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We present ab initio calculations for the solution energies of 3d impurities in Cu and Ni hosts.
The calculations are based on density-functional theory and the KKR Green's-function method.
We apply a grand-canonical energy functional which is extremal against non-particle-conserving
charge variations and give an extension of Lloyd's formula for complex energies. The full nonspher-
icity of the charge density is used in the double counting terms. Test calculations show that it is
sufficient to take the perturbation of one shell of host atoms around the impurity into account. The
calculated solution energies of 3d impurities in Cu and Ni are in good agreement with the experi-
mental data and with the values predicted by Miedema's Inodel.

I. INTRODUCTION

Solution energies of impurities are the most important
properties determining the energetics of dilute alloys.
This paper aims at calculating these quantities on an
ab initio basis using density-functional theory. Whereas
total-energy calculations for ordered alloys are nowadays
standard, reliable calculations for dilute alloys or even
concentrated disordered alloys are considerably more
difficult. The basic problem is the loss of translation in-
variance so that band-structure methods cannot be ap-
plied. In the dilute limit, Green's-function methods'
off'er a convenient and elegant way to solve the inhomo-
geneous problem of a single impurity in an otherwise
ideal crystal. For impurities in transition metals only
model calculations of the solution energies based on the
tight-binding method have been performed up to now.

Our calculations apply the Korringa-Kohn-Rostoker
(KKR) Green's-function method ' which has been
developed in our group. This method relies on two basic
assumptions: (i) In each cell the atomic potentials are ap-
proximated by spherical potentials of muffin-tin or
atomic-sphere form; (ii) the potential perturbation is lo-
calized in the vicinity of the defect. Extensive calcula-
tions have shown that the latter assumption is not at all
serious if only the local properties of the defect are of
concern. Here we will show that for a reliable calculation
of solution energies in fcc crystals it is sufficient to in-
clude the potential perturbation of the impurity and the
first shell of neighbors only. For the potentials we as-
sume an atomic sphere rather than a muffin-tin form.
The slight inaccuracies introduced by the overlapping of
the potentials should be more than balanced by the better
space filling of the Wigner-Seitz spheres. In addition to
the above approximation we also assume (iii) that lattice
relaxations around the impurity can be neglected. This
limits our calculations to systems with not too large size

misfits. Due to the neglect of lattice relaxations our cal-
culated solution energies should always be somewhat too
high.

The general formalism of the total-energy calculations
is described in Sec. II. The basic strategy is to exploit the
extremal properties of the total energy to the largest pos-
sible extent. For instance, the spherical Wigner-Seitz po-
tentials are only used to generate the wave functions and
the charge densities, whereas the full nonsphericity of the
charge density is used to calculate the double-counting
contributions, i.e., both the Coulomb as well as the
exchange-correlation terms. This is achieved by using a
rnultipole expansion of the charge density and the poten-
tial. All integrals over the Wigner-Seitz calls are replaced
by integrals over Wigner-Seitz spheres. Since the Friedel
sum rule cannot be satisfied exactly in the calculation, we
introduce a grand-canonical energy functional which is
also extremal against non-particle-conserving trial solu-
tions. The single-particle energies are calculated by
Lloyd's formula in the adaption of Lehmann. " By taking
advantage of the analytical properties of the Green's
function, we calculate the charge density as well as the
single-particle energies by a contour integration in the
complex energy plane. ' ' Thus the Kohn-Sham equa-
tions are only solved for complex energies. This leads to
problems in the application of Lloyd's formula in its trad-
itional form since the phase shifts 5&(E) occurring in this
formula are nonanalytical for complex energies. There-
fore, in the Appendix we derive a proper generalization
of Lloyd's formula having the desired analytical behavior
for complex energies.

In Sec. III we present test calculations for V impurities
in Cu. We discuss particularly the convergence of the
solution energies by adding up to four shells of perturbed
neighbor potentials to the calculation. We also discuss
the convergence with respect to the maximal angular
momentum I „used in the expansions for the wave
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functions and charge densities. In Sec. IV we present re-
sults for 3d impurities in Cu and Ni hosts. These systems
are very different in so far as 3d impurities show an en-
dothermic solubility in Cu but an exothermic solubility in
Ni. We discuss the importance of magnetic effects and
the reliability of the single-site approximation, which
forms the basis of KKR CPA (coherent-potential approx-
imation) calculations for concentrated alloys. By com-
paring our results with experimental values as well as
values predicted by Miedema's model' we find that the
experimental trends are reproduced and that the agree-
ment is gratifying.

