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We study the failure properties of a defected square lattice of Born springs under uniaxial tensile
strain. The springs fail completely and irreversibly once a critical strain energy is exceeded. The
Born potential provides an e6'ective bending force that yields realistic crack microstructures, which
are analyzed in detail. As the defect density increases, the crack becomes increasingly ramified,
even though fewer spring failures are required for complete breakdown. The failure stress and
Young's modulus approach zero as the system approaches the percolation threshold. Cumulative
failure-stress distributions appear consistent with both Weibull and Duxbury-Leath forms. The size
and composition of the crack {in terms of initial defects and broken springs) are analyzed as func-
tions of defect density, lattice size, and bending constant.

I. INTRODUCTION

The fracture properties of materials are known to de-
pend sensitively on the microstructure. ' In metals, the
important microstructural components include grain
boundaries and second-phase particles. The second-
phase particles may provide crack-nucleation sites and
the grain boundaries, if sufFiciently weak, provide easy
crack-propagation paths. In brittle materials, such as
many ceramics and minerals, similar considerations are
important. However, in such cases the fracture proper-
ties are usually dominated by the size and spatial distri-
butions of Aaws or microcracks, which are often artifacts
of processing conditions. Recently, a great deal of atten-
tion has been focused on the role of random distributions
of Aaws on failure properties. These failure studies
have focused on fracture, dielectric breakdown,
failures of random-fuse networks, etc. The present study
focuses on the fracture of an elastic network with ran-
domly distributed defects. Unlike previous studies which
concentrate on critical properties and the distribution of
the failure stress, this work also considers the proper-
ties of the crack cluster as a method of independently in-
vestigating the role of the distribution of defects in crack
nucleation and crack propagation.

One commonly used approach in simulating failure in
elastic systems is to represent the elastic medium as a net-
work of Hookean springs. The potential energy of the
spring connecting two sites, a and p, is

@ p= —,'k p(~xp —x
~

—a p)

where k & is the spring constant for the spring connect-
ing sites a and p, a

&
is its equilibrium separation, and x

(x&) the position of site ct(p). Fracture is simulated by
assuming that if the strain [e it=(x&-x )/a &] in any

spring exceeds a predefined breaking strain c.b, the spring
would break irreversibly and k & would be set to zero.
This approach has been used to calculate scaling laws,
critical properties, failure stresses for dilational and uni-
axial strains, failure-stress distributions, etc.

While the Hookean-spring model is very simple, it does
have a number of problems. Unlike most real materials,

. this model has a zero Poisson ratio for a square lattice.
This physically unreasonable feature is attributable to the
fact the springs are free to rotate about the nodes at
which the springs meet. Although the two-dimensional
triangular lattice has a finite Poisson ratio, the free rota-
tion of the springs about their nodes still presents prob-
lems. Fracture in such models often occurs by the failure
of a continuous path of springs parallel to the applied
stress, followed by the stress-free rotation of surviving
springs into a load-bearing orientation and subsequent
fracture along the same path. ' Such preshearing of the
lattice may be appropriate to problems where plastic de-
formation is important, but is an undesirable property for
models of brittle materials.

The disadvantages of the Hookean-spring model have
been overcome in a number of di6'erent ways. The first is
to add a term to the Hamiltonian which penalizes bond
bending (i.e., a three-body term). A second is to replace
the spring lattice with two-dimensional elements (based
on Hookean springs), which results in two independent
Lame constants. A third approach is to employ Born
springs (described below), which penalize rotation of the
springs away from lattice directions. ' '" This approach
is much simpler than the two-dimensional —element ap-
proach, while still yielding two independent Lame con-
stants. Unfortunately, this model is not rotationally in-
variant. ' This, however, does not present any problems
in cases where the spring-breaking strain c.b is very small.

