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Universal critical amplitude ratios in CHF3
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We have performed experiments on Auoroform close to its critical point, using an optical interfer-
ence technique which is virtually free of gravity effects. Data were obtained in the temperature
range —4 X 10 ( t & 3 X 10, where t = ( T —T, ) /T, is the reduced temperature. The width of
the coexistence curve, the compressibility on the critical isochore, and the chemical potential along
the critical isotherm were simultaneously measured in the same experiment in an effort to ensure
self-consistency of the results. We analyzed the data using critical power laws and incorporating
wherever necessary corrections to scaling to obtain values for the critical exponents and amplitudes.
We compare our results with theory and with previous experimental data.

I. INTRQDUCTIGN
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where p is the chemical potential, I', is the critical pres-
sure, and I 0 (I o ) is the nonuniversal critical amplitude
above (below) the critical point.

Along the critical isotherm, the deviation Ap of the
chemical potential from its value at the critical point p,
is expected to scale with the exponent 6 as

~l = =Dorp'I~p*l' ' (3)

Here, Ap*=(p —p, )/p, is the dimensionless density
difference from the critical density and Do is another
system-dependent amplitude.

Near a critical point, various thermodynamic quanti-
ties along special thermodynamic paths behave as power
laws with critical exponents which, according to the
universality hypothesis, depend only on the symmetry of
the Hamiltonian and the dimensionality of the system,
not the specifics of the interaction. This implies that all
systems belonging to the same universality class should
exhibit the same critical exponents. Fluids near the gas-
liquid critical point fall into the universality class of
three-dimensional Ising-like systems.

In a pure Quid, the order parameter is related to the
density difference p&

—p, between the liquid and vapor
phases and behaves asymptotically as

pI pv
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where p, is the critical density and t =(T—T, )/T, the
reduced temperature. Bo is a system-dependent critical
amplitude.

Similarly, the isothermal compressibility a.r (a.r)
above (below) the critical point diverges with an exponent
y (y ) as

The exponents P, y, and 5 have been calculated for the
three-dimensional Ising model both by high-temperature
series expansions' and e expansions. '" Recent results
obtained by these methods agree well and furnish values
of P=0.325 —0.327, y+ =y = 1.237= 1.241. Given P
and y+—, 6 can be calculated from the scaling relation
y+=y =P(5—1). One obtains 5 to be between 4.79
and 4. 82.

The power laws for Ap, ~z-, and Ap given above are ex-
act only asymptotically close to the critical point. For
pure Auids, this asymptotic region is very small. There-
fore, for data taken at larger distances from the critical
point, contributions from the "irrelevant" operators to
the energy density have to be taken into account by in-
cluding correction to scaling terms. For example, the
order parameter should be fitted to a function of the form

bp=B, ( t)~[l+B, ( t) —'+B, (
—t) '+ ], —

where 6& and 62 are universal correction to scaling ex-
ponents. 6& has been calculated by high-temperature ex-
pansion, giving values of 6]=0.49+0.08, 0.54+0.05,
and 0.50+0.03, ' and from renormalization group calcu-
lations which find 6, =0.493+0.007. 62 is usually ap-
proximated by A2 =2A, . B] and B2 are nonuniversal
correction to scaling amplitudes.

The exponents P, y —,and 5 are related by a scaling
law, y=P(5 —1). Scaling also predicts that, even
though the individual critical amplitudes are system
dependent, certain combinations of them are universal,
for example, the ratios I 0+/I o and DOI o+Bo ' are ex-
pected to be system independent.

Measurements of these amplitude ratios have been re-
ported earlier. ' " In these publications, results obtained
by different experimental techniques were combined to
determine the amplitude ratios. This method, however,
is subject to errors due to the different data evaluation
methods used in the different experiments and, in particu-
lar, susceptible to effects caused by different determina-
tions of the critical temperatures, which affect the critical
amplitude ratios considerably. For a consistent deter-
mination of the amplitude ratios, all of the amplitudes
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should therefore be extracted from a single experiment.
In this way, the critical temperature can be determined
independently in the evaluation of the various quantities,
and agreement is an important check on the consistency
of the results.