II. THEORETICAL METHOD

A. Solution of the Kohn-Sham equations

Our calculations are based on multiple-scattering
theory using the KKR-Green's-function method, which
we will outline shortly for paramagnetic systems; the gen-
eralization to magnetic systems is obvious (Ref. 3). For a
lattice of muffin-tin potentials centered at positions R"
the Green's function can be expanded into eigensolutions
of these spherically symmetric local potentials:

G(r+R", r'+R";E)=&E 5„„.g Yt (r)HP (r&, E)R&(r&,E)Yt (r')+ g Yt (r)RP(r;E)Gtt, (E)RP (r', E)Yt.(r') .
L L, L'

Here the vectors r and r' are restricted to the Wigner-
Seitz cell and r & (r & ) denotes the larger (smaller) value
of r=~r~ and r'=~r'~. The subscript L=(1,m) denotes
angular-momentum numbers and Yt (r) are real spherical
harmonics. The regular [RP(r;E)] and irregular solu-
tions [H, ( r, E ) ] of the radial Schrodinger equation for
the nth muffin-tin potential are defined by their asymptot-
ic behavior outside the muffin-tin sphere of radius S, for
r~S

Rt"(r;E)=j&(V'Er )++EtP(E)h&(V Er ),
HP (r;E)=h&(V'Er),

where j& and h& are the spherical Bessel and Hankel func-
tions and tp (E) is the usual on-shell t matrix for the nth
potential.

All the information about the multiple scattering be-
tween the muffin tins is contained in the structural
Green's-function matrix Gtt. (E). It can be related to its

0
counterpart Gpt (E) for the host crystal by an algebraic
Dyson equation:

Gtt. (E)=GPt, (E)+ g GPt. , (E)bt(". (E)Gt",.t, (E) .
n", L"

(3)

The summation goes over all sites n
" and angular

momenta L" for which the perturbation At( (E)
=tp" (E)—t p ~ (E) of the t matrices t of the host is
significant. Typically we include angular momenta up to
l= 3 and a few shells of perturbed host potentials around
the impurity. The Dyson equation is solved using a
group-theoretical decomposition into irreducible subma-
trices, which considerably reduces the computer time.

The charge density is obtained from the Green's func-
tion by

2 E 2n(r)= ——f dE ImG(r, r;E)= ——Imgdz G(r, r;z) .

Since the Green's function is, as a function of the com-
plex energy variable z, analytical on the whole physical
sheet with the exception of the real axis, the energy in-

tegral can be transformed to a contour integral in the
complex energy plane, ' ' provided this contour ends at
the Fermi energy EF on the real axis. The contour in-
tegral can be very easily calculated with rather few ener-

gy points since for complex energies z the Green's func-
tion is rather structureless. In practice this means an
enormous saving of computer time. "

In the calculations we employ density-functional
theory in the local-density approximation of von Barth
and Hedin but with the parameters as determined by
Moruzzi et al. ' All potentials are calculated self-
consistently by an iteration technique. One problem
worth discussing in some detail is connected with the
jump of the potential at the muffin-tin or Wigner-Seitz ra-
dius. In solving the radial Schrodinger equation, e.g. , by
Numerov's or an equivalent method, one has to choose a
certain radial mesh. The errors of the wave functions
vary with a high power of the mesh size 6, e.g. , -5, pro-
vided the potential is smoothly varying. On the other
hand, large errors are introduced if one integrates over
the region of the potential jump. This however is not
necessary since the wave function outside is known
analytically. For instance, in calculating the t matrix one
needs the logarithmic derivative of the radial wave func-
tion at the muffin-tin or Wigner-Seitz boundary. This can
be obtained by extrapolating from inside to the boundary
so that no numerically calculated values outside the
boundary are needed.

B. Extremal properties of the total energy

It is well known that the total energy E [ n (r) ], given as
the sum of the kinetic energy T, [n(r)], the Coulomb en-

ergy U[n(r)], and the exchange-correlation part
E„,[n(r)],

E [n(r)] = T, [n(r)] + U[n(r)] +E„,[n (r)],
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is extremal against charge variations 5n(r) around the
ground-state density. From the equation

5E= f dr 5n(r)=EF f dr5n(r)6E
5n(r)

one sees that 5E vanishes, if f dr 5n(r) =0, i.e. , as long
as the trial charge density n (r) gives the correct particle
number N= J dr n(r). Contrary to the usual band-
structure methods where EF is adjusted to yield charge
neutrality, this cannot be achieved in point-defect calcu-
lations since the Fermi energy is fixed by the host. In
metals perfect screening can only occur if an infinitely
long-ranged perturbation potential is allowed. The viola-
tion of charge neutrality is typically 0.1 or 0.01 electrons,
if one or four shells of perturbed neighboring potentials
are included. This problem can be avoided, if the gen-
eralized functional E I n ( r) },'

single-particle energies e, , leading to the following
decomposition of the total energy E into single-particle
(E, ). and double-counting (EDC) contributions.

