in order to estimate y and this involves
some uncertainty. There are similar uncertainties in-
volved in estimating p . The resulting Kelvin estimate is
Apz/k~T, =0.0062, which is considerably less than the
result of the full calculation. Similar discrepancies occur

~J 2 J&

and, for purposes of locating the prewetting critical
point, the susceptibility S2

L k8TC
2

(6b)

with

III. RESULTS OF THE SIMULATIONS

10 (@sat -p)3

"8'C

Results of thermodynamic integration of (5), for a slit
of M =61 layers, and at a temperature of T=0.895T,
are shown in fig. 2. This isotherm lies above the prewet-
ting critical temperature Tz, so there is only one "gas"
branch. The error bars indicated were determined by
performing thermodynamic integration around reversible
closed loops in each phase. The deviation from zero of
the resulting grand potential was generally less than 2%

FIG. 2. The thermodynamic grand potential 0 as a function
of chemical potential, for a system of 61 layers and T =0.895 T, .
The grand potential is measured in units of the bulk critical
temperature, and divided by the number of sites in a single lay-

er. Representative error bars are indicated. The two branches
cross at Ap=(8. 57+0.052) X 10 'k&T, . The arrows locate the
predictions of the Kelvin equation [Eq. (7)] and the modified

version mentioned in the text.
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in mean-field calculations' when thick wetting films de-
velop at the walls. A modification' ' of the Kelvin equa-
tion, which takes into account the effects of the films, re-
places M in (7) by M —3ta ', where t is the thickness of
the wetting film, when the walls exert van der Waals
forces on the atoms of the Quid. Such a modification was
derived first by Derjaguin' in 1940. In Fig. 2 we display
both the Kelvin and the modified Kelvin estimates. The
film thickness, calculated from weighted moments of the
density profiles, is t =4.7 lattice spacings, leading to a
substantial correction. The modified Kelvin estimate is
hpMz/k&T, =0.0081, which is in quite good agreement
with the result of the full calculation.

Once the "gas"-"liquid" coexistence curve has been lo-
cated its slope may be found from the Clapeyron equa-
tion

Bp
BT coex

—[(U Np) —(U8 —N8p)]-
T(N —

Nli)

with e referring to "liquid" and P to "gas." Equation (8)
requires fixed area 3 and separation M. This allows us to
follow the phase boundary down to a temperature where
it may intersect the prewetting phase boundary. Figure
1(b) indicates that this will occur if the slit is wide
enough. We can estimate the minimum separation M „,
necessary for prewetting to be observable by an argu-
ment ' based on the Kelvin equation. Prewetting be-
tween stable phases wi11 occur provided

~PPwc + ~PK M ( )Pt Pg

Thus

Mp (r g 1 l)~(pl pg )~pp

Using the value of Ap„, given by Sen and Ebner, as-
suming this does not vary with M, and using our estimate
of the surface tensions and densities, we obtain
Mp 45 Thus for slits with M ~ 45 we expect any
prewetting transition to be between metastable films. In
theory, a grand canonical Monte Carlo simulation will al-
ways give equilibrium results if enough computer time is
used but in practice nucleation times can be arbitrarily
long and true equilibrium behavior will not be seen.

We performed simulations for just such a situation —a
slit with M =31 layers —and present the results of ther-
modynamic integrations along the T =0.652T, isotherm
in Fig. 3. The transition from a thin adsorbed film to
"liquid" (capillary condensation) occurs for
b lpkT8, =0.0352+0.0004, which is quite close to the
estimate 0.0314, obtained from Clapeyron equation (8);
the latter uses data from the T=0.895T, transition in
the same slit. It is clear from Fig. 3 that although there is
no stable thick-film configuration in this system, metasta-
ble thick films survive and a prewetting transition occurs
for Ap„ /k~ T, =0.024+0.0004. Indeed, the metastable
films survive for many thousands of time steps. We have
even observed the criticality of the prewetting transition
between metastable films over times on the order of
several-hundred-thousand time steps. The same sort of

- -3.338
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FIG. 3. The reduced thermodynamic grand potential Q as a
function of chemical potential for a system of 31 layers and
T =0.652T, . The arrow indicates the prediction of the Clapey-
ron equation [Eq. (8)].

criticality of two metastable states has been utilized re-
cently in simulations of a critical wetting transition. '

By increasing the width of the slit to M=61 layers
prewetting should occur between equilibrium states. This
is confirmed in Fig. 4. As expected Ap is shifted very
little from its value in the smaller slit (Fig. 3) whereas
capillary condensation is shifted to significantly smaller
Ap. The estimates of the latter from both the Clapeyron
and the modified Kelvin equations lie within 8% of the
result of the full calculation.