This approach was followed by Weber' and later im-
proved by Pestak and Chan' ' who used a stack of capa-
citor plates to measure the density as a function of chemi-
cal potential in Ne, Nz, and HD. Their results are very
self-consistent and show good agreement with theory.
However, close to the critical point, their data are
affected by gravitational rounding which they correct for
by analyzing their data using the restricted cubic mod-

1
l5, 16

In order to minimize gravitational rounding, we used
an optical interference technique which is less susceptible
to gravitational rounding efFects. ' Like the capacitor
method, it allows measurements of the coexistence curve,
compressibility, and critical isotherm in a single experi-
ment. By confining the sample to a thin cell, gravity
effects can be minimized even close to the critical point,
so that no corrections due to beam bending have to be
made. We used a cell only 1.86 mm thick, which enables
us to approach the critical point as close as !t!=10
without encountering appreciable errors due to gravita-
tional rounding. For measurements on the critical iso-
therm, only reduced densities hp* &4X10 were used
for the evaluation, for which beam bending errors are less
than 0.1%.

The remainder of this paper is organized as follows.
Section II describes the experimental method. Section III
discusses the results of the coexistence curve, compressi-
bility, and critical isotherm, and Sec. IV presents the re-
sults of the amplitude ratios and compares them with
theoretically predicted values and the results of other ex-
periments. '

II. EXPERIMENTAL

The experiments were carried out on fiuoroform (Freon
23, CHF3), which has its liquid-gas critical point at the
pressure I', =4.75 MPa, temperature T, =26.0 C, and
density p, =0.527 g/cm . The gas was obtained from
Matheson Gas Products and had a purity of 98%, as
specified by the supplier.

An optical sample cell with parallel sapphire windows
spaced 1.86+0.01 mm apart was filled with Auoroform at
an average density as close to p, as possible. The devia-
tion from critical filling can be estimated by observing the
rise or fall of the meniscus between the liquid and vapor
phase as the critical point is approached. Our cell was
slightly overfilled, the deviation from critical density be-
ing less than 0. 1%%uo.

The cell was placed into a two-stage thermostat which
controlled the temperature to an accuracy of +0.2 mK.
Its temperature was measured by an HP 2804A quartz
thermometer, the probe of which was embedded in the
innermost heating stage of the thermostat. Inside the
cell, the Quid is compressed under its own weight, the
density at the bottom being larger than the critical densi-
ty, and at the top, lower. This leads to an equilibrium
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FIG 1 Experimental setup

density profile p(z). The density p is related to the refrac-
tive index n via the Lorenz-Lorentz relation

1 (n —1)
& (n +2)

Here, X is the Lorenz-Lorentz function which depends,
in general, on density and temperature. X has been mea-
sured for Auoroform in our laboratory by recording, for a
given density, the corresponding refractive index in the
one-phase region close to the coexistence curve. The re-
sults of this experiment will be published elsewhere. '

The variation of density with height within the cell is
accompanied by a variation of refractive index with
height. Thus from a measurement of refractive index the
density can be directly inferred.

The experimental setup is shown in Fig. 1. The light
source was a 5-mW He-Ne laser with wavelength A. of0
6328 A, rendered uniphase by a spatial filter 'and then col-
limated into a parallel beam of diameter 2.5 cm. Two po-
larizers reduced its intensity to minimize optical heating
of the sample. The cell is placed in a Mach-Zehnder in-
terferometer. A beam splitter divides the incoming beam
into a "sample beam" traversing the sample and a refer-
ence beam. Coherent light passing through the sample at
different heights experiences different phase shifts, de-
pending on the local refractive index at that height.
Upon recombining the "sample beam" with the reference
beam, an interference pattern is observed. The fringes in
this pattern vary with the temperature of the sample.
This interferogram is recorded by a slit camera with con-
tinual film transport in the image plane of a focusing
lens. ' As the cell temperature is varied, the density
profile within the cell changes, leading to a change in the
interference pattern. By recording the interferogram as a
function of temperature, one can deduce the temperature
dependence of the density profile, and obtain information
on the order parameter along the coexistence curve, the
compressibility close to T„and the critical isotherm, all
from the same experiment. In this way, self-consistency
of the results can be achieved.

As our cell had such a small path length (1.86 mm),
gravity effects can be neglected: at reduced temperatures
as small as ( T —T, ) /T, = —2 X 10, gravitational
rounding introduces an error of only about —,

' fringe close
to the meniscus, which is smaller than the accuracy with
which fringes can be counted close to the critical point.