Ern(r)} =E, +EDC

E, =g e, EF—f n(r)dr —N
l

=EFN+2 de e —EF n e

E
=EFN —2 de N e

(10)

(12)

Here n(e) is the density of states and N(e) the integrated
density of states per spin direction,

1 En(e)= ——f drlmG(r, r;e), N(E)= f den(e) .

E(n(r)} =EIn(r)} EF —f n(r)dr —N

is considered. Clearly

(6) The double-counting terms are given by

Eoc = —f n(r) V,ft(r)dr+ U[n(r) } +E„In(r)}. (13)

5E= fdr —EF 5n(r)=06E
5n(r)

vanishes for general, i.e. , also for non-particle-conserving,
variations 5n(r). Physically this corresponds to the tran-
sition to a grand-canonical functional, for which the
chemical potential rather than the particle number N is
the basic variable. One can also understand the correc-
tion in Eq. (6) such that the missing charge
b,N=N —f n(r)dr is added far away from the impurity
at the Fermi level of the host giving an additional energy
contribution EFAN.

It is noteworthy that the grand-canonical functional
E[n(r)} does not depend on the choice of the zero-
energy level, as can be easily shown. A change of the en-
ergy scale by Vo, which can be interpreted as a constant
potential, leaves the wave functions and the charge densi-
ty unchanged. The same is also true for the kinetic and
exchange-correlation energies. The Coulomb energy
UIn(r)} changesby

hU= Vo f dr n(r) —g Z; (8)

and will be discussed in the next subsection.
The energy integration for the single-particle energies

can also be transformed into a contour integral due to the
analytical properties of the Green's function:

E, =EFN ——Imgdz(z EF)f dr G(r, —r;z) .
2

In the case of a point defect in an otherwise ideal crystal
one needs the change b, n(e) of the density of states due to
the defect and the change b,N(e) of the integrated density
of states. This change can be calculated by either a
shell-by-shell summation of the changes of the local den-
sities of states or more elegantly by the formula given by
Lloyd and Lehmann. In this formula, representing a
generalization of the Friedel sum rule to multiple-
scattering problems, the real-space integration has been
performed analytically, resulting in

b,N(E) =—g [5t"(E)—5 t"(E)]=1
n, L

——Im ln Det~5„„5tL.—G LL.(E)ht&" (E)
~

.

since the potential acts also on the nuclear charges Z, .
By considering that the Fermi level is also shifted by Vo,
we obtain for the change of E

DE= VO N —gZ,

which vanishes for a neutral (impurity plus host) system.
Thus one sees that the grand-canonical functional E must
be used. Otherwise the result would critically depend on
the arbitrary choice of the zero-energy level, except when
charge neutrality can be satisfied exactly.

C. Single-particle energies and Lloyd's formula

With the help of the Kohn-Sham equations for the trial
potential V,ft(r), the kinetic energy is replaced by the

Here 5t(E) denotes the phase shifts far the nth muffin-tin
potential.

In order to evaluate the single-particle energies by a
contour integral in the complex energy plane, we need an
analytical continuation of b,N(E) for complex energies z
with no poles on the physical sheet. This is no problem
for the second part in Eq. (15) describing the multiple-
scattering contribution since here only the structural
Green's functions and the t matrices enter, both of which
have the proper analytical behavior. However, this is a
problem for the phase-shift function 5t(E), the analytical
continuation of which indeed has poles on the physical
sheet. This is most easily seen in the case of resonance
scattering where the derivative d 5I /dE represents a
Lorentzian,
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(16)

which has simple poles z=E0+iI on both sides of the
real axis, i.e., also on the physical sheet. In the Appendix
we will derive a generalization of Lloyd's formula which
has the desired analytical properties on the physical
sheet. The result is

1 ai"(E)
hN(E) = —g Im ln

a i(E)

——Im ln Detl5„„5Lt ~
—6 tL,(E)b, tt". (E)l .

(17)

a&(E)= la&(E)le' " (19)

which guarantees that the generalized Lloyd formula (17)
is identical with the original one (15) on the real axis.