The present study employs a Born-spring model to
study the efFects of a random distribution of defects on
the fracture of an elastic model loaded in pure tension.
The next section of this paper defines the Born model and
the simulation method employed in the fracture study.
Section III shows the microstructure development during
failure and the resulting crack morphologies as a function
of the initial defect density. The stress-strain curves ap-
propriate to these morphologies, the failure-stress distri-
bution functions, and an investigation of model parame-
ters comprise the subject of the next two sections. Final-
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ly, the effect of model parameters and initial defect densi-
ty on the fracture path are shown.

first spring will fail are given by

Ef =E(+b /4 )'

o.f*=o (@b /0& )'~

(4)

II. THE BORN MODEL

4& p= ,'k &(~xp ——x
~

—a &) + ,'c &(y& —y)—(3)

where x and y are the x and y positions of site n, and
o & is the equilibrium separation of sites a and /3. If a
and P are neighboring in the y direction, the above for-
mula is modified by the substitution of x for y, and vice
versa. The first term in the potential function accounts
for spring stretching with a spring constant k, which pe-
nalizes deviations from the equilibrium spacing along the
preferred spring direction. The second term accounts for
the deviation of the spring from its preferred direction by
inclusion of an additional spring with spring constant c.
For small deviations this can be thought of as a bond-
bending term. It prevents the stressless elongation of the
lattice due to bond rotation (as observed in the case of
classical springs). The formulation of this bending term
lacks rotational invariance. ' The lack of rotational in-
variance is unimportant in the present study, since
springs break at very small strain. Unlike in the spring-
model study, where a strain-failure criterion was used (a
spring breaks when E &) eb), we use an energy-failure cri-
terion for the Born springs (a spring breaks when its
strain energy N &) 4&b).

In the present work this potential is used for the Born
springs in a two-dimensional square lattice, whose length
will be denoted by L. The spring constant k has been set
to 1, c/k is varied, and the breaking energy +b is set to
5.0X10 . Periodic boundary conditions are applied
along the two surfaces of the square model whose nor-
mals are parallel to the applied load, which is taken to be
the x direction. In order to study the effects of a random
distribution of defects, a fraction 1 —p of the initial
springs are cut (locations chosen at random). An initial,
infinitesimal strain is applied, and the lattice is equilibrat-
ed by balancing forces on the (static) nodes. The total
stress and strain are then calculated, as well as the energy
of each spring. Since the system behaves linearly between
spring failures, the strain (sf*) and stress (of) at which the

Rather than add a (three-body) bending force to the
spring model used above, we have chosen to work with a
similar potential which incorporates the desired features.
The potential, due originally to Born, ' is given by

,'(k p
——c p)[(up —u ) r g] + —,'c plug

—u ~, (2)

where k and c are constant potential parameters, u
represents a displacement from an equilibrium position,
and r is the unit vector corresponding to the direction be-
tween sites a and P in the perfect lattice. The parameters
k and c are generally site dependent; initially we will re-
move this dependence, except for setting the parameters
of broken springs to zero. This potential may be more
clearly written for a square lattice, upon which our calcu-
lations will be performed. If sites a and P are neighbor-
ing in the x direction, the potential term is

where N is the maximum energy in any individual
spring, and o. and c are the total stress and strain, respec-
tively. The strain is then set infinitesimally above cf, and
the most energetic spring (previously determined) is bro-
ken. The lattice is then successively reequilibrated and
the spring with the maximum &0 is cut (provided 4 )4b),
until no further springs fail at that strain level. The new
stress and maximum spring energy are again measured,
and used in the above formula to predict the next failure
strain and stress. This process of relaxation (successive
equilibration and spring breaking) and strain incrementa-
tion is continued until the entire sample fails.

III. MICROSTRUCTURE

Figure 1 displays the configuration of a 25X25 lattice
for c/k=0. 1 and @=0.995 following its failure at a stress
of of =0.743 and a strain of Ef =0.765 (note the quoted
failure strains and stresses throughout have been normal-
ized to those in the perfect lattice). Springs that break
during the simulation are indicated by dashed lines and
those that were cut prior to the application of the strain
are missing. The crack nucleates at a single precut spring
and then propagates through the entire sample in the
direction normal to the applied load with no further in-
crease in stress or strain (i.e., the system fails catastrophi-
cally). The failure path is nearly straight, except for a
single kink that the crack makes in order to take advan-
tage of a precut spring which was near the advancing
crack tip.

