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Critical behavior of the two-dimensional uniformly frustrated charged Coulomb gas
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The nature of the phase transition for the two-dimensional Coulomb gas on the square lattice in
the presence of a uniform frustration f is studied by Monte Carlo simulation. We present evidence
for a nonuniversal Kosterlitz-Thouless (KT) jump for the inverse dielectric constant eo

' for f = z,
—,', and ~. For the fully frustrated case f =

—,', two distinct transitions, one KT-like and the other

Ising-like, is observed in contrast to earlier studies for the XY model, which suggested only one
transition, even though both models are believed to be in the same universality class.

I. INTRODUCTION

The uniformly frustrated XY model' ' has been stud-
ied extensively in recent years as a model for 2D coupled
arrays of Josephson junction and superconducting wires
in a transverse magnetic field. Unlike the unfrustrated
XY model which cannot exhibit long-order order at finite
temperatures, the frustrated XY model is expected to
display different critical behavior. In addition to the un-
derlying continuous U(l) symmetry, there exist a discrete
symmetry, which leads to the possibility of long-range or-
der in two dimensions.

While there have been several analytic, ' and numer-
ical studies ' ' of the phase transition for the frustrat-
ed XY model for rational f, a number of unsettled issues
still remain including the nature of the transition. At low
temperatures, it has been well established ' that long-
range order exist, associated with the discrete symmetry
of the ground states. For rational filling factors
f =4&/@O=p/q (N is the average Ilux through an ele-
mentary plaquette, 4o=hc/2e is the flux quantum), the
ground state ' is periodic with a unit cell of size q Xq.
The ground-state energy Eo(f ) has been determined for a
number of lattices ' and Eo(f) is a nonmonotonic func-
tion off H [0,—,

' ] with sharp features at several f. For the
fully frustrated case f =

—,', which has a doubly degen-
erate ground state, it is still not clear whether there exist
only one transition ' at the critical temperature T,
which is a combination of a Kosterlitz-Thouless' '
(KT)-like one for spins and an Ising-like one for chirality
or two successive transitions, "' in which the KT transi-
tion temperature is different from the Ising-like one.
While several recent analytic studies " are in favor of
the former case, Granato and Kosterlitz" point out this
special case is not very amenable to theoretical analysis.
Also, in each of these analytic studies, the models have a
symmetry which is different than the fully frustrated XY
model and they do not allow fractional vortices which are
believed to be important at the transition. Another point
at issue is whether the jump in the helicity modulus ' '
at the KT transition is universal or not. Minnhagen' has
argued that there are two classes of possible KT transi-
tions for the XY models, one associated with a universal

jump from f(T, ) =2k~ T, /mto zero. at T, and one as-
sociated with a larger, nonuniversal jurnp whenever T, is
below a critical value T,*. While some simulations '
and at least one experiment suggest that the f =

—,
' frus-

trated XY model belongs to the second of these classes,
the observed size of the nonuniversal jump is only slightly
larger than the universal value 2k~ T, /m. Since a
nonuniversal jump also had been predicted by Choi and
Stroud for f =

—,
' due to the effect of the Ising excitations

on the transition, the available data cannot be used to test
Minnhagen's predictions.

The occurrence of a Kosterlitz-Thouless transition in
combination with an Ising transition has been suggested
by Lee et aI. for the antiferromagnetic XY model on
the triangle lattice in zero external magnetic field. Be-
cause of the breaking of a discrete symmetry, the system
exhibits an additional discrete order parameter, the stag-
gered helicity. Miyashita and Shiba found distinct Ising
and KT transitions that were within 2% of each other
and argued that is likely that there is an intermediate
phase between them. Lee et a/. however, argued using
finite size scaling analysis on larger systems that the two
transitions were at same temperature and that the
spinwave-stiffness constant at T, was consistent with the
universal jump predicted by Nelson and Kosterlitz.

To address these questions in greater detail, I have car-
ried out Monte Carlo simulations and finite size scaling
on the square lattice for several values, f =0, —,', —,', and —,'.
However, instead of working with the usual frustrated
XY model, I studied the fractionally charged Coulomb
gas (CG), which is believed to be in the same universality
class. ' ' While the interaction range is long range in
contrast to the XY model, one only has to deal with
discrete integer variables not continuous spins. This
model has the advantage that the usual Gaussian spin
waves which are present in the XY model have been elim-
inated, leading to more rapid equilibration. The price
one pays is that the interaction is long range. However
because of access to modern supercomputers, this is no
longer a serious difhculty. Working directly with the CG
model it is also straightforward to check Minnhagen's
predictions' for nonuniversal jumps at the KT transi-
tion, since it is for this model that the calculations were
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actually performed and, his prediction can simply be stat-
ed. When the transition temperature Tcz is between —,