The basic idea in deriving this formula was to write the
phase shift 6&(E) as the imaginary part of a complex
quantity Ina&(E) which for complex energies has the
desired analytical properties, just as the density of states
is related to the imaginary part of the Green's function.
The coefficients a, (z) are determined by the behavior of
the regular solution Ri"(r,z) at the origin,

Ri"(r, z ) =a&(z)g&(&z r ) for r ~0,
and describe the enhancement over the potential-free
solution j&(&z r ) at r =0. For real energies they are also
directly connected with the phase shifts 6t"(E) by the rela-
tion

D. Coulomb and exchange-correlation energies

The evaluation of the double-counting corrections (13)
essentially requires the calculation of the Coulomb and
exchange-correlation energies. The Coulomb energy
Utn(r)) can be written as'

U= —f dr n(r) V, (r) —g Z"VM(R")
1

n

(20)

Zn

„, I.+R —R"'I (21)

For the evaluation of (20) and (21) we use a multipole ex-
pansion for the potential and the charge density in each
cell,

V,"(r)=g Vt" (r ) YL(r), n "(r)=g nt" (r) YL (r),
L

(22)

and replace all integrals over Wigner-Seitz cells by in-
tegrals over Wigner-Seitz spheres with radius R ~s. After
some algebra this leads to

Here V, (r) is the electrostatic potential which a test elec-
tron at position r experiences in the field of all electrons
and all nuclei. The Madelung potential VM(R ) is identi-
cal with V, (R ), except that the diverging interaction
with the nucleus at position R" is left out (no self-
interaction). In cell-centered coordinates, where r and r'
are vectors in the Wigner-Seitz cell, the electrostatic po-
tential V,"(r) in the nth cell is given by

V,"(r)=g dr'
n" (r')

lr —r'+R" —R"
I

Z 4'TT r, 7 ws, p
Vt" (r)= —5to + f dr', , nL(r')+ f dr',

, nL(r')2l+ 1 0 p
+ r y'

+( —r )'
"ws

AL" Z" +g BLt f dry 'r"+ nt",'(r)
0

(23)

g nn'
L

g nn'
LL'

YL(R"—R" ),2I+1 IR"—R" I'+'

(4'�)'
(2l + I )!!(2l'+1)!!

(21"—1)!!
IRn Rn'I l"+ i

L II

I

where the constants ALnn and BLL are given by

(24)

tential. The spherically symmetric part Vi" o(r) is also
required for the trial potential V,& in the Kohn-Sham
equations.

The largest contribution in the Coulomb energy arises
from the intracell electron-nucleus interaction given by

(25)

X Y~"(R"—R" ),
and CLL L- are Gaunt coefficients. The Madelung poten-
tial V~(R") follows directly from (23) by disregarding the
first term, i.e., the self-interaction. For r ~0 only the an-
gular momentum l=0 contributes to the Madelung po-

This term, however, exactly cancels against the same
term arising from the effective potential V,it in (13).
Therefore, the numerical accuracy can be increased if one
introduces modified potentials V,s(r), V, (r), and V~(R")
such that the intracell electron-nucleus interaction is ex-
cluded. ' The double-counting energy (13) is then given
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EDc= — dr n r V& r

+— dr n r V, r — Z"V„R"

+E„,In(r)I . (26)

~ws
E„,=g f r dr nL(r)e„",~(r) .

n, L 0
(28)

The xc coeKcients e„",L(r) are evaluated by a Gauss in-
tegration with weighting coefficients w,

e„",I (r) = J d 0 Y~ (Q)e„,(n "(r,0) )

= g tv, Yl (fl, )e„,(n "(r,Q, )) . (29)

Detailed calculations show that an accuracy sufficient for
all practical porposes can be achieved with 72 mesh
points 0, . A similar integral is also needed for the
exchange-correlation potential entering V„&. Here only
the spherically symmetric I =0 term is required.

III. TEST CALCULATIONS FOR V IMPURITIES IN Cu

In this section we present test calculations for V im-
purities in Cu in order to demonstrate the convergence of
the calculations with respect to two important pararne-
ters: (i) the number of perturbed shells of Cu atoms taken
into account in the calculation, and (ii) the maximum an-
gular momentum I,. „used in the expansion of the wave
functions and the Green's functions, respectively.

Table I lists the result for the shell convergence. First,
the solution energy E, (See Sec. IV) has been calculated
in the single-site approximation where only the impurity
potential is calculated self-consistently and all host poten-
tials are fixed to their ideal-crystal values. Then succes-
sively the potentials of the first shell of atoms, the first

The exchange-correlation energy in the local-density ap-
proxirnation is given by

E„,In(r)I = Jdr n(r) E„,(n(r)) . (27)