Using the Clapeyron equation for both the prewetting
(where a denotes thick and p denotes thin) and capillary-
condensation (where a denotes "liquid" and p denotes
thick "gas" film) coexistence curves allows us to extrapo-
late them down in temperature to locate the triple point
for M =61. This method locates the triple point to an
accuracy of about 5% for T, /T, and a few thousandths
in p/k~ T, . Thermodynamic integration gives roughly
the same degree of accuracy. We have found that the

Thin film

$2--5 461
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Clapeyron~ ~lvlodi fied Kelvin

I I I I

20 16 12 8

10 (P~at- P J3

kg TC

FIG. 4. The reduced thermodynamic grand potential 0 as a
function of chemical potential for a system of 61 layers and
T =0.6S2T, . The arrows indicate the predictions of the
modified Kelvin and the Clapeyron equations for capillary con-
densation.
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perature we expect it to end in a prewetting critical point.
We have observed continuous and reversible adsorption
isotherms for T & 0. 8 T, and "hysteresis loops" for
T ~0.65T, . However, the nature of hysteresis in a grand
canonical simulation is complex, and such loops should
be treated with some suspicion. They almost certainly in-
dicate the failure of the simulation to sample adequately
the appropriate phase space —because of limited simula-
tion times. Moreover, finite-size rounding in the finite
system must also be considered. Attempting to locate the
critical point by searching for the disappearance of
such loops is certainly problematical. An estimate of its
location can be made by measuring the susceptibil-
ity y defined in (6b). For infinite wall area
g=k~ T(BXIBp)z.M „will diverge at the critical point of
a surface phase transition

Figures 6(a) and 6(b) show the average particle number
X and susceptibility for three isotherms, all of which
showed reversible behavior on a time scale of the simula-
tion (50000 time steps for each data point). While a com-
plete analysis of the prewetting critical point would re-
quire studying the size dependence of N and p, the results
of Fig. 6(b) suggest the critical temperature is =0.71T,.
Since there was no hysteresis in any of the isotherms in
Fig. 6(a) this reinforces the idea that inspection of the
shape of X versus p isotherms is not a very reliable way
of locating the critical point. The results of Fig. 6(b) do
not, of course, demonstrate that we have determined ac-
curately the location, or the nature, of the prewetting
critical point. An extensive finite-size analysis is present-
ly under way which should enable us to obtain an accu-
rate description. We recall that it is conjectured that the
prewetting critical point and, indeed, a/l critical points of
surface transitions out of bulk coexistence, are two-
dimensional Ising-like; the order parameter is the
difference (N N~) and the—correlation length can only
diverge parallel to the walls.

IV. DISCUSSION

The results of our Monte Carlo simulations confirm the
earlier predictions concerning the nature of the competi-
tion between the shifted bulk and the surface phase tran-
sition in a confined system. We have not attempted a
direct comparison of simulation and mean-field results as
there is no reason to suppose that the latter will be partic-
ularly accurate, especially for the prewetting surface.
Nevertheless, the gross features do seem to be well repro-
duced by a mean-field approach, so that the overall form
of the phase diagram in Fig. 1(a) is probably correct.

Perhaps the most striking feature in the confined sys-
tem is the existence of a line of triple points. We have lo-
cated one of these points for a slit with M =61 layers.
Clearly, other triple points will occur for other values of
M. It is important to recognize that the three phases
which coexist are Quids. We deliberately chose to focus
on the prewetting transition in the lattice-gas model, by
choosing a wall potential of moderate strength and there-
by avoiding the sequence of layering transitions that
occurs with stronger walls, so that we mimic closely the
corresponding transition in a continuum Auid at an inert

adsorbing substrate. Then the first-order wetting transi-
tion (at a single wall) occurs at a temperature T„&T~,
the roughening temperature of the lattice —a situation
which mimics a wetting transition above the bulk triple-
point temperature in the continuum case; there the
liquid-gas interface is always rough. Thus our results
also have relevance for the continuum case.