A sequence of failure configurations for p =0.9 is
shown in Fig. 2. The erst spring breaks at o. =0.344 and

FICr. 1. Failure configuration of a 25X25 lattice of Born
springs, for p =0.995 and c/k =0.1. Springs which fail during
elongation are shown as dashed lines.



39 BRITTLE FRACTURE IN MATERIALS(WITH RANDOM DEFECTS 9275

(c) (d)

FIG. 2. Failure of a 25X25 lattice for p=0.9, c/k =0.1: (a) initial failure, a=0.594; (b) c, =0.597; (c) c, =0.621; (d) final failure,
E =0.665.

e =0.594 [Fig. 2(a)]. Unlike the p =0.995 case previously
discussed, the sample does not fail instantaneously when
the first spring breaks. Further increases in the applied
strain lead to additional noncatastrophic failures [Figs.
2(b) and 2(c)]. These additional breaks occur at stress lev-
els lower than that for the initial spring failure. The sam-
ple finally fails at E=0.665 [Fig. 2(d)]. Also, in contrast
to the p =0.995 case, the final failure path for p =0.9 is
far from straight. This apparent wandering of the ad-
vancing crack tip may be attributed to the relatively large
number of nearby precut springs.

The effects of increased initial defect density is shown
in Figs. 3(a)—3(c), where the failure configurations corre-
spond to p=0. 8, 0.7, and 0.6, respectively. Clearly, as
the initial defect density is increased the failure path be-
comes increasingly tortuous. The number of springs in

the failure path also appears to increase with decreasing
p. At the same time, the number of springs which are
broken during the failure event decreases with decreasing
p. In the limit that p —+p, (the percolation threshold), the
failure path would contain a number of springs which
would scale as I.", where d is the fractal dimension of the
random percolation cluster (d =1.9), and the number of
springs broken during the failure approaches zero. The
failure stress decreases with increasing initial defect den-
sity toward a value of zero at p,

IV. STRESS-STRAIN BEHAVIOR

The stress-strain curves corresponding to the micro-
structures shown above are presented in Fig. 4. The most
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FIG. 3. Final-failure configurations for a 25X25 lattice with
c/k =0.1, for (a) p =0.8; {b)p =0.7; (c) p =0.6.
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FIG. 4. Stress-strain curves corresponding to Figs. 1 —3
(25 X 25 lattice, c/k =0.1).

striking feature of these curves is that the slopes decrease
with decreasing p. These slopes correspond to the elastic
(Young's) modulus, E, of the samples. Figure 5(a) shows
this trend quantitatively. The modulus data are based
upon 400 simulations, and the error bars represent the in-
herent width of the distribution (i.e., the standard devia-
tion of the sample). The modulus clearly tends to zero as
p~p, (the rigidity percolation threshold for the Born
model with c/k )0 is identical to the normal percolation
threshold). It should also be noted that the dependence
of E on p —p, is decidedly nonlinear, as opposed to the
linear behavior seen previously in the spring model.

There are several valid definitions of the failure stress,
depending on the nature of the tensile test. In a stress-
controlled test the stress is incremented, and the strain is
the dependent variable. In this case the sample fails at
the highest stress value in the stress-strain curve, o.&.
This usually occurs at the point where the first spring
breaks. In a strain-controlled test, on the other hand, the
strain is incremented and the stress is the dependent vari-
able. As the stress is finite for all strains, the failure
stress in this case corresponds to the point where the
stress first drops to zero, o.&. Figure 4 shows that the
main-controHed failure stress is always less than or equal
to the stress-controlled failure stress. Similarly, the strain
at which failure occurs in a stress-controlled test is al-
ways less than or equal to that for a strain-controlled test.

The dependence of the failure stress on p is shown in
Fig. 5(b). Both o.