A listing of the experimental data used in this publica-
tion is available from the AIP.
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III. RKSUI.TS

A. Order parameter

Below T„as the temperature is lowered, the density
difference between liquid and vapor phases increases,
causing interference fringes to "disappear" into the image
of the meniscus. The order parameter can be obtained by
counting, as a function of temperature, the number of
"missing" fringes on both the liquid and vapor side of the
meniscus. These numbers are related, through the
Lorenz-Lorentz relation, to the density differences p&

—p,
and p, —p„, respectively. Their sum is therefore propor-
tional to the order parameter bp=(pt —p„)/2p, . Data
have been taken in the reduced temperature interval
10 (—t &4.2X10 . Table I shows the results of
various fits of the data to the expression

d p=B, ( —t)t'[1+B, ( t)~+B—, ( —t)'~

+B,( —t)'~] .

The first fits in the table were performed on data in the
temperature range —t ~ 10, in which only one correc-
tion to scaling term has been taken into account and
higher-order terms are assumed negligible. Fits over the
entire temperature range, using two correction to scaling
terms, favor a value of P=0.331 which is slightly higher
than the theoretical value (P=0.325 —0.327). Adding
the third correction term, we obtain P=0.3289, very
close to the predicted value. Figure 2 shows the data
(640 points from four individual runs). In this plot, the
leading temperature dependence has been divided out,
and log, o[bp/( t)~] is plotted ve—rsus ( t). —
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FIG. 2. Sensitive log-log plot of coexistence curve data as a
function of reduced temperature. The curve corresponds to a fit
with three correction to scaling terms and with the critical ex-
ponents fixed at P=0.327 and 5=0.5

gradient of the density profile is highest and thus the
compressibility is largest. Figure 3 shows a plot of
compressibilities in both the one and two phase regions.

In the one phase region, a least-squares fit of the loga-
rithm of I~T+ as a function of the logarithm of t (shown in
the figure) yields an exponent y+ = l.230(8) and a critical
amplitude I

&&
=0.058(3). The critical temperature was

B. Compressibility

The chemical potential Ap, as measured from the men-
iscus, is related to the height Az in the cell via the rela-
tion Ap=g Az. Thus, the compressibility at constant
temperature ~T,

KT— ap ~. dp (7)
p c)p p g d

is obtained from our data by measuring the spacing dz of
the interference fringes corresponding to density
difference dp closest to the middle of the cell, where the

JD
CO ~Ch

D.

TABLE I. Coexistence curve fits. Fits 1 and 2, temperature
interval 10 ( —t (10; fits 3—7, temperature interval
10 (—t & 4.2 X 10 . Exponent values in parentheses were
kept fixed for the fit.

Fit

{0.327)
0.3282
(0.325)
(0.327)
0.3310
(0.327)
0.3287

(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)
(0.5)

1.744
1.765
1.717
1.747
1.806
1.739
1.770

0.94
0.82
0.96
0.85
0.64
1.03
0.85

—1.85
—1.59
—1.08
—3.39
—2.34

5.3
2.9

I I I I I lllj I I I I I ill]
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FIG. 3. Compressibility results. The data for T & T, (two-

phase region) are represented by open circles (vapor phase) and

open triangles (liquid phase). Data in the one phase region
(T& T, ) are represented by solid circles, and the curve is a
power-law fit to them, with exponent y =1.230.
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TABLE II. Compressibility fits. Exponent values shown in

parentheses were kept fixed for the At.

O
Q0

Or'
~ Ap =0.0457

Dp ~0.0498
Ap =0.0540~ Ap =0.0581
h, p =0 0623

T) Tc

one-phase region

1.230+0.008

(1.23)
(1.24)

0.058+0.005

0.058+0.003
0.052+0.002

T&T
two-phase region

1.18+0.03

(1.23)
(1.24)

Io

O.619+0.008

0.012+0.002
0.011+0.001

O~~~
C)

I

-0.012 -0.009 -0.006 -0.003 0.000 0.003
temperature (T-T,)

0 006 0 009

determined as a free parameter and found to agree with
the value found from the fit of the coexistence curve to
within 0.2 rnK. The figure shows that the straight line is
sufficient to describe the data. Correction to scaling
terms in this temperature range would be of the order of
l%%uo and cannot be discriminated from the statistical
scatter of the data.