That a simple one-component system should exhibit
triple points with three coexisting Quid phases is, at first
sight, surprising. The explanation is clear from the ther-
modynamic relation (4). There are two additional contri-
butions to dQ which are not present for bulk Auids. The
surface tension term 2yd A allows coexistence of two sur-
face phases (thick and thin film in the present case) out of
bulk coexistence while the solvation-force term—( Af)dH allows the third phase (capillary-condensed
"liquid" ) to coexist at the same chemical potential. In
other words, the usual Gibbs phase rule for a one-
component bulk Auid is augmented by the two extra field
variables. The same argument gives the possibility of
other triple points. For example, first-order layering
transitions, where the coverage increases in monolayer
steps, persist in confined lattice gases. These also com-
pete with capillary condensation and can give rise to tri-
ple points where an m layer, m +1 layer, and a dense
"liquid" coexist. It is possible that equivalent triple
points also exist for continuum Auids confined between
strongly adsorbing substrates. '

To the best of our knowledge this is the first time that
capillary condensation has been investigated in simula-
tions of lattice models. There is a growing literature on
simulation of continuum Auids in model pores' and the
validity of the Kelvin equation for condensation has been
tested in that work. However, the large majority of these
continuum simulations refer to Auids inside cylindrical
capillaries for which a true phase transition should not
occur. Consequently, there are some di%culties in inter-
preting the results' associated with the precise nature of
the observed metastability and the finite-size rounding of
the transition. Our present results for condensation are
not beset by such problems. They are consistent with
those for the "quasi" transition in cylinders and with the
various mean-field tests of the Kelvin equation. ' We
find that the latter severely underestimates the shift in the
bulk transition —even in a slit as large as 61 layers—
when thick adsorbed films are present. Incorporating the
Derjaguin correction for the e6'ects of the wetting films
appears to improve matters —at least for the two temper-
atures reported here. For smaller slits, however, even the
modified Kelvin equation provides poor estimates of the
shift. We note that some of the uncertainties involved in
making the Kelvin estimate, i.e., extrapolating to p„„
could be avoided if independent data were available for
the liquid-gas surface tension y &

at the temperature of in-
terest. In a complete wetting situation (T & T ), at bulk
coexistence, y g

—y„~=@ &. Mean-field results' suggest
that the Kelvin equation is much more accurate in a
partial-wetting situation (T (T ) where y„s—y„,
=y

~
cosO, with contact angle 0)0. We performed simu-

lations for such a situation by choosing the "9-3 continu-
um" approximation for the wall potential:
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RE+
45

9 3
a a—15
z z

For the same choice, R =0.31, as previously (9) has a
much weaker attractive minimum than (2) and the walls
remain partially wet up to the highest temperatures we
investigated, i.e., T =0.9T, . At this temperature we ob-
served capillary condensation from a "gas" with only
thin adsorbed films at the walls to "liquid" at
by, /k~ T, =0.00084+0.0002 for a slit with M =31 lay-
ers. The Kelvin estimate is easier to make now as the
metastable-gas branch persists to p„, in partial wetting
and we found Apz /kz T, =0.000 99. The transition
occurs very close to bulk coexistence since cosO is only
slightly greater than zero. Mean-field calculations were
carried out' for the same potential and these predict
cos8= —0.34 for T/T, "=0.9 (Ref. 18) (T, "=3m/Zks
is the mean-field critical temperature). Thus in mean
field the bulk coexistence curve is shifted to p & p„, and
capillary evaporation occurs for a weakly supersaturated
Quid. In this case the result of the full mean-field calcula-
tions lies within 1% of the Kelvin estimate for M =31.
How the bulk phase transition is affected by confinement
depends crucially on the wetting behavior at a single
wall. If the contact angle is not described accurately by
mean field (in a given temperature range) the latter ap-
proximation may give qualitatively incorrect predictions
for capillary condensation.

There are several features of the phase diagram (Fig. 1)
that we have not yet been able to investigate by simula-
tion. The capillary-condensation surface is bounded by a
line of capillary critical points which correspond to shift-
ed bulk critical points. ' In the limit M —+ ~, scaling ar-
guments' predict that the critical temperature of the
Auid is shifted by an amount hT, -M ' where v is the
bulk-correlation-length exponent; v=0. 63 for the d =3
Ising model. Checking this prediction for slits as wide as
61 layers is very dificult. %'e note, however, that shifts
of the bulk critical point, consistent with the predictions
of finite-size scaling, have been determined in simula-
tions of Ising films, with free boundaries, for M in the
range 2 —20 layers. The critical points become two-
dimensional-like. Finally, we remark that the prewetting
line and its critical point should, in principle, depend
very weakly upon M. Our present simulations were not
able to detect any shift of this line.
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