Similar to the Coulomb energy we also calculate E„.us-
ing the full, i.e., nonspherically symmetric, charge densi-
ties. In each cell we expand the energy e„,(n "(r)) into
spherical harmonics, yielding r-dependent coefficients
e"„,L (r). The total exchange-correlation energy is then
given by

two shells, the first three shells, and finally the first four
shells are added to the calculation and determined self-
consistently. In all these calculations a maximal angular
momentum I,„=3 has been used. From Table I one
sees that the convergence is practically complete, once
the potentials of the nearest neighbors, i.e., the first shell,
are determined self-consistently. This is, however, only
true if Lloyd's formula (17) is used to calculate the
single-particle energies. If they are calculated by sum-
ming the shell-by-shell contributions to the local densities
of states explicitly, the convergence is very slow and
clearly not completed after four shells. The difference be-
tween these calculations is that in Lloyd's formula all
changes of the local densities of states over the infinite
crystal volume have been summed implicitly. The ex-
tremeley good convergence obtained by Lloyd's formula
can be explained by the frozen-potential theorem. ' Un-
der frozen-potential conditions, if, e.g. , only the poten-
tials of the impurity and the first-shell atoms are relaxed,
but all others are frozen to their ideal-crystal values, the
changes of the total energy due to the perturbed density
of states and charge densities in the "outer" region are
given in first order by the single-particle energies alone,
which are correctly evaluated using Lloyd's formula.

Test calculations for the angular-momentum conver-
gence are shown in Table II. In solving the radial
Schrodinger equation and the Dyson equation (3), an
angular-momentum cutoff of l,„=2, 3, and 4 has been
used. One shell of perturbed potentials is included and
the single-particle energies are calculated using Lloyd' s
formula. The angular-momentum convergence is rela-
tively slow, and I „=2is clearly not sufficient.

Finally, we have tested the angular-momentum expan-
sion for the charge density which is necessary to evaluate
the Coulomb and exchange-correlation energies. We
found that a maximal angular momentum I' „=4 is
sufficient for a reliable calculation of these energies. The
nonsphericity of the charge density can have an impor-
tant effect on the total energy. In the case of V in Cu the
resulting solution energy is 0.80 eV, i.e., 0.21 eV too high,
if the nonspherical components of the charge density are
neglected in evaluating the double-counting energies.

IV. SOLUTION ENERGIES OF 3d IMPURITIES
IN Cu and Ni

In this section we present results for solution energies
of 3d impurities in Cu and Ni. They were calculated us-
ing maximum angular momenta l „=4 for the Careen's

Two shellsOne shell

TABLE I. Test of the shell convergence for a V impurity in Cu. In the calculation successively only
the impurity potential [single-site (SS)] and then one shell, two shells, three shells, and four-shells of
neighboring potentials were allowed to relax and be calculated self-consistently. A maximum angular
momentum I,„=3 was used. Two ways of estimating the single-particle energies (Lloyd's formula and
local summation) are listed. Given are the solution energies for V in Cu in eV/atom.

E, (eV) SS Three shells

Lloyd
Local summation

1.4433
1.6043

0.7299
1.9253

0.7300
1 ~ 3810

0.7298
0.7520

0.7303
0.5178
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TABLE II. Test of the angular-momentum convergence for a
V impurity in Cu. The results for the solution energy for V in

Cu are listed as a function of the maximal angular momentum

l,„used in evaluating the Green's function. The calculation
refers to one shell of perturbed potentials and the use of Lloyd' s

formula for the single-particle energies.

t, . -Cu

1.2— p

I
I
I
I

E, {eV)

I,„=2
1.10

I,. „=3

0.73

l,„=4
0.59

= d
with AE~~ = E~

l —c c
(31)

c=0
AE~~ is the energy difference between an 3 crystal with
a substitutional B impurity and the pure 3 crystal. This
is the central quantity to be calculated. The ideal-crystal
values E„and E~ are evaluated by self-consistent
augmented-spherical-wave (ASW) band-structure calcu-
lations.

The results for 3d impurities in Cu are listed in Table
III and shown in Fig. 1. We have performed both spin-
polarized and non-spin-polarized (paramagnetic) calcula-
tions. The differences are quite important and are due to
the large local moment of these impurities. (As far as the
electronic structure and the local moments are con-
cerned, the present results are practically identical to the
ones given by Braspenning et al. ' ) The largest magnet-
ic reduction (0.7 eV) is obtained for Mn, which also has
the largest moment (3.4ps) in the 3d series. The mag-
netic effects for the hosts are smaller and not so impor-
tant. (For Mn the ASW band-structure calculation for

functions and I' „=6 for the charge density in the
double-counting terms. The perturbed potentials on the
nearest-neighbor atoms are calculated self-consistently,
with the potentials of all other shells being unrelaxed. As
was demonstrated in the preceding section, this is
su%cient for a reliable calculation of solution energies.
The formation energy of a binary alloy A, ,B„where c
is the atomic concentration of B atoms, is defined by