In the two-phase region, data extraction is much more
difficult, due to a lower curvature of the interference pat-
tern, and thus the data in this region are somewhat more
scattered. A two-parameter fit for T & T„ for which the
critical temperature was kept fixed at the value found in
the one-phase region, yields y =1.18(3), which is sub-
stantially lower than the theoretical value ( y =y+
=1.24). In order to obtain information on the critical
amplitudes, I o, data in both regions were fitted by power
laws with y = 1.23 (corresponding to the exponent in the
one-phase region) and @=1.24 (the theoretical value).
For these fits, the critical temperature was held fixed at
the value found in the coexistence curve fit. The results
of these fits are summarized in Table II.

C. Critical isotherm

In order to extract the critical amplitude Do of the
critical isotherm, we follow the approach suggested by
Pestak and Chan. ' At temperatures close to T, the dis-
tance Az of several interference fringes from the meniscus
was measured. Then, for each temperature, the quantity

Sz
Dt (8)

&,(&p*) ~, (&p')
was calculatect for the reduced density

p =~p(hz) p ~/p

corresponding to this fringe. The value of 6 was deter-
mined using the scaling relation y=p(5 —1) and the
values of y and P determined earlier in the same experi-
ment. On the critical isotherm, all the values of D, thus
calculated should coincide (this will give the value of the
critical amplitude Do). However, for data taken at tem-
peratures away from T„ the functional relation
AIJ, =Do~(p p, )/p, ~

is not precisely —fulfilled. Below T„
the density profile is "steeper" than on the critical iso-
therm and thus the values of D, as calculated from for-
mula (8) are smaller than the critical value Do. At any
given temperature T & T„ the values of D, decrease with
increasing distance hz from the meniscus. Above T„the

FIG. 4. Example of the graphical method used for extracting
the amplitude of the critical isotherm. The lines correspond to
fringes with a Axed density di6'erence Ap* from the critical den-

sity. The lines intersect at the critical temperature; this inter-

section determines the critical amplitude Do.

density profile is "less steep", and therefore the D, values
are larger than Do.

In order to assure that gravitational rounding does not
play an appreciable role, only data with hp*&4X10
were taken into account for which beam-bending errors
are less than O. l%%uo.

' A symmetrical density profile was
assumed, and the bz used for the evaluation was the
mean of the vapor and liquid values. The data of one run
(with 5=4.80) are shown in Fig. 4. As can be seen, lines
corresponding to various values of b p* indeed do inter-
sect at the critical temperature, and this furnishes the
amplitude Do. Using 5=4.76 (corresponding to
P=0.327, y=1.23), one obtains DO=3. 5+0.2, whereas
for 5=4.80 (corresponding to /3=0. 327, y=1.24), one
obtains Do =3.85+0.3.

D. Critical temperature

For each run, the critical temperature was determined
in three different ways: from a least-squares fit to the
coexistence curve data, from a power-law fit to the one
phase compressibility, and from the intersection of D,
lines belonging to different densities near the critical iso-
therm. The three values of T, thus obtained agree to
within 0.2 mK, which indicates that the results for the
critical amplitudes are quite self-consistent.

Data were taken over a period of about 8 months.
During this time, the critical point shifted steadily at a
rate of =4 mK/month. This may be due to a reaction of
the Auoroform with the indium seals of the cell or a slow
"outgassing" from the cell walls or windows. Within ex-
perimental error, this drift does not affect the critical am-
plitudes. It has been corrected for when evaluating
several data sets together.

IV. DISCUSSION

Table III presents a collection of the various critical
amplitudes from fits with different critical exponents and
Table IV shows the corresponding values of the critical
amplitude ratios. The experimental values are in good
agreement with theoretical predictions, " independent of
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TABLE III. Critical amplitudes of fluoroform. Exponent values in parentheses were kept fixed for
the fit.