'

and Tco ( =0.1436), the jump in eo
' is exactly 4Tco,

where eo is the inverse dielectric constant. For
T«& Tc~ the jump is larger and nonuniversal. Since no
simulations for the Coulomb gas model were available,
Minnhagen used an approximate scaling relation '
between TCG and the XF temperature T to show that
some previous Monte Carlo results for the helicity
modulus T appeared to have a nonuniversal jump. In
this paper, I present results for the jump in E'p for
several values of f which test Minnhagen's predictions
directly in the Coulomb gas model.

F;, ; F; i

II. MODEL AND METHOD

The Hamiltonian for the charged Coulomb gas model
15, 17 FIG. 1. Diagram of square lattice showing new variables F;, .

H= —2mJ gq&G& q

where GI is the 2D lattice Green's function and the
sum is over all pairs of sites (lm). The "charge"
ql=nl f, wher—e n& is an integer variable. As a conse-
quence of charge neutrality, (n& ) =f. Though a direct
simulation of Eq. (1) is possible, ' the interaction G&

falls off only logarithmically in 2D and one would need to
carry out the equivalent of an Ewald sum to avoid intro-
ducing large truncation errors. An alternate, yet
equivalent procedure for carrying out the numerical
simulations is to first rewrite Eq. (1) in a more convenient
form. To motivate this alternative formulation, consid-
er a superconducting network where each node is con-
nected to exactly four others. In an external field the
Auxoid (the circulation of the phase gradient) must be
quantized:

/VS dl= fAJ dl+ ,
. f A dl

c4o
—2&n (2)

where A is the vector potential, k is the penetration
depth, and J is the screening current. This condition
must be satisfied for every closed loop. For the square
lattice, with lattice spacing I =1, define J in each link in
terms of a new set of variable F; J. for plaquette (i,j ) such
that J in the vertical direction equals F; —F;+& and
F, —F, +& in the horizontal direction as shown in Fig.
1. Note that these differences carry with them a sign
reAecting the direction in which the current Bows. Equa-
tion (2) can then be written as

(3)

where F; is in units of cNo/2A, , n;. is the number of
Auxoids in area a; =1, and (n; )=f. If we .use periodic
boundary conditions and take the Hamiltonian as the
square of the current in each link

H =n. g (F/ F;+, ) +(F, J F,—. +,)—
lj

it is easy to show that Eq. (4) can be transformed into Eq.

2mJ
~o =1— lim

k~T k-o

where nk=l/Ng;J n;.exp(ik r,. ) were measured after
the system was equilibrated. eo

' was evaluated by
averaging over the five smallest allowed k vectors for

(1). Note that Eqs. (3) and (4) can easily be generalized to
arbitrary lattices including quasiperiodic and disordered
lattices in which the length of wires between nodes may
not be equal.

The advantage of Eq. (4) over (1) can be seen as fol-
lows. First, rewrite Eq. (3) in the form of a matrix,
AF=q when F and q are 1D vectors of length I, the
number of plaquettes. A can be inverted to determine F,
by adding a.small amount e to each zero element of A. I
used e = 10 - and checked that for all e (10, the re-
sults are independent of e. Even though A is large, size
I XI. , the inversion need only be done once, since A
depends only on the connectivity of the lattice. Stan-
dard Monte Carlo techniques were then used to find the
equilibrium "charge" configurations. A plaquette was
chosen at random and a unit of "charge" was added to qI
and subtracted from one of the eight nearest or next
nearest neighbor plaquettes, also chosen at random.
Since for each exchange only two values of q& were
changed, the new values of F could be determined direct-
ly from the old ones without having to recalculate Aq.
These new F's were then inserted into Eq. (4) to deter-
mine the change in energy AE. The move was then ac-
cepted with probability exp( b,E /k T)/[tl-
+exp( b,E /k T]. —

The simulations were carried out for several lattice
sizes from L, =12—+50 on a square lattice with periodic
boundary conditions for f=0, —,', —,', and —,'. L was always
chosen to be commensurate with f. Away from the criti-
cal temperature runs were typically of length 1 —2X10
"charge" exchanges per plaquette, while near the critical
temperature, this number was increased to between 4 and
20X10 . The average energy, specific heat, and the in-
verse dielectric constant defined by '

(n, n „)
(5)
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each size system. In addition, for f =
—,', the staggered

magnetization M, and susceptibility g, was also deter-
mined. Most runs were made on heating from low tem-
perature in increments of T/n. =0.001. In addition, near
the transition results were also obtained on cooling from
above the transition temperature to check that the system
was equilibrated. For large L, smaller increments were
needed to determine the position of transition tempera-
ture accurately.