E(c)=E& &
—(1 —c)E& cE& . — (3O)

l —c c

Here E~ ~ is the total energy of the alloy averaged
1
—c c

over all possible configurations. E~ and E~ are the ener-
gies of the pure metals. The solution energy E, '" is
given by derivative dE/dc in the dilute limit c —+0:
EB in A gE E +Es AB B A

08-0
0.6-

0.4-
OJ

c 0.2—
O

0.0

—0.2-

-0.0-

-0.6
Tt

o paramagnetic
l I I I l I I I

V Cr Mn Fe Co Ni Cu Zn

FIG. 1. Solution energies of 3d impurities in Cu (0, spin-
polarized calculation; 0, paramagnetic calculatior; X, experi-
mental values.

the host refers to a nonmagnetic fcc structure; an av. tifer-
romagnetic calculation for the actual ground-state struc-
ture is not available. ) By comparing with the experimen-
tal data we see that the calculations reproduce the experi-
mental trends quite we11. In particular, the minimum for
Mn, being purely of magnetic origin, shows up well.
Nevertheless, the differences for Mn and Cr are sizable.
Part of this might be due to lattice relaxations, which
would lower the energy, but have been neglected in our
calculations. One would expect them to be most impor-
tant for the early 3d impurities.

Table III also includes the values calculated from
Miedema's empirical formula. ' In agreement with the
we11-known success of Miedema's parametrization, these
values are of similar quality as our ab initio results. It is
especially amazing to see that the strong reduction for
Mn is given so well by Miedema's model, despite the fact
that the magnetism is included only very indirectly in this
approach.

Table IV and Fig. 2 show analogous results for 3d im-
purities in Ni. The electronic and magnetic structure of
3d impurities in Ni has been recently calculated by us '

TABLE III. Solution energies of 3d impurities in Cu. The central results are the values given by the spin-polarized calculation.
Also included are the results of a paramagnetic calculation and the spin-polarized results in the single-site approximation.
Miedema's values are taken from Ref. 13.

E, (eV)

Spin pol.
Paramagnetic
Single site (spin pol. )

Experiment

Miedema

—0.11
—0.11

0.89
—2. 5'

—0.80

0.59
0.59
1.30
0.52"

+0.17

0.79
1.20
1.23
0.45'

+0.54

Mn

0.31
1.02
0.60
0.12'
0.1'

+0.15

Fe

0.44
0.79
0.55
0.41'
0.40'

+0.62

Co

0.38
0.39
0.36
0.40'
0.35'

+0.36

Ni

—0.08
—0.08
—0.10

0.06"
0.03'

+0.27

CU Zn

—0.33
—0.33
—0.26
—0.34'

—0.32

'Reference 4.
Reference 27.

'Reference 28.
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TABLE IV. Solution energies of 3d impurities in Ni.

F, (eV)

Spin pol.
Single site
Experiment

Miedema

—1.86
—1.22

—1.76

V

—1.21
—0.33

—0.78

Cr

—0.25
0.26

—0.10'

—0.27

Mn

—0.54
—0,25
—0.56'

—0.34

Fe

—0.58
—0.30
—0.22'

—0.06

Co

—0.19
—0.16

p pp'

009
—0.01

CU

0.20
0.18
0.10'
0.12b

+0.27

Zn

—0.54
—0.45
—0.38

'Reference 4.
Reference 27.

and will not be repeated here. The agreement with the
experimental data is satisfactory. Only for Fe in Ni does
a larger discrepancy occur. Here also Miedema's param-
etrization accounts well for the experimental data.

An important difference between the Cu and Ni results
can clearly be seen from Figs. 1 and 2. Whereas all 3d
impurities, with the exception of Ni and Ti, have an en-
dothermic solubility in Cu, their solubility in Ni is
strongly exothermic. The basic difference is the strong
hybridization between the impurity d electrons and the d
electrons of Ni, which is to a large extent absent in Cu
due to the stronger localization of the d electrons. As a
typical example, we want to discuss the situation for V
impurities, which, according to our results, have a solu-
tion energy of +0.59 eV in Cu, but —1.21 eV in Ni.
Thus the solution energies differ by 1.80 eV. These
differences are also reflected in the local densities of states
of the V impurities in the Cu and Ni host, which are
shown in Fig. 3. In Cu essentially two features can be
seen: some hybridized intensity within the range of the
Cu d band between —6 and —2 eV, and the virtual
bound states around the Fermi energy which have a half-
width of about 2 eV. Due to the hybridization with the d
electrons of Cu, as well as due to the hybridization with
the sp electrons leading to the broadening of the virtual
bound states, some energy is gained. However, this ener-

0.2-

0.0

gy gain is not sufficient to overcome the lost cohesion of
the pure metals. For the Ni-host, on the other hand, the
situation is much more favorable. Due to the stronger
hybridization with the d electrons of Ni, the genuine vir-
tual bound states are pushed completely above the Fermi
energy and only Ni-like d states are occupied. Since the
empty virtual bound states have antibonding character,
whereas the occupied hybrides in the Ni d band are bond-
inglike, this strongly favors the formation of V impurities
in Ni and explains the large negative solution energies.
This situation just corresponds to the half-filled d band in
the transition-metal series, for which the cohesion energy
is maximal.