(0.327)
(0.327)
(0.325)
(0.325)

(1.23)
(1.24)
(1.23)
(1.24)

(4.76)
(4.80)
(4.79)
(4.82)

Bo

1.743+0.003
1.743+0.003
1.722+0.003
1.722+0.003

0.058+0.003
0.052+0.002
0.058+0.003
0.052+0.002

Io

0.012+0.002
0.011+0.001
0.012+0.002
0.011+0.001

Do

3.5+0.2
3.85+0.30
3.75+0.30
4.1+0.3

TABLE IV. Critical amplitude ratios

r,+ yr, D I-+go-i

(P=0.327,
(P=0.327,
(P=O. 325,
(P=0.325,

y=1.23)
y = 1.24)
y =1.23)
y =1.24)

Our data
4.8+0.6
4.8+0.6
4.8+0.6
4.8+0.6

1.64+0. 12
1.61+0.14
1.70+0. 14
1.69+0.14

the precise values of exponents one chooses for the fits.
There is excellent agreement between the amplitude ra-
tios obtained by different choices of the critical ex-
ponents. Our results are not accurate enough, however,
to decide whether high-temperature series expansions or
& expansions yield the better values of the ratios.

We also find good agreement with the results of Pestak
and Chan' from measurements on N2 and Ne. For the
amplitude ratio DOI 0+BQ ' the uncertainty in our results
is lower than theirs due to the fact that close to the criti-
cal point, their data are strongly influenced by gravita-
tional rounding which causes a large error in the ampli-
tude D0. Our experiment, being less affected by gravita-
tional rounding errors, determines Do to much higher ac-
curacy, resulting in a more precise value of the amplitude
ratio.

In order to check the self-consistency of our data, the
critical temperature was determined separately from fits
to the coexistence curve and compressibility data and
from the intersection of the lines of constant density as
used for the evaluation of the critical isotherm. The
values of T, obtained by these three different methods
agree to within 0.2 mK. A discrepancy of the T, values
can be an indication of gravitational rounding or
insufhcient equilibration time between temperature steps.
%'e thus conclude that our data are to a large extent free
of these errors.

Also, capillary effects do not play an appreciable role
in this system; they would manifest themself as a smear-
ing out of the meniscus separating the liquid and the va-
por phase. On our films, the meniscus is always very nar-
row, which indicates that there is negligible wetting of
the sapphire windows, even far from the critical point.

A more subtle point is the behavior of the Lorenz-
Lorentz function close to the critical point. Both density
and refractive index have been predicted to have an in-
herent critical anomaly, ' both with the same ex-
ponent, which makes it difFicult experimentally to distin-
guish between the two phenomena. We observe a weak
critical anomaly in the density close to T„' of the same
order of magnitude as observed in other experiments on
nonpolar substances. No definite experimental evidence
exists for the anomaly of the refractive index at optical
frequencies. Our method of determining the Lorenz-
Lorentz function does not allow us to perform precise
measurements close to T, (Ref. 18) which would detect
such an anomaly. We therefore have to assume X in Eq.
(5) to be a constant in the critical region.

The compressibility data do not extend far enough
away from T, to detect any deviations from pure power-
law behavior, but the evaluation of the coexistence curve
clearly shows the importance of correction-to-scaling
terms. Even though three correction terms are sufhcient
to describe the data in the temperature interval
10 & —t &2X10, the large variations in the ampli-
tudes B2 and B3 from fit to fit indicate that using a power
series for the evaluation is not satisfactory any more, and
that the data should instead be evaluated using crossover
theories. ' However, when both P and b, are kept fixed
at their theoretically expected value, the amplitude B0
changes very little (by less than 0.5%%uo) when more
correction-to-scaling terms are included. Thus the lead-
ing critical amplitude can be reliably extracted indepen-
dent of the exact behavior of the coexistence curve far
from critical.

The absolute value of the critical amplitude B0 is con-
siderably higher than the ones measured for nonpolar
gases, ' ' ' whereas Do is appreciably lower. ' This is
probably due to the fact that Auoroform, being a polar
gas, is not expected to obey the "principle of correspond-
ing states" as well as nonpolar fiuids do. The same
trend has also been observed for H20 and 020. It is in
accord with the theory of scaling, however, that polar
Auids, even though deviating in the absolute values of
their critical amplitudes, still furnish the same amplitude
ratios as nonpolar ones.

N2
Ne

high-temperature series
expansion

Pestak et al.
4.8+0.6
4.8+0.8

Theory
5.07
4.80

1.71+0.5
2.05+0.8

1.75
1.6
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