& and crI decrease monotonically with
increasing defect density (decreasing p) and tend toward
zero as p ~p, . The error bars show that the width of the
distribution of the strain-controlled failure stresses great-
ly exceeds that for the stress-controlled case. Also plot-
ted in this figure is o.

&, which is the stress at which the
first spring breaks. Comparison of the curves for o.

&
and

o
&

demonstrates that in stress-controlled tests the failure
of the system is usual)y coincident with the failure of the
first spring. The agreement is best as p~l or p~p,
(where they are constrained to be equal), with only slight
deviations at intermediate values. Therefore o. , provides
a good estimate for oI, at considerable computational
savings.
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Figure 5(c) displays the eft'ect of p on the failure strain.
The failure strain clearly increases with increasing defect
density. This suggests that the ductility (strain to failure)
of this microscopically elastic model increases with in-
creasing defect density, albeit at the expense of increased
damage. As p ~1, ef must go to unity. This must be at-
tributed to the fact that a single defect in a large sample
has a much more pronounced efFect on the failure stress
than on the Young*s modulus.

The dependence of the failure stress and of Young's
modulus on c/k are shown in Figs. 6(a) and 6(b). As c/k

FIG. 5. Effect of defect density (1—p) on (a} Young's
modulus, (b} failure stress, and {c) failure strain. All values are
normalized to those of a perfect lattice.

decreases the interaction between the individual rows of
springs (parallel to the applied stress) lessens. In the limit
that c/k ~0 the rows of springs can slide by each other
without hindrance. As a result, one broken spring any-
where in each row would be sufhcient to mechanically
disconnect the sample and, hence, crf and E both go to
zero as c/k —+0 in an infinite lattice. In the opposite lim-
it (c/k~ oo) the model is insensitive to elongation and,
hence, the failure stress tends to infinity. Clearly, a value
of c/k appropriate to the failure of elastic bodies must lie
between these two extremes. Since the properties of the
lattice change slowly with c/k, and c/k =0. 1 clearly lies
in the transition region between the two unphysical ex-
tremes, we arbitrarily set c/k to 0.1 for the present simu-
lations. Figures 7(a) and 7(b) show the dependence of the
failure stress and Young's modulus on the linear system
size L. The Young's modulus is clearly independent of L,
although the width of its distribution is not. The failure
st;ress decreases with increasing I.. This is to be expected
as the likelihood of finding a large defect in a randomly
defected sample increases with sample size. We typically
employ I. =25 in the present simulations.

V. FAILURE-STRESS DISTRIBUTION

The cumulative distribution function for failure
stresses FL(o, ) is plotted in Fig. 8. We have used the
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FIG. 7. Dependence of (a) failure stress and (b) Young's
modulus on the linear system size, L.

worse agreement for the L =30 data. Based upon our
limited statistics in the tails of the distributions, it is not
possible to make a useful distinction between the two dis-
tributions. These results are in mild disagreement with
earlier simulations on the linear-spring model (no bond-
bending forces), where the Duxbury-Leath distribution
appeared superior to the Weibull form.

VI. MICROSTRUCTURAL CHARACTERIZATION

failure stress of the first spring (o, ) as an estimate of the
(stress-controlled) failure stress (of); as noted previously,
this is an excellent approximation and allows us to gather
greater statistics in an equivalent amount of time. The
data represent 1000 trials on a 30 X 30 lattice and 500 tri-
als on a 40X40 lattice. In order to test for conformity to
a Weibull' distribution [FL(cr)=1—exp( cL o )], in-
Fig. 9(a) we plot —ln [

—in[1 FL (cr, )/L ] 1
—against

—ln(o i). The straight line in this figure is the best fit to
the L =40 data. The agreement between the simulation
results and the Weibull distribution is good. The slope of
this line corresponds to a Weibull modulus m = 10. Such
large Weibull moduli are not atypical for brittle materi-
als.