Finally, we want to briefly comment on the validity of
the single-site approximation, i.e., when the nearest-
neighbor potentials are assumed to be unperturbed and
only the impurity potential is calculated self-consistently.
This is interesting in connection with concentrated disor-
dered alloys where, due to the many configurations in-
volved, cluster-type calculations such as the present ones
are very difficult. Here the most successful theory is the
KKR CPA, which relies on a single-site approximation.
In the dilute limit, a self-consistent KKR CPA calcula-
tion should be in agreement with the single-site values
listed in Tables I and II. From the data we see that the
single-site approximation works fairly well only as long as
the valence difference is sufficiently small. For large AZ
differences, charge-transfer effects, etc. become important
and the single-site approximation yields unreliable re-
sults. For example, for V impurities this approximation
is in error by 0.9 eV for the Ni host and 0.7 eV for Cu.
Similar errors are therefore also to be expected in KKR
CPA calculations for such concentrated alloys. In this
connection we refer to recent results for dilute Cu-Pd al-
loys for which KKR CPA calculations lead to consid-
erable errors.

V. SUMMARY AND CONCLUSIONS

D

O

-'1.2—

-1.6-

-1.8-

Ti V Cr Nn Fe Co Ni Cu 2n

FICs. 2. Solution energies of 3d impurities in Ni ( spin-
polarized calculation; ~, Miedema's values; X, experimental re-
sults).

In this paper we have presented a formalism to calcu-
late total energies for point defects in metals which is
suitable for the KKR Green's-function method. For this
purpose we have introduced a grand-canonical energy
functional which is extremal against non-particle-
conserving charge-density variations. We have given an
extension of Lloyd's formula for the integrated density of
states, which allows one to calculate the single-particle
energies by the complex energy method. The wave func-
tions and charge densities are constructed by spherically
symmetric atomic-sphere potentials. However, the full
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2.

Vin CU spin + calculations.
Note added. As has been shown in Sec. II B and in the

Appendix, the Friedel formula, Eqs. (15) and (A10), can-
not be used for complex energies since the phase-shift
function 51(E) does not have the proper analytical prop-
erties. Instead, one might think that the replacement of

bN(E)= —g [5i(E)—5((E)]
1

7T

M
O
Q

—2.

2.

0
M0
0

V) 0

spin
r

—6 —4 —2 0 2 4
Energy (eV)

(b) V in Ni spin +

bN(E) =!m—g ln[t&(E )It&(E)]
VT

would solve this problem since both expressions agree on
the real axis and the t matrix t&(z) is analytic for complex
z values. However, this is not the case because of possible
zeros of the t matrix t&(E) resulting in additional branch
points for Int&(E). As a result of such branch points, one
can end up on the wrong sheet if contour integration is
applied. Unfortunately, zeros of tI(E) actually occur; e.g,
for transition metals the s-phase shift changes sign within
the valence-band region. Thus the straightforward use of
the t matrix is incorrect. In contrast, Eq. (17), derived in
the Appendix, is a generalization of Lloyd's formula for
complex energies that has the correct analytical proper-
ties and guarantees that one always remains on the physi-
cal sheet. One of us (P.H.D.) would like to thank A.
Gonis for clarifying discussions concerning this point.

ACKNOWLEDGMENTS

—2-

'~ r I '
~

—6 —4 —2 0 2 4
Energy (eV)

FIG. 3. Local densities of states for V impurities in Cu and
Ni. Plotted are the local densities of states in the impurity
Wigner-Seitz sphere for both spin directions.

nonspherical charge densities are taken into account in
the total-energy calculation.

Test calculations for V impurities in Cu show that for a
calculation of impurity solution energies it is sufficient to
include angular momenta up to 1,„=4 and one shell of
perturbed host potentials around the impurity. Extensive
calculations for the solution energies of 3d impurities in
Cu and Ni show good agreement with the experimental
data and with Miedema's approach. Large magnetic
effects occur in the middle of the 3d series, especially for
Mn. In general, we obtain an endothermic solubility in
Cu, but an exothermic solubility in Ni. This difference
arises mostly from the different role of impurity d-host d
hybridization in these hosts.