III. RESULTS

As a check of the procedure described above, I first
considered the case f =0. Results for the specific heat C
and inverse dielectric constant eo

' for the f =0, unfrus-
trated CG are shown in Fig. 2 for three values of L. The
solid line in Fig. 2(b) is eo =4T. The simulation results
cross this line at Tc&=0.220+0.005, which is in excel-
lent agreement with the results of Saito and Muller-
Krumbhaar who found TCG=0. 215 from their simula-
tions on the discrete Gaussian model. As expected, the
peak in C is considerably above Tc~, just as found for the
XYmodel. '

Consider next the fully frustrated case, f =
—,'. Results

for C, M„and eo
' are presented in Fig. 3 for five values

of L. The peak value of the specific heat C „is plotted
versus logL in Fig. 4. The linear dependence of C,„on
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FIG. 3. Specific heat C, staggered magnetization M, and in-
verse dielectric constant eo
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logL indicates a critical exponent +=0 which is charac-
teristic of the Ising transition, in agreement with earlier
results for the XY model. ' The peak in both C and y,
(not shown) occurs at a temperature TI =0. 133+0.001,
independent of L for 12 ~ L ~ 50, in contrast to the XY
model in which Tc varied significantly with L over a
comparable range of L. This is also in contrast to earlier
work of Thijssen and Knops' on the CG who found the
peak position varied significantly more for 16~L ~30
than found here. While Thijssen and Knops' did not
specify precisely how they cut off the logarithmic interac-
tion between vortices in Eq. (1), the differences in the po-
sition of the specific heat peak are probably related to
differences in how the interactions were truncated. In the
present formulation Eq. (4) there are no problems with
truncating the interaction. They found that TI
=0.130+001. To check whether the KT-like transition
occurs at the same temperature, consider the results for

For T 0. 133, a finite size scaling analysis shows
that eo '~0 as L~oo. Results for T=0.132 are de-
creasing strongly with L but do not follow a clear L
(see Fig. 5) or 1/inL dependence. However at T =0.132,
eo

' for L )20 is well below the Nelson-Kosterlitz value
of 0.53, and appears to vanish as L —+ ~. For T 0. 129,
there is no systematic dependence of co on L„ indicating
the KT transition occurs at TK~=0. 129+0.002, below
the Ising-like transition. Thijssen and Knops' find
TK~=0. 132+0.001 and no evidence for a nonuniversal
jump in eo '. However as seen from Fig. 5 at 0.132,
eo '~0 as L ~ oo. From Figs. 3(c) and 5 we see that the
jump in eo (TKz) is 0.63+0.03, greater than the univer-
sal value 0.52 and in agreement with Minnhagen's re-
sult, ' 0.646. The argument could also be turned around
by assuming that Minnhagen is correct, in which case
T&z =0.129.

This is the first numerical evidence for two distinct
transitions, the lower one of the KT type and the higher
one Ising like. Teitel and Jayaprakash carried out the
first simulations for the fully frustrated XY model but
found significant finite size effects for both the position of
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the specific heat peak and for the helicity modulus Y.
They were unable to distinguish whether there was one or
two transitions. The best numerical simulations for the
fully frustrated XY model are by Berge et aI. ' who sug-
gested that both transitions occur at the same tempera-
ture. However they did not measure the helicity modulus
Y, and thus is not possible to determine from their data
precisely where the KT transition really is. Instead they
determined the phase diagram' from the locus of specific
heat maxima for a model in which one bond per plaquette
had a negative strength —gJ. In this model q=1 corre-
sponds to the fully frustrated model f =

—,'. For rI&1
they fourid two peaks in the specific heat but only one for
q=1, which they interpreted as evidence for a single
transition. However for gW 1, their Hamiltonian does
not have the same symmetry of the fully frustrated mod-
el. Also since they do not have an independent measure
of the position of the KT transition, their simulations
cannot unambiguously determine whether one or two
transitions occur. Clearly, it would be of interest to
determine Y and carry out detailed finite size scaling of
TI(L) for the fully frustrated XY model to test the results
presented here.

In Figs. 6 and 7, we present results for C and eo
' for

the cases f =
—,
' and —,'. Clearly in both cases, there is no

singularity in the specific heat and a (0. The peak
occurs at T=0.075+0.03 for f =

—,', while for f = —,', a
peak position is difficult to determine. For f =

—,', results
for T~0.075 clearly fall below the Nelson-Kosterlitz
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is not possible to determine at present which of these two
are correct.