Duxbury and Leath' have predicted an alternate form
of the distribution function, valid away from the perco-
lation threshold: FL (cr ) = 1 —exp[ —cL exp( —k /o")],
with 1 ~ @~2. A plot of —ln[ —in[1 FL (o i)/L ]1-
versus 1/o-i" should yield a straight line. This is done for
p=1 in Fig. 9(b) and p=2 in Fig. 9(c). Again, the
straight lines represent a best fit to the L =40 data. The
agreement between the simulation data and the
Duxbury-Leath distribution function is good for p=1
and rather poor for @=2. The Duxbury-Leath (p= 1)
distribution shows marginally better agreement with the
data than the Weibull form for the L =40 data, but

In order to discuss the e6'ect of model parameters on
crack morphology, we must define a number of variables,
which characterize the failed lattice. A spring is referred
to as "cut" if it is one of the (1 p)L springs—removed
prior to the simulation, and as ' broken" if it fails as the
strain is incremented. We can define a failure path or
failure cluster by considering the perpendicular bisectors
(dual springs) of all broken springs (the nodes where these
bisectors meet are on the dual lattice). The fracture path
is the connected cluster of dual springs that span the
width of the sample. The total numbers of broken and
cut springs are denoted Nb and N„respectively. The
latter is simply equal to L (1 —p). The numbers of bro-
ken and cut springs in the crack are denoted by nb and
n„respectively. N& and nb need not be equal; a small
number (nb ) of broken springs are not to be connected to
the failure path.

The dependence of crack morphology on c/k is mea-
sured in several ways in Fig. 10. The crack size
(n =n, +nb) is seen to decrease with increasing bending
force, approaching the value of L for large c/k. The
number of broken springs in the failure (crack) cluster
also decreases, due to the decreasing crack size. The ra-
tio of cut to broken springs (near unity for this choice of
p) appears insensitive to c/k. Note that the value of
c/k =0.1, employed above, lies between the stretching-
and bending-dominated extremes.
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The scaling behavior of the crack-cluster statistics with
L is shown in Fig. 11 for p =0.9. The number of broken
springs within the crack scales with I. with an exponent
of 1.106+0.007. The I. dependence of the number of cut
springs within the crack (n, ), and thus the crack size
(nb+n, ), are similar, with exponents of 1.103+0.014 and
1.123+0.011, respectively.

Figures 12(a) and 12(b) display the eFect of defect den-
sity on the crack. For p —+1 the (straight) crack is made
up almost entirely of broken springs, whose number
equals the lattice width. The crack size (nb +n, ) is seen
[Fig. 12(a)] to increase dramatically with increasing de-
fect density (1—p). This results from the increasingly tor-
tuous nature of the crack, as shown in Figs. 1 —3. At the
percolation threshold only a few springs are holding the
lattice together, and the resultant crack is composed al-
most entirely of cut springs. The number of broken
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FIG. 9. Test plots for validity of the (a) Weibull distribution,
(b) Duxbury-Leath p=1 distribution, and (c) Duxbury-I. eath

p =2 distribution. FIG. 11. Eff'ect of linear system size I on crack morphology.
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FIG. 12. Effect of defect density (1—p) on crack morpholo-
gy: (a) number of broken (nb) and cut (n, ) bonds within the
crack; (b) number of broken bonds outside the crack (nb ).

springs (nb ) shows the competition between these two
effects. From an intermediate p maximum, n& decreases
as p —+1 due to the straightening of the crack, and also
decreases to zero as p ~p, due to the increased availabili-
ty of cut springs. The number of broken springs [Fig.
12(b)] outside the crack (n&) shows a more pronounced
maxilnum. As p approaches unity, the first spring to
break results in the catastrophic failure of the entire
sample —hence, no springs break outside the failure clus-
ter. In the limit that p ~p, the total number of broken
springs tends to zero. Therefore, the maximum at inter-
mediate p corresponds to those cases in which the stress-
strain curve shows several load drops corresponding to
several isolated failures in different regions of the materi-
al. When the critical crack starts to grow, it is unable to
incorporate all of the isolated previously broken regions
of the sample.

In the tensile-fracture studies presented previously, the
crack clusters which eventually lead to the failure of the
sample are predominantly oriented in the direction nor-
mal to the applied stress. Such a result is clearly expect-
ed for tensile loading for nearly perfect samples. Two
major effects are noticed as the initial defect density is in-
creased. First, the failure stress drops. This can be attri-
buted primarily to the larger defects (clusters of initially
cut springs) present with increasing system size, as indi-
cated by the scaling of the failure stress with L. The
second effect is on the crack morphology. As p decreases
(the initial defect density increases), the cracks look in-
creasingly ramified. In the p =1 (no defect) limit the
crack is straight (i.e., a fractal dimension D equal to the
Euclidean dimension d —1). In the limit that p~p, the
fractal dimension of the crack must be equal to the frac-
tal dimension of the percolation cluster (D =1.9). For p
between these two limits, our limited data suggest that an
intermediate fractal dimension applies (D = 1.1 for
p =0.9). We believe that this fractal dimension should be
viewed as a crossover effect. Similar results with D &d
have been obtained in models for which dilational and
shear strains were applied.

The number of springs that must be broken for the
crack to propagate across the entire sample generally de-
creases with increasing initial defect density. Likewise,
the number of precut springs that are part of the crack
increases with increasing defect density. Both of these
effects are attributable to the crack being able to find
more advantageously located defects in the vicinity of its
tip with increasing defect density. A corollary to this is
that a crack grows by larger increments with increasing
defect density. This may be seen in the stress-strain
curves (Fig. 4), where a great deal of strain must be ap-
plied between subsequent load drops (i.e. , a larger strain
is required to raise the stress at the tip of a long crack to
the failure point than for a short crack). Examination of
the failed samples (Figs. 1 —3) shows that as the defect
density increases a greater fraction of the broken springs
are oriented such that they fail in shear [cf. Fig. 1 with
Figs. 3(b) and 3(c)]. This suggests that the failure path is
one that minimizes the number of springs which fail in
tension. This is somewhat surprising, since for c/k (1 a
spring fails at smaller strain values in tension than in
shear.

The failure-strain data show a marked difference be-
tween stress- and strain-controlled fracture. Consider-
ably more strain may be accommodated under strain-
control conditions than under stress-control conditions,
especially at large defect densities. Although the ductili-
ty (strain to failure) is largest at low p, the energy ab-
sorbed on fracture (i.e., the toughness) and the fracture
stress is smaller. The dependence of the stress at fracture
is strongly dependent oui testing mode. Nonetheless, the
stress required for fracture is independent of the mode of
testing. Comparison of the actual failure stress and that
obtained by assuming that failure occurs as soon as a sin-
gle spring breaks (a, ) shows that cr, provides a good esti-
mate of the actual failure stress. However, the deviation
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between the measures of the strain to failure (stress con-
trolled) shows that the sample often does not fail immedi-
ately following the first break, but fails at a stress near
the first-break level. The widths of the distributions of
stresses at fracture [see the error bars in Fig. 5(b)] are
much sharper in stress control than in strain control.
This suggests that the maximum stress on the stress-
strain curve is a more fundamental quantity than is the
stress at failure (in strain control).

The failure statistics from the present simulation em-
ploying Born springs is in excellent agreement with that
obtained using Hookean springs. This result suggests
the near equivalence of the two models when dealing with
elastic effects, including the failure stress since o. , (=of)
is determined by the elastic properties. Nonetheless, the
two models are not interchangeable with regard to crack
morphology. Comparison of the cracks resulting from

tensile tests in the two models (cf. Figs. l and 2 with Fig.
l of Ref. 4) shows that the Hookean model cracks at a
substantially different angle (with respect to the applied
stress) than the Born model. Although these two simula-
tions were performed on different lattices, we believe the
differences transcend the lattice effect. We suggest that
the energy must include terms which resist bond bending
in order to obtain reasonable crack Inorphologies.
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