The present calculations completely neglect lattice re-
laxations around the impurity, which would lower the
calculated solution energy. The present results (Fig. 1)
indicate that this may be important for the early
transition-metal impurities in Cu and Ni. Therefore it
would be desirable to include such size effects in future

We would like to thank J. Deutz and H. Akai for their
cooperation and for many discussions during the early
stage of this work. We acknowledge support from North
Atlantic Treaty Organization Collaborative Research
Grant No. 0086/88. One of us (M.W. ) was supported in
part by the Alexander von Humboldt Foundation and by
the Division of Materials Sciences, U.S. Department of
Energy (Contract No. DE-AC02-76CH00016).

APPENDIX: LLOYD'S FORMULA
FOR COMPLEX ENERGIES

The generalized Lloyd formula of Eq. (17) and the
standard one, Eq. (15), differ only in the single-site terms.
Therefore we consider here only the scattering at a single
muffin-tin potential. For a given angular momentum l,
the change AnI(E) of the density of states due to a spheri-
cally symmetric muffin-tin potential is, according to Eqs.
(1) and (4), given by

b, nl(E) = — ImAGI(E), —1
(A 1)

Instead of taking the imaginary part in Eq. (A2) directly,
which would lead to the replacement of H& and h& by R&
and j&, we will evaluate b.GI(z) for complex energies z
since this quantity is essentially the difference of two

with

HAGI(E)= lim &E f r dr[HI(r;E)R&(r;E)
R ~ oo 0

—h&(&Er)jI(&Er)] . (A2)
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Green's functions; as such, it is analytical on the whole
physical sheet with the exception of the real axis.

The integration over the radius can be performed
analytically as we will show below:

r dr HI (r;z )Rl(r;z )
R

0

ai(E)
AG, (E)= — = — lna, (E),

al (E) dE
and for the integrated density of states for real energies,

(A7)

@~0+ has to be performed after the limit R ~ ~ .
Therefore we obtain for b, G& of Eq. (A2),

=r (H('(r;z)Ri(r;z) Hi—(r;z)R I(r;z)]~„":0 .
b, N&(E) = ——Imb, G&(E)= —Im lnal(E),1 1

(A8)
Here the prime means a derivative with respect to r, and
the overdot an energy derivative. Close to the origin,
R&(r;z) and H&(r;z) behave as

RI(r;z ) =-ai(z)jr(V'z r ),
1H&(r;z)—= h&(&zr ) for r~0 .=

a, (z)

The reciprocal "enhancement" of the regular and nonreg-
ular solutions at the origin follows from the Wronsky re-
lation

which directly leads to the generalized Lloyd's formula
(17). That Eq. (19) connects the a&(E) coefficients with
the phase shifts 5I(E) can be seen as follows: For real en-
ergies the regular solution can be written as a phase fac-

ie((E)
tor e ' times a real function R~(r;E),

I (F. )R&(r;E)=e ' RI(r;E) . (A9)

With al(E) defined by (A4) then, at the origin we obtain
i6(

the relation al= ~aI~e
' from which the usual form of

the Friedel sum rule follows:
HI'(r;z )RI(r;z ) HI(r;z —)RI'(r;z ) =

z 1' bNI(E)= —51(E) .
1

(A10)
which is also valid for the potential-free solutions jI and
h&. For large r values we can use the asymptotic formulas
of Eq. (2) for R& and HI. Taking everything together we
obtain for b, G&(z)

ai(z)
b, G((z) =-

al(z)

+ lim zbtr(z)R [h~'(&zR )h, (&zR ) h, h I] . —
g —+ oo

We still have to prove Eq. (A3). For this we take the en-
ergy derivative of the radial Schrodinger equation for
Rl(r;z ) which yields

——B„r+ + V(r) zR&(r—; z)= Ri(r;z) .
1 ~ I(1+1)
r r

(Al 1)

Using the asymptotic formula for h I,

(A5)
Multiplying this equation by Hl(r, z ) and subtracting
from this the Schrodinger equation for Hl(r;z) multi-
plied by R, (r, z) we obtain

(/zR ) — e'~ ~~ ~ for R ~ (g& (A6)V'z R

1
HI(r;z)R&(r;z) =HI(r;z) — d„r R&(r—,z)

r

we see that the last term in Eq. (A5) decreases exponen-
tially on the whole physical sheet, i.e., for Im Vz )0.
Therefore, in the limit R ~ ~ this term gives no contri-
bution. This is also true when approaching the real axis,
which means z =E+i e with @~0+. Note that the limit

—RI(r, z) ——B„r HI(r;z) .
r

(A12)

By taking the volume integral as in (A3), we can integrate
the right-hand site and obtain the desired result (A3).
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