From the available data, it is also possible to check the
approximate Coulomb gas scaling used in Refs. 21 and
22. Their relation between the CG temperature TCG and
the XY temperature T is
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FIG. 7. C and eo
' vs T for f= —' for L =12 (6), 20 ( ), 32

(o ), and 40 (0). Solid line in (b) is eo =4T.

line for the largest systems studied. Results for &o
' for

T =0.069 and 0.072 show significant finite size effects,
while for T&0.066, eo

' becomes nearly independent of
I., suggesting T&&-0.066. The jump iri eo

' at Tcz
would then be approximately 0.78+0.05 compared to the
universal value of 0.26. While the data seem to strongly
suggest a large nonuniversal jump in eo

' at a temperature
significantly less than where the peak in the specific heat
occurs, I cannot rule out the possibility that eo

' de-
creases rapidly for T )0.066 to a nonzero value and then
has a universal jump at eo '=4T or a smaller nonuniver-
sal jump. The systems are not large enough to obtain a
good asymptotic estimate of eo

' as L ~ ~ for T =0.069
and 0.072 to determine if they truly vanish or not. I tried
finite size scaling analysis on eo (L) as a function of both
L ' and 1/lnL for these two temperatures and could not
obtain a particularly good fit. A similar analysis for
f = —,

' suggests Tco (0.025. For large L and low T, it is

very difficult to equilibrate the system for f = —,
' and pre-

cise determination of TCG is not possible for this case.
The jump in eo at Tc& in this case is clearly nonuniver-
sal and seems to be quite large, approximately 0.90.
Minnhagen predicts a smaller jump ( =0.60 for
Tco =0.066 and 0.55 for Tco -0.025) than found here.
The difference could be a result of the approximations
used in the theory breaking down at low temperatures.
However, it is also possible that even where I observe a
s&gnificant finite size dependence in eo ', as I.~ ~ Ep is
actually nonzero, resulting in a smaller jump at TKz. It

where close to T=O, the helicity modules has the form
Y=Yo(1 —T/Tco ). For the square lattice Tco =4 for
f =0 and 2 for f =

—,', while Yo= —(I/2N)(H)/T =1
for f =0 and &2/2 for f = —,'. For f =0, recent very ac-
curate estimates for the XY model give TK~=0.887J.
Equation (6) then gives Tco =0.181, significantly below
the value 0.22 found here and in Ref. 30. For f =

—,',
Teitel and Jayaprakash and Berge et al. ' find
Tc=0.45J from the position of maximum in specific
heat. This would give Too =0.131 from Eq. (6), which is
in good agreement with the value, 0.129, found here.

Lee et al. suggest that the Ising and KT transitions
occur at one temperature with a universal jump in the
helicity modulus for the antiferromagnetic XY model on
a triangle lattice. In the present case, I am suggesting
two transitions and a nonuniversal jump in eo at TKz.
It is interesting to consider the possibility that the ex-
istence of two distinct transitions is related to the fact
that the discontinuity in eo is nonuniversal whereas the
two transitions are congruent when the jump is universal.
Additional simulations for other models which have both
a disc&etc and continuous symmetry are needed to test
this possibility.

In conclusion, I have presented for the first time, de-
tailed Monte Carlo simulations for the uniformly frus-
trated charged Coulomb gas. The results suggest two dis-
tinct transitions for f =

—,', the lower one KT like and the
higher one Ising like with a nonuniversal jump in eo at
TKI . This is in contrast to earlier simulations on the ful-

ly frustrated XYmodel' and the CG' model. Several re-
cent analytic predictions " suggest a single transition.
Even though the interaction is long ranged for the
Coulomb gas model, the advantage over XY simulations
is that the variables are discrete integers instead of con-
tinuous spin variables. It turned out that for the CG
model, the Ising-like transition temperature TI showed
negligible finite size corrections, allowing for an accurate
determination of TI(ao ). This coupled with results for
the inverse dielectric constant eo gave the first numeri-
cal evidence for two transitions. Comparable numerical
results for the fully frustrated XY model, which deter-
mine simultaneously TI( ao ) and the helicity modulus Y
have not been carried out.

I also presented evidence for a nonuniversal jump in
the inverse dielectric constant eo

' for f =—,', —,', and —,'.
While the nonuniversal jump for f =—,

' may or may not
be associated with the nearby Ising transition, the results
for f =

—,
' and —,

' clearly support Minnhagen